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Abstract. Symplectic capacities coinciding on convex sets in the standard symplectic vector

space are extended to any subsets of symplectic manifolds. It is shown that, using embeddings

of non-smooth convex sets and a product formula, calculations of some capacities become very

simple. Moreover, it is proved that there exist such capacities which are distinct and that there

are star-shaped domains diffeomorphic to the ball but not symplectomorphic to any convex set.

1. Preliminaries. For an introduction to symplectic capacities, non-smooth Hamil-

tonian systems and characteristic differential inclusions we refer to a previous talk given

at the Banach Center in October 93 [K93].

The aim of this note is to show that some calculations of symplectic capacities can be

simplified through embeddings of non-smooth convex sets . No approximations by families

of Hamiltonian functions are needed. We show that definitions of capacities of convex sets

in the symplectic model space
(

R2n, ω
)

suffice to define and to calculate in some cases

symplectic capacities for subsets in any symplectic manifolds. Moreover, some applica-

tions of the product formula for convex sets derived in [K90] are given.

To define the setting, let us consider the standard symplectic linear space V :=
(

R2n, ω
)

. The non-degenerate closed 2-form ω is expressed by the almost complex struc-

ture J0 : TR2n → TR2n, which is described in standard coordinates by an n-fold tensor

product of the matrix

(

0 −1
1 0

)

∼= i. We write in these coordinates x.y =
∑2n

i=1 xiyi

for the scalar product and ω(x, y) = J0x.y for the symplectic form. A differentiable map

ϕ : V → V is called symplectic if ϕ∗ω = ω, i.e. dϕ(x)TJ0dϕ(x) = J0. We denote the set

of symplectic embeddings of open subsets of R2n into R2n by Eω(R2n) and the symplectic

diffeomorphisms of R2n by Dω(R2n).

Let B(r) = B2n(r) = {x ∈ R2n
∣

∣ |x| < r} be the ball and Z(r) = B2(r) × R2n−2 =

{x ∈ R2n | q21 + p2
1 < r2} be a cylinder with a symplectic base disc, where p1, q1 are the
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first two coordinates.

Let K be the set of possibly unbounded convex sets with perhaps empty interior. Given

such a convex set K, let nK(x) be the section of elements of length 1 in the normal cone

(see e.g. [A84]) at a point x. We study the periodic characteristic differential inclusion of

a non-smooth convex set K which depends in fact only of the boundary of K:

(i) γ̇(t) ∈ JnK

(

γ(t)
)

a.e.
(ii) γ(t) ∈ ∂K ∀t ∈ [0, Tγ]
(iii) γ(t+ Tγ) = γ(t) ∀t ∈ [0, Tγ]

and Tγ > 0 is the minimal period of γ











(∗)

whose moduli space of solutions is called Γ(K), which is in a well defined way equivalent

to the periodic solutions of a non-smooth Hamiltonian system (see [K93]). The set of

symplectic actions A(γ) = 1
2

∫

γ̇.J0γ dt of elements of Γ(K) is called the action spectrum

of K.

Definition 1. Let c be the map

c : K −→ [0,∞]

K 7−→ c(K) = inf{A(γ) | γ ∈ Γ(K)}

assigning to K the minimal characteristic action of ∂K, using the convention that inf =

∞ if Γ(K) is empty.

It has been shown in [K90] that c(K) (for a convex set K with non-empty inte-

rior) can be expressed with a simple formula through the minimum of the classical dual

Hamiltonian functional introduced by Clarke and Ekeland [CE80] and that it satisfies

the axioms of a capacity of convex sets in the standard symplectic vector space. This

means that c coincides on smooth convex sets with the Ekeland-Hofer [EH89] and the

Hofer-Zehnder capacity [HZ90] which are defined with the classical non-definite Hamil-

tonian functional and approximation by well chosen families of Hamiltonian functions.

Moreover, c satisfies a useful formula for symplectic products [K90] which we will use

later: c(K1 ×K2) = min{c(K1), c(K2)}.

