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Abstract. We discuss Taubes’ idea to perturb the monopole equations on symplectic man-
ifolds to compute the Seiberg–Witten invariants in the light of Witten’s symmetry trick in the
Kähler case.

1. Introduction. In 1994 a new field equation on 4–manifolds came up simplifying
lots of questions in low–dimensional topology, generally referred to as Donaldson theory.
The main advantage of the new theory is, that it is an Abelian field theory coupled to
the Riemannian metric. The more or less direct consequence is that the moduli space
of solutions of the field equations is compact (unlike in the case of anti–selfdual SU(2)–
connections there is no bubbling–off phenomenon). With a few (but important) exceptions
one can give a sequence of easier proofs of facts derived from Donaldson theory (some
of them with even stronger statements). See [F] for a more detailed discussion. Based on
the vanishing of the Seiberg–Witten invariants there are new theorems in Riemannian
geometry of spaces with positive scalar curvature (see [LB]).

Most importantly, the computation of the new invariants started a development at
the end of which we will probably have a much better understanding of the differential
topology of symplectic 4–manifolds.

Let us recall the state of the art before the new invariants came up. A symplectic
structure on an (oriented) 4–manifold is a closed 2–form ω such that ω ∧ ω gives an
orientation class. There exists a calibrating almost complex structure J or, equivalently,
a Riemannian metric g such that ω is a self–dual and harmonic 2–form. So, we already
have the basic two homotopy obstructions against the existence of a symplectic structure
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on a 4–manifold: b+2 ≥ 1 and the (anti)–canonical bundle K(K−1) satisfies

c1(K)2[M ] = c1(K−1)2[M ] = (2χ(M) + 3σ(M))

where the existence of such a class c ∈ H2(M ;Z) satisfying this equation implies the
existence of an almost complex structure. With that description at hand one could prove
various results like

Proposition 1 [A].
(i) If M,N are closed , compact , almost complex 4–manifolds then there is no almost

complex structure on M]N .
(ii) There exists an almost complex structure on kCP2]lCP2 inducing the given

orientation iff k ≡ 1 mod 2.

But it was an open problem whether kCP2]lCP2 admits a symplectic structure or
not. This was settled by Taubes with the following

Theorem 1 [T]. Let M be a closed , compact , symplectic 4–manifold with b+2 ≥ 2.
Then the SpinC–structure associated to the calibrating almost complex structure has
Seiberg–Witten invariant ±1.

On the other hand there exist a Riemannian metric with positive scalar curvature on
kCP2]lCP2. The invariants vanish on such manifolds (see [KM]) so he concludes

Corollary 1. For k > 1 there is no symplectic structure on kCP2]lCP2.

Another circle of problems is posed by the question of rigidity of symplectic structures.
So far, with the powerful techniques of Gromov’s pseudo–holomorphic curves, there have
been rigidity results only for noncompact 4–manifolds:

Theorem 2 [G,D]. Suppose M is a (noncompact) symplectic 4–manifold with one
end which is standard at infinity , then M is the blowing up of C2 in a finite collection of
points.

The problem in applying Gromov’s method is usually the existence of just one such
pseudo–holomorphic curve.

By showing the existence of a pseudo–holomorphic curve homologous to the hyper-
plane Taubes proves the following conjecture of Gromov

Theorem 3 [T2]. Every symplectic structure on CP2 is diffeomorphic to the standard
one.

The paper is organized as follows. In Chapter 2 we discuss SpinC–structures and
study the monopole equations on almost complex and symplectic 4–manifolds, in Chap-
ter 3 we compute the Lagrangian in this situation and discuss the failure of it to catch
the symmetry of the more special Kähler case. Finally, we derive the family of equations
Taubes considers to circumvent this problem. In Chapter 4 we prove ellipticity of the
linearization and a priori estimates for solutions of this family of equations (from which
the compactness of the moduli space of monopoles and its smoothness in a nondegen-
erate solution follows). Chapter 5 is basically extracted from Taubes paper, explaining
in less detail all necessary steps in the proof of Proposition 3. In Chapter 6 we prove
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the nondegeneracy of solutions having the special form proposed in Proposition 3 (which
was left out by Taubes). In the odds and ends of Chapter 7 we will discuss the limits of
the application of Taubes’ techniques to keep the fortunate reader from applying it to
enthusiastically and give some more corollaries and an overview of the important research
announcements of Taubes in [T2] in Chapter 8.

2. Spinor bundles and Dirac operators on almost complex manifolds. Let
(M2n, g) be an oriented Riemannian manifold.

Definition 1. A spinor bundle S −→ M is a complex vector bundle which is an
irreducible representation of the Clifford bundle, i.e.

CliffC(M) ∼= End(S)

as bundles of algebras.

R e m a r k 1. Such a spinor bundle is unique up to twisting by line bundles. This can be
easily deduced from the uniqueness of the irreducible representation of the Clifford algebra
CliffC(V ) of a 2n–dimensional Euclidean vector space V as algebra of endomorphisms(see
[BGV]) End(S) of a complex vector space S.

Now we discuss the question of the existence of such spinor bundles.

Proposition 2. An oriented 2n–dimensional Riemannian manifold (M, g) admits a
spinor bundle iff it admits a SpinC–structure.

P r o o f. The statement is rather elementary and probably well–known. In [BGV]
the spinor module S is constructed locally using a maximal isotropic subspace of the
complexified Euclidean vector space P ⊂ TCM . Having chosen an orienting orthonormal
frame {ej} of TM , P may be set P = LC({e2k−1 + ie2k}). S is then defined to be
the exterior algebra S = ΛP and the Clifford action is given by exterior multiplication
and contraction. (Equivalently, given locally an almost complex structure J , e.g. via
J(e2k−1) = e2k, then P is the eigenspace to the eigenvalue i of J .) The algebra of matrices
is simple, so given any other spinor module S′ there is up to scalar multiplication a
unique isomorphism of S and S′ as Clifford modules. Now assume we have chosen a
covering {Uα}α of M such that the open sets and pairwise intersections are contractible
together with trivializations of (TM, g) and S. Trivialising the tangent bundle and the
spinor bundle compatibly, we obtain transition functions gαβ : Uα ∩Uβ −→ SO(2n) and
φαβ : Uα ∩ Uβ −→ Gl(2n;C) with

φαβ(cs) = gαβ(c)φαβ(s)

for all c ∈ Cliff(2n) and s ∈ S. On the other hand take liftings g̃αβ : Uα ∩ Uβ −→
Spin(2n). These do not define a cocycle in general. But via Clifford multiplication they
do define transition functions for S commuting with the Clifford action. Denote these
by g̃αβ , too. By irreducibility of the representation of the Clifford module the difference
between g̃αβ and φαβ is a scalar λαβ , i.e.

g̃αβλαβ = φαβ

is a cocycle and so g̃αβ ×Z2 λαβ defines a SpinC–structure.
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To begin with consider an almost complex 4–manifold (X, J) equipped with a Hermi-
tian metric g. Denote by ω the corresponding skew–symmetric 2–form. Clifford multipli-
cation by ω splits any SpinC–bundle S into its eigenspaces. Assume a scaling of ω (by a
constant) such that the corresponding eigenvalues on S+ are ±i, i.e.

ω =
i
4
(v1 ∧ v̄1 + v2 ∧ v̄2),

for v1 = e1 + ie2 and v2 = e3 + ie4 with a compatible orthonormal frame {ei}. Note that
ω is self dual. J defines a maximal isotropic subspace of TCM globally. The line bundle
is L = K−1 for the corresponding SpinC–bundle

S ∼= S+ ⊕ S−

S+ ∼= Λ0 ⊕Λ0,2

S− ∼= Λ0,1,

(see [BGV] p. 110) where ω acts as −i on the first and as +i on the second summand
and trivially on S−. At first let us compute the unique spinor connection ∇S = ∇+⊕∇−

associated to the metric and the connection A0 on K−1 ∼= Λ0,2 induced by the Levi–
Civita connection ∇. Restricted and projected to the eigenbundles of the ω–action ∇S

agrees with ∇. That is equivalent to the assumption that det(∇+) coincides with the
covariant derivative ∇A0 of the connection A0 on K−1 ∼= Λ0,2. Unfortunately, ∇ is not
compatible with the Clifford multiplication. One computes

∇+(ω · (f, φ)) = ∇+(−if, iφ) = ∇ω · (f, φ) + ω · ∇+(f, φ),

from which one deduces

∇+ = ∇+ b− b∗

b ∈ Ω1(Hom(Λ0;Λ0,2))
∼= Ω1(K−1)

b = i(∇ω)0,2,

where (∇ω)0,2 is the projection of the covariant derivative on the (0, 2)–part. One easily
checks that this is indeed the desired spinor connection.

Now we write down a formula for the twisted Dirac operator. Note first that in general
for a spinor ψ = (f, φ)

DAψ =
√

2(∂̄Af + ∂̄∗Aφ+
i
2
(((∂ + ∂∗)ω)f + ((∂̄ + ∂̄∗)ω)φ)) ∈ S− ∼= Λ0,1.