In this paper, we study the symplectic capacities extending c:

Definition 2. Let M2n be the family of symplectic manifolds of given dimension

2n and S a family of symplectic embeddings defined on open domains of such manifolds.

Let further F be an S-invariant family of subsets of these manifolds containing K. We

denote by (D,ω) the set D with the symplectic form of the ambient manifold restricted

to D (which may be degenerate on D). A symplectic capacity for F and S extending c is

a map C of F to R+ satisfying

(a) D,D′ ∈ F , D ⊂ D′ =⇒ C(D) ≤ C(D′),

(b) D ∈ F , ϕ ∈ S =⇒ C
(

ϕ(D)
)

= C(D),

(c) if K ∈ K, then C(K) = c(K).

Capacities in V are therefore obtained by taking M2n := {R
2n, ω}, F ⊂ P(R2n),

where P(R2n) is the set of all subsets of R2n, and we distinguish two cases: If S := Dω

we call C diffeomorphism capacity and if S := Eω we call it embedding capacity.
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The axioms are designed in the way that the existence of a symplectic capacity for V

implies Gromov’s squeezing theorem: The existence of a symplectic embedding of the ball

of radius r into Z(R) implies that r ≤ R. However, to give a new proof of this theorem

is not the aim of the present article.

2. Extensions in R2n. In order to control all extensions of c to any subset of R2n

at the same time, the idea is to consider the smallest and biggest functions satisfying

monotonicity and Dω-invariance for D ∈ P(R2n):

Definition 3.

ℓ(D) = sup{c(K) | K ∈ K such that ∃ϕ ∈ Dω with ϕ(K) ⊂ D}

u(D) = inf{c(K) | K ∈ K such that ∃ϕ ∈ Dω with D ⊂ ϕ(K)}.

Let analogously ℓe and ue be defined with symplectic embeddings ϕ ∈ Eω with open

domain of definition domϕ ⊃ K̄ instead of diffeomorphisms Dω. As usual, we set 0 the

supremum and ∞ the infimum on the empty set.

We call u and ℓ upper and lower symplectic capacity in R2n respectively because any

capacity extending c is estimated above and below by u and ℓ:

Theorem 1.

(i) All symplectic capacities C : F → [0,∞] coinciding on K with c are estimated

by u and ℓ: ℓ(D) ≤ C(D) ≤ u(D) for every D ∈ F . If Ce is moreover Eω-invariant (an

embedding capacity), it satisfies ℓ ≤ ℓe ≤ Ce ≤ ue ≤ u.

(ii) u and ℓ (and also ue and ℓe) are symplectic diffeomorphism capacities for P(R2n).

ℓe is moreover an embedding capacity, whereas ue is not Eω-invariant.

(iii) They all coincide on K with c;

(iv) u and ℓ are distinct ,

(v) and u(D) = infϕ∈Dω
c
(

convϕ(D)
)

, where convD is the closed convex hull of D.

Notation. We denote inward and outward approximation sets by

I(D) = {K ∈ K | ∃ϕ ∈ Dω with ϕ(K) ⊂ D}

O(D) = {K ∈ K | ∃ϕ ∈ Dω with D ⊂ ϕ(K)},

then the proofs for u and ℓ can simply be deduced from the properties of these sets.

P r o o f.

(i) We show only ℓ ≤ C. If ℓ = 0, there is nothing to prove since any capacity

C is non-negative. We may therefore suppose that there is K ∈ K and ϕ ∈ Dω with

ϕ(K) ⊂ D; then

C(D)
(a)

≥ C
(

ϕ(K)
) (b)

= C(K)
(c)
= c(K),

therefore C(D) ≥ sup c(K) = ℓ(D). An analogous argument yields u(D) ≥ C(D). The

other inequalities can be proved in a similar way.



80 A. F. KÜNZLE

(ii) Monotonicity: D1 ⊂ D2 =⇒ I(D1) ⊂ I(D2), O(D1) ⊃ O(D2), therefore

ℓ(D1) = sup
I(D1)

c ≤ sup
I(D2)

c = ℓ(D2)

u(D1) = inf
O(D1)

c ≤ inf
O(D2)

c = u(D2).