But if ω is closed then ∂̄ω = ∂ω = 0 (d = ∂+ ∂̄ and d∗ = ∂∗+ ∂̄∗ on Λ1,1 in dimension 4).
So, if ω is closed the Dirac operator takes the form

DAψ =
√

2(∂̄Af + ∂̄∗Aφ)

Here A is a connection on K−1 which induces a spinor connection and DA is the corre-
sponding Dirac operator. Note that ∂̄A0 = ∂̄. In general, for the Dirac operator we have
the Weitzenböck formula

D2
Aψ = (∇S

A)∗∇S
Aψ +

R

4
ψ +

1
2
FA · ψ.
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Weitzenböck’s formula applied to D2
A0

1 = 0 with 1 = (1, 0) and evaluated on the (0, 2)–
form part gives

∇∗b = −F 0,2
A0
.

Evaluating on the function component yields

2〈(∇∗(∇ω)0,2), ω〉 − |(∇ω)0,2|2 = −
Fω

A0

2
− R

4
here F+

A0
= iFω

A0
ω+F 0,2

A0
+F 2,0

A0
. Note that 〈(∇∗(∇ω)0,2), ω〉 = |(∇ω)0,2|2 pointwise (just

pair both sides with a cut–off and use 〈(∇ω)0,2, ω〉 = 0 ∈ Ω1(M)). It follows that

|b|2 = −
Fω

A0

2
− R

4
.

So, the right–hand side is a nonnegative function which vanishes exactly in the Kähler
case.

Another identity which could be derived exploiting D(α · 1) for a one form α is, the
following: the (0, 2)–part of its exterior derivative is expressed by

(dα)0,2 = ∂̄(α0,1) + b ◦ (α1,0)

where “◦” denotes the C–linear contraction of the common T ∗M–component. Accord-
ingly one obtains on functions

∂̄2
A + b ◦ ∂A = (FA − FA0)

0,2.

We conclude this collection of useful formulas with an identity resembling a similar one in
Kähler geometry but which holds in the more general symplectic context on (0, 1)–forms
only: Denote by Λ the operator on forms dual to the exterior multiplication by ω. Let
α ∈ Ω0,1. Then

2Λ∂α = i∂̄∗α.

3. The monopole equations on symplectic 4–manifolds. Using the Hermitian
product on S+ (see [KM]) we write

σ(ψ) = i(ψψ̄T )0 ∈ su(S+)

For a spinor ψ = (f, φ) ∈ Γ(S+) ∼= Ω0(M) ⊕ Ω0,2(M). The action of the matrix entries
is, of course, also defined with the help of the Hermitian product. This yields

σ(ψ) = i

(
|f |2−|φ|2

2 fφ̄

f̄φ − |f |2−|φ|2
2

)
.

Via Clifford multiplication one obtains

su(S+) ∼= Ω+(M).

Then σ(ψ) corresponds to

σ(ψ) = −1
2
(|f |2 − |φ|2)ω +

i
2
(f̄φ− fφ̄).

Note that for the (2, 0)–form fφ̄ the Clifford action is fφ̄ · Ψ = −2〈Ψ, f̄φ〉. The second
monopole equation is

F+
A = −2iσ(ψ) = i(|f |2 − |φ|2)ω + (f̄φ− fφ̄).
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For the Lagrangian we compute∫
M

(2|DAψ|2 + |F+
A + 2iσ(ψ)|2)dM

=
∫

M

(2|∇+
Aψ|

2 +
R

2
|ψ|2 + 〈F+

A · ψ,ψ〉+ |F+
A |

2 + 2〈F+
A , σ(ψ)〉+ 4|σ(ψ)|2)dM

=
∫

M

(2|∇+
Aψ|

2 +
R

2
|ψ|2 + Fω

A(|f |2 − |φ|2) + 2〈F 0,2
A f, φ〉 − 2〈φ, F 2,0

A f〉+ |F+
A |

2

− 2〈iFω
Aω + F 0,2

A + F 2,0
A , i(|f |2 − |φ|2)ω + (f̄φ− fφ̄)〉+ 4|σ(ψ)|2)dM

=
∫

M

(2|∇+
Aψ|

2 +
R

2
|ψ|2 − Fω

A(|f |2 − |φ|2) + 4 Re(f〈F 0,2
A , φ〉) + |F+

A |
2

+ Fω
A(|f |2 − |φ|2)− 4 Re(f〈F 0,2

A , φ〉) +
1
2
(|f |2 + |ψ|2)2)dM

=
∫

M

(2|∇+
Aψ|

2 +
R

2
(|f |2 + |ψ|2) +

1
2
(|f |2 + |ψ|2)2)dM.