Symplectic invariance: Let ψ ∈ Dω. For K ∈ I
(

ψ(D)
)

, there is ϕ(K) ⊂ ψ(D) =⇒

ψ−1 ◦ ϕ(K) ⊂ D =⇒ K ∈ I(D), by the group property of Dω, thus I
(

ψ(D)
)

= I(D).

Analogously, O
(

ψ(D)
)

= O(D), from where

ℓ
(

ψ(D)
)

= ℓ(D)

u
(

ψ(D)
)

= u(D).

The function ue(D) := inf{c(K) | K ∈ K such that ∃ϕ ∈ Eω with D ⊂ ϕ(K)} satisfies

immediately ue(D) ≤ u(D). But ue is not Eω-invariant (only Dω-invariant):

ψ(D) ⊂ ϕ(K) ψ, ϕ ∈ Eω 6⇒ D ⊂ ψ−1 ◦ ϕ(K)

as ψ−1 may not be defined on ϕ(K). But ℓe is Eω-invariant:

ϕ(K) ⊂ ψ(D) ψ, ϕ ∈ Eω =⇒ ψ−1ϕ(K) ⊂ D

since ψ−1 is defined on the (smaller) set ϕ(K).

(iii) To show ℓ(K) = c(K) = u(K) for all K ∈ K, first note that

ℓ(K) ≥ c(K) ≥ u(K)

because we can take ϕ = id in the definition of ℓ and u. For the reverse inequality, we

need the monotonicity of a symplectic capacity on smooth convex domains such as cEH :

For all ϕ(K1) ⊂ K ⊂ ψ(K2) one gets c(K1) ≤ c(K) ≤ c(K2) and therefore the claim by

taking the infimum respectively the supremum on Ki.

(iv) We prove this by exhibiting an example: Consider the shell A2n = B(R) \B(r),

r < R. To calculate u(A2n), observe that all images of convex sets by diffeomorphisms

containing A2n contain B(R), which is itself convex; therefore u(A) = c
(

B(R)
)

= πR2.

For ℓ, look first at an area-preserving embedding ϕ0 ∈ Eω in 2 dimensions ϕ0 : K :=

(0, 2π)×
(

0, R2
−r2

2

)

−→ A2. Its image Å2 \ {(p, q) | p = 0, q > 0} has the same area as K:

c(K) = π(R2 − r2) = ℓe
(

ϕ0(K)
)

,

and fills out B(R)\B(r) with respect to the area measure. Therefore, the lower embedding

capacity ℓe(A
2) := sup{c(K) | K ∈ K such that ∃ϕ ∈ Eω with ϕ(K) ⊂ A2} equals

π(R2 − r2). But ℓ(A2) is less than ℓe(A
2) because Dω ⊂ Eω, from where we get the claim

for dimension 2:

ℓ(A2) ≤ ℓe(A
2) = π(R2 − r2) < πR2 = u(A2).

The product formula for the symplectic product P = A2 × · · · × A2 yields finally

ℓ(P ) < u(P ) for arbitrary dimensions.
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Fig. 1. Existence of distinct symplectic capacities.

(v) infϕ∈Dω
c
(

convϕ(D)
)

= infϕ infK∈K{c(K) | ϕ(D) ⊂ K} by the definition of the

convex hull and monotonicity for convex sets. This is equal to infϕ infK{c(K) | D ⊂

ϕ−1(K)} = u(D).

R e ma r k. To complete the calculation for the example in (iv), consider an area-

preserving diffeomorphism ψε ∈ Eω:

ψε : Å2 = B̊(R) \B(r) −→ B̊(
√

R2 − r2 + ε2) \B(ε)

which yields, together with the above result ℓe(A
2) = π(R2 − r2) that all Eω-invariant

capacities of A2 are π(R2 − r2) .

This example shows that Eω-invariant capacities Ce do not distinguish between annuli

of the same area whereas u does. On the other hand, u does not distinguish between discs

and annuli of the same (outer) radius, whereas Ce might.

3. Applications to closed characteristics and action inequalities.

As CHZ(D) ≤ u(D) for all D, one can draw a consequence of Theorem 4 in [HZ90]: If

u(D) is finite and ∂D admits a foliation Sε ∈ [0, 1] by hypersurfaces such that S0 = ∂D,

then there exists a periodic solution on Sε for almost every ε in [0, 1]. This contains the

almost existence theorem of Hofer and Zehnder in [HZ87] which generalized Viterbo’s

proof [V87] that every hypersurface of contact type carries at least one periodic orbit.

On the other hand, for a given D, the characterization of c as a minimum of the dual

Hamiltonian action functional together with Theorem 1(v) may be useful to show that

u(D) is finite.

For convex sets with B(r) ⊂ K ⊂ B(R), a theorem by Croke–Weinstein and a theorem

by Ekeland (see [E90] for both) state

(a) ∀γ ∈ Γ(K) A(γ) ≥ πr2 (Croke–Weinstein)

(b) ∃γ ∈ Γ(K) A(γ) ≤ πR2 (Ekeland)

These estimates can now be understood naturally in terms of capacities and are readily

generalized:

Proposition 1. Consider K ∈ K. If D1 ⊂ K ⊂ D2 for two sets Di ∈ P(R2n), then

for any extensions C1, C2 of c one gets

(a) ∀γ ∈ Γ(K) A(γ) ≥ C1(D1),

(b) ∃γ ∈ Γ(K) A(γ) ≤ C2(D2).

P r o o f. Monotonicity and C1(K) = C2(K) = c(K) imply

C1(D1) ≤ c(K) = min
γ∈Γ(K)

A(γ) ≤ C2(D2).
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As concrete example, one can improve the inequalities already by taking forD1 andD2

two radially deformed ellipsoids [K90]. They are symplectomorphic to standard ellipsoids

and have therefore known capacity.

4. Star-shaped domains need not be symplectomorphic to any convex set.

Theorem 1 together with the definition of c by closed characteristics on any set has an

immediate

Corollary. Consider a subset D0 of R2n with non-empty interior. Let C(D0) be

its value for any symplectic capacity extending c. Then all sets D ⊃ D0 carrying a

characteristic loop on their boundary ∂D with action strictly less than C(D0) cannot be

symplectomorphic to a convex set. Consequently there are star-shaped domains which are

not symplectomorphic to any convex set.

P r o o f. Assume D = ϕ(K) for K ∈ K, ϕ ∈ Dω, and show that this leads to a

contradiction. On the one hand

C(D0) ≤ C(D) = C
(

ϕ(K)
)

= c(K) = inf{A(γ) | γ ∈ Γ(K)};

but on the other, ϕ induces a bijection between characteristic curves leaving the actions

invariant, because K and ϕ(K) are simply connected, implying that for all characteristic

loops on ∂ϕ(K), A(γ) ≥ c(K) = C(D), contradiction. For C(D0) = ∞ the theorem

means: If ∂D carries a characteristic loop with finite action, then D cannot be symplec-

tically diffeomorphic to a convex set.

As examples, consider D0 = B(r); then all sets D ⊃ B(r) with a “neck loop” γ

as in the theorem are not symplectomorphic to a convex set. In particular, there are

star-shaped domains which are not symplectomorphic to any convex set.

Fig. 2. A star-shaped domain which is not symplectomorphic to any convex set.

5. Further examples.

Proposition 2.

(i) If D ⊂ R2n−1 ⊂ R2n is bounded , then C(D) = 0 for all symplectic capacities C.

For example u(S2n−2) = 0, whereas u(S2n−1) = u
(

B(1)
)

= π.

(ii) A Lagrangian plane L satisfies u(L) = ∞.

(iii) Let D̊1 ⊃ D̄2, then u(D1 \D2) = u(D1).