Now

|∇+
Aψ|

2 = |∇Af |2 + |∇Aφ|2 + 2 Re(〈bf,∇Aφ〉 − 〈〈φ, b〉,∇Af〉) + (|bf |2 + |b∗φ|2),

so in the non–Kähler case (where b = (∇ω)0,2 6= 0) we have terms in the integrand of the
Lagrangian mixing f and φ. In the Kähler case (b ≡ 0) there are no such terms and we
obtain an additional symmetry

A 7→ A

f 7→ −f
φ 7→ φ.

(see [W] for a discussion). We would like to adopt this idea for the general symplectic
4–manifold. Observe that

d∗(Re〈bf, φ〉) = Re(−〈bf,∇Aφ〉 − 〈〈φ, b〉,∇Af〉+ 〈∇∗b, f̄φ〉).

which vanishes after integration. We change the second equation to

F+
A = i(|f |2 − |φ|2 + δ)ω + (f̄φ− fφ̄)− (∇∗b−∇∗b),

where δ ∈ C∞(M). Then the Lagrangian changes to∫
M

(2(|∇Af |2 + |∇Aφ|2) +
R

2
(|f |2 + |φ|2) + (|bf |2 + |b∗φ|2)− 8 Re〈〈φ, b〉,∇Af〉

+〈δ, (|f |2 − |φ|2)〉+ |F+
A + (∇∗b−∇∗b)− iδω|2 +

1
2
(|f |2 + |φ|2)2)dM.

Now, if one adds, hypothetically, the unfortunately singular term
2
|f |2

(f̄ b ◦ ∇Af − fb ◦ ∇Af)

to the second equation the last mixed term vanishes in the corresponding Lagrangian.
So, we have a good heuristic to change the second equation to

F+
A = i(|f |2 − |φ|2 + δ)ω + (f̄φ− fφ̄)− (∇∗b−∇∗b) +

2r
1 + r|f |2

(f̄ b ◦ ∇Af − fb ◦ ∇Af),
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where we obtain the singular term in the process r →∞. Now we choose the parameters
δ = Fω

A0
− 1 and use the above computed identity ∇∗b = −F 0,2

A0
and obtain the final

version of the equations

∂̄Af + ∂̄∗Aφ = 0

F+
A − F+

A0
= i(|f |2 − |φ|2 − 1)ω + (f̄φ− fφ̄) +

2r
1 + r|f |2

(f̄ b ◦ ∇Af − fb ◦ ∇Af).

For each r the tuple (A0,1) is a solution, where 1 ≡ (1, 0). The main result of Taubes’
paper is to prove the following

Proposition 3. For r sufficiently large this is up to gauge transformation the only
solution of the above monopole equations. Moreover , this solution is nondegenerate for r
sufficiently large.

4. Ellipticity and compactness. First one should note that the monopole equations
are still a (nonlinear) elliptic problem, i.e. the linearization of the equations modulo gauge
equivalence is an elliptic operator (of first order). We just compute it to be(

DA 0
2r

1+r|f |2 (f̄ b ◦ ∇A|Λ0 − fb ◦ ∇A|Λ0) d∗ ⊕ d+

)
+ terms of zeroth order.

The diagonal part is known to be elliptic and an off–diagonal smooth first order differential
operator cannot destroy that property.

The second important issue is the a priori estimate of solutions: if we loose the com-
pactness of the moduli space we did not gain much, introducing the r–dependent term.
But this is as easily established as the former:

Proposition 4. For arbitrary r a solution (A,ψ) of the monopole equations satisfies

|ψ| ≤ max(0,−R+ 2‖F+
A0
‖∞ + 2‖b‖2∞).

Consequently , the moduli space Mr of solutions is compact for all r. Moreover , the right–
hand side does not depend on r. In addition, we have an r–independent bound∫

M

|∇Aψ|2 ≤ max(0,−R
2

+ ‖b‖2∞ + ‖FA0‖∞)
∫

M

|ψ|2.