(iv) Let T d = ∂B1 × · · · × ∂Bd be a standard isotropic torus , where Bi are simply

connected 2-dimensional domains in the standard symplectic 2-space. Put Bi = 0, i =

d + 1, . . . , n. Then u(T d) = mini=1,...,n Area(Bi) < ∞ for all d ≤ n which is 0 for all

d < n. Moreover , Ce(Λ) = 0 for all Eω-invariant capacities Ce and for all Lagrangian

tori Λ.
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(v) Let {Di | i ∈ I} be a collection of open bounded subsets with D̄i ∩ D̄j = ∅ for

i 6= j and let D =
⋃

i∈I Di. Then u(D) ≥ sup{u(Di)} ≥ ℓ(D).

(vi) u(D̄) = u(D̊), but ℓ(D̄) 6= ℓ(D̊) in general.

(vii) u is Hausdorff-continuous on bounded domains , but ℓ is not.

This illustrates how much differently from measures capacities behave.

P r o o f.

(i) Consider a vector e ∈ R2n orthogonal to D and e′ = Je and the convex rectangle

Kε := [−R,R]e′× [−ε, ε]e ⊂ span{e′, e} =: E⊥. D is contained in the symplectic product

of convex sets Kε × E. By the product formula for c, one gets C(D) ≤ c(Kε × E) =

c(Kε) = 2R · 2ε→ 0 for ε→ 0.

This is true for any capacity, not only for extensions of c, because Kε is area-

preserving diffeomorphic to a disc with area 2ε =: πr2, i.e. Kε × E ∼ B(r) × R2n−2.

In conclusion, all bounded subsets of R2n−1 have vanishing value for any capacity

function C.

(ii) As L is an n-dimensional plane in R2n, its normal cone is an n-dimensional quad-

rant, whose image by J0 is a quadrant in L. The differential inclusion (∗) has therefore

no closed orbit, which means that c(L) = ∞.

(iii) ϕ(K) ⊃ D1 if and only if ϕ(K) ⊃ D1 \ D2 for D̊1 ⊃ D̄2, because ϕ(K) is

contractible. This implies O(D1 \ D̄2) = O(D1) and therefore u(D1 \ D2) = u(D1).

(Remark : A special case is the shell B̊(R) \B(r) we treated earlier.)

(iv) T d ⊂ ∂
(
⊗n

i=1 Bi

)

=: ∂P where P is the symplectic product of Bi whose capac-

ities can be estimated by the product formula for convex sets (with Bi area-preserving

diffeomorphic to convex discs):

u(P ) = min{u(Bi)} = u(Bk),

for some k. As u(Bk) is the area of the bounded set Bk, u(T d) is bounded. If d < n, it is

even 0.

Now we can apply Moser’s homotopy argument to show that all Lagrangian tori

are symplectically equivalent, i.e. for all Lagrangian tori Λ, there is a ϕ ∈ Eω such that

ϕ(Λ) = T n is a standard torus. Consequently

Ce(Λ) = Ce

(

ϕ(Λ)
)

= Ce(T
n) ≤ u(Bk).

In particular, for all ε > 0, there is a standard torus T n with u(T n) = ε, i.e. Ce(Λ) = 0

for all Λ and Ce.

(v) ϕ(K) ⊃ D ⇒ ϕ(K) ⊃ Di : O(D) ⊂ O(Di), implying u(D) ≥ supi∈I{u(Di)}. If

ϕ(K) ⊂ D, then it must be contained in one of theDi and conversely: I(D) =
⋃

i∈I I(Di),

yielding ℓ
(
⋃

i∈I Di

)

= supi∈I{ℓ(Di)}.

(vi) For any symplectic diffeomorphism ϕ defined on R2n, one infers

D̊ ⊂ ϕ(K) ⇐⇒ D̊ ⊂ ϕ(K̊) ⇐⇒ D̄ ⊂ ϕ(K̄),

from where u(D̄) = u(D̊).

(vii) Consider Dε = {x ∈ R
2n | dist(x,D) ≤ ε}. Because Dε is bounded, the norm

‖dϕ(x)‖ is uniformly bounded from below and above on Dε \ D. Then there exists a

constant r such that u(Dε) = (1 + rε)u(D), which proves the Hausdorff-continuity of u.
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Both negations for ℓ follow from the following counterexample: Consider a union

D =
⋃

i=1,...,4Di of four disjoint, juxtaposed open unit squaresDi such that D̄ is a closed

square of length 2. Then D̄ has capacity ℓ(D̄) = 4 , but ℓ(D) = ℓ(D1) = 1. Moreover

Dε ⊃ D̄ for all ε > 0.

Theorem 2. For any capacity C extending c the generalized product formula holds:

(a) min{ℓ(D1), ℓ(D2)} ≤ ℓ(D1×D2) ≤ C(D1×D2) ≤ u(D1×D2) ≤ min{u(D1), u(D2)}.

(b) If ℓ(Di) = u(Di) for i = 1, 2, then C(D1 ×D2) = min{C(D1), C(D2)}.

P r o o f.

(a) Take a minimizing sequence
(

Kk
i , ϕ

k
i

)

, k ∈ N for each i and conclude: For u,

assume Di ⊂ ϕk
i (Kk

i ) and u(Di) = infk c(K
k
i ) for i = 1, 2. Clearly D1 ×D2 ⊂ ϕk

1(Kk
1 ) ×

ϕk
2(Kk

2 ) and therefore using the product formula for convex sets u(D1×D2) ≤ infk c(K
k
1 ×

Kk
2 ) = infk min{c(Kk

1 ), c(Kk
2 )} = min{u(D1), u(D2)}, and similarly for ℓ.

(b) follows immediately from (a).

R e ma r k. It is easy to see that there are ‘many’ sets satisfying the hypotheses of (b)

which are not symplectomorphic to any convex set: Take for instance examples D similar

to the one in the Corollary to Theorem 1 such that moreover B(r) ⊂ D ⊂ Z(r), see

Figure 2. They all satisfy ℓ(D) = u(D) and are not symplectomorphic to any convex set,

which shows that Theorem 2 is a true generalization of the product formula for K.

Theorem 2 applies in particular to cEH (using [Si90]) and cHZ .

6. Extensions to general symplectic manifolds. Now that extensions to R
2n

have been studied, it is easy to generalize them analogously to manifolds.

Definition 4. For any subset of a symplectic manifold of given dimension 2n, we

define the non-negative numbers

u(D) = inf
ϕ∈Eω

c
(

convϕ(D)
)

,

e(D) = sup{c(K) | K ∈ K such that ∃ϕ ∈ S with ϕ(K) ⊂ D},

k(D) = sup{u(P ) | P ⊂ D contractible}.

Theorem 3.

(i) e, k and u satisfy the axioms of Definition 2 for any subsets of all symplectic

manifolds and any family of embeddings.

(ii) All symplectic embedding capacities C coinciding on K with c are estimated by e

and u: e ≤ C ≤ u.

P r o o f. The proof is analogous to the one for ℓ and u and is therefore skipped. For k,

one simply observes that every ϕ(K) is a contractible set, so that e ≤ k ≤ u immediately

follows.

7. Surfaces. Given any compact surface S of genus g, consider the canonical system

of 2g non-dividing curves αi, βi, i = 1, . . . , g. Then S \ A with A :=
⋃g

i=1 αi ∪ βi is
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conformally equivalent to a 2g-gon, which is itself conformally equivalent to a disk D

in C:

f : S \A→ D

is a conformal map and is therefore symplectic:

Area(D) = Area(S \A) = Area(S).

Consequences.

(1) P = S \A is contractible. Every other contractible subset of S has area less than

Area(S), therefore k(S) = u(P ) = Area(S).

(2) f−1 is a symplectic diffeomorphism D → S \ A from an open convex set into S,

which realizes the maximum for area-preserving embeddings: e(S) = Area(S).