P r o o f. The proof goes along the line of [KM]. Suppress the issue of smoothness (just
suppose the solution is smooth). We compute

d∗d|ψ|2 = 2〈(∇+
A)∗∇+

Aψ,ψ〉 − 2〈∇+
Aψ,∇

+
Aψ〉

= −1
2
〈(

i(|f |2 − |φ|2 − 1)ω + (f̄φ− fφ̄) +
4r

1 + r|f |2
Im(f̄ b ◦ ∇Af) + F+

A0

)
· ψ,ψ

〉
−R

2
|ψ|2 − 2|∇+

Aψ|
2,

using Weitzenböck’s formula. We end up with

d∗d|ψ|2 + 2|∇+
Aψ|

2 +
1
2
|ψ|4 = −R

2
|ψ|2 + 〈F+

A0
· ψ,ψ〉+

4r|f |2

1 + 2r|f |2
Re〈b ◦ ∇Af, φ〉

for solutions of the monopole equations. The proposition is now derived as in the before
mentioned paper: considering the equality at a maximal point of |ψ|2, where d∗d|ψ|2 ≥ 0
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for the first, and integrating over M for the second statement. We only have to take care
of the r–dependent part:∣∣∣∣ 4r|f |2

1 + 2r|f |2
Re〈b ◦ ∇Af, φ〉

∣∣∣∣ ≤ ε‖b‖2∞|∇S
Aψ|2 +

1
ε
|ψ|2.

Choose ε‖b‖2∞ = 1 to obtain the result.

5. The behaviour for large r. We now turn to the proof of Taubes’ main result. The
idea goes as follows: Instead of having the symmetry of the Kähler case the Lagrangian is
“nearly symmetric” where the failure of having the symmetry decreases with growing r.
To be more precise: Denote by L(A,ψ) the Lagrangian described above. Then

(1) L(A, (f, φ))− L(A, (f,−φ)) =
∫

M

−16
1 + r|f |2

Re〈b ◦ ∇Af, φ〉.

Remember that we have r–independent a priori estimates on the solutions for a param-
eter r. So the only serious contribution on the right–hand side comes from the set where
f is small compared to r. The left–hand side will be expressed differently to get L2

1

estimates on ψ.
Let us first turn to this latter issue. Having a solution (A,ψ) to the monopole equations

of parameter r (ψ = (f, φ)) we compute

(2) L(A, (f, φ))− L(A, (f,−φ))

=
∫

M

(
16 Re〈∂̄Af, ∂̄

∗
Aφ〉 − 4 Re

〈
f̄φ− fφ̄, F+

A − F+
A0
− 2r(f̄ b ◦ ∇Af − fb ◦ ∇Af)

1 + r|f |2
〉)
dM

= −
∫

M

(16|∂̄Af |2 + 8|f |2|φ|2)dM = −
∫

M

(16|∂̄∗Aφ|2 + 8|f |2|φ|2)dM.

We need another expression for 2|∂̄Af |2 = |DA(f, 0)|2, namely∫
M

|DA(f, 0)|2dM =
∫

M

(|∇+
A(f, 0)|2 +

R

4
|f |2 +

Fω
A

2
|f |2)dM,

via Weitzenböck which is with one of the identities of the second chapter easily seen to
be∫

M

(|∇Af |2 + |(∇ω)0,2|2|f |2 +
R

4
|f |2 +

Fω
A

2
|f |2)dM =

∫
M

(|∇Af |2 +
(Fω

A − Fω
A0

)
2

|f |2)dM.

P r o o f o f P r o p o s i t i o n 3. Assume we have an unbounded increasing sequence
{ri} and solutions {(Ai, ψi)} such that φi 6= 0 for all i and ψi = (fi, φi). By Proposition 4
and some standard arguments we have a subsequence such that |ψi| converges strongly
in Lp for any p ∈ [2,∞) and |∇+

Ai
ψi| converges strongly in L2. Denote by Vi the set

{x ∈M | |fi| < 1
2}. Taubes proves successively

1. For the above subsequence the measure

lim
i→∞

µ(Vi) = 0.

2. For the same subsequence∫
M

(|∇Ai
φi|2 + |φi|2)dM ≤ const.

∫
Vi

|φi|2dM
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independently of the parameter ri.∫
Vi

|φi|2dM ≤ vol(Vi)
1
2
( ∫

Vi

|φi|4dM
) 1

23.

≤ const. vol(Vi)
1
2
( ∫

M

(|d|φi||2 + |φ|2)dM
)

≤ const. vol(Vi)
1
2

∫
M

(|∇Ai
φi|2 + |φi|2)dM

≤ const. vol(Vi)
1
2

∫
Vi

|φi|2dM

by Kato’s inequality |d|φ|| ≤ |∇Aiφi|. This contradicts the assumption of nonvanishing
φi if vol(Vi