This proves

Proposition 3. For any surface S with or without boundary, all symplectic embedding

capacities C extending c are equal to the area of S: e(S) = Area(S) = k(S).

Proposition 3 has first been proved by Siburg [Si93] for embedding capacities (which

he called Hofer-Zehnder capacities) by construction of an adapted Hamiltonian function.

This is in contrast to the diffeomorphism capacity u which is different from the area:

Recall that the annulus S = B(R) \ B̄(r) satisfies e(S) = Area(S) = k(S) = π(R2 − r2)

but u(S) = u(S) = πR2, see Figure 1.

8. Symplectic 4-tori and the Herman-Zehnder example. Following [HZ94], we

consider
(

R4, ωα

)

with the symplectic structure ωα(x, y) = AαX.Y defined by

Aα =







0 −1 α2 0
1 0 −α1 0

−α2 α1 0 −1
0 0 1 0






= −AT

α

(which satisfies det(Aα) = 1 but not A2
α = −I). This form induces a symplectic structure

on the manifold M = T 3 × [0, d] = R3/Z3 × [0, d] denoted again ωα. For α1, α2 = 0, one

gets the standard almost complex structure J0. For d < 1,
(

M,ωα

)

is embedded in the

torus
(

T 4, ωα

)

.

FunctionsH on R4 which are 1-periodic in the first three variables pass to the quotient

as well as their Hamiltonian vector fields

ξH := −A−1
α H ′(x),

where H ′(x) is the Euclidean gradient of H . As

A−1
α =







0 −1 0 −α1

1 0 0 −α2

0 0 0 −1
α1 α2 1 0






,

we get for the Hamiltonian function H0(x) = x4 a constant vector field

ξH0
= (α1, α2, 1, 0) =: (α, 0),
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which integrates to an affine flow preserving all 3-tori T 3 × {s}. If α = (α1, α2, 1) is

rationally independent, i.e. α.z 6= 0 ∀z ∈ Z3 \ 0, this flow is dense and has no periodic

orbits. Therefore it represents an example of a Hamiltonian flow whose energy levels

T 3 × {s} are all regular and compact but none of them carries a periodic orbit.

M. Herman proved in [H91] that H0 is dynamically stable under perturbations if α is

irrational satisfying a diophantine condition: This represents an counter-example against

the Ck-closing conjecture for k sufficiently large.

In [HZ94], it has been showed that cHZ

(

M,ωα

)

is infinite if α is irrational. Here we

estimate C(M,ωα) for any C extending c by exhibiting a convex set contained in M :

C(M,ωα)

{

= ∞ if α irrational
≥ d if α rational

P r o o f. Consider the linear map
(

R4, ω
)

→
(

R4, ωα

)

given by the matrix

Nα =







1 0 α1 0
0 1 α2 0
0 0 1 0
0 0 0 1







which is symplectic: N t
αANα = J0. Denote the canonical basis by ek.

(i) If α is irrational, then the Lagrangian plane L spanned by e1 and e3 is embedded

by Nα into M̃ = R3 × [0, d]. The quotient of this map onto M winds L in the 3-torus

densely around itself. But a Lagrangian plane has infinite capacity, from where the first

part of the claim.

If α is rational, then there are relatively prime ni ∈ Z, i = 1, 2 such that αi = ni

n3

.

Then:

(ii) Nα embeds the standard unit 3-cube into a fundamental domain of the action of

Z3 on M̃ . Therefore C(M,ωα) ≥ c([0, 1]3 × [0, d], ω0) = d by the product formula, which

proves the second claim.

(iii) But the mapNα also sends then the parallelogramP spanned by e1,
1

n3

e2, n3e3, e4

into a fundamental domain of the action of Z3 on M̃ . Therefore C(M,ωα) ≥ c(P, ω0),

which is equal to min{ 1
n3

, d} again by the product formula for c.

This last observation shows the relation to (i), but also prompts a question concern-

ing fundamental domains of in M̃ (which would determine e(M)): What is the biggest

capacity a fundamental domain in M̃ can have?
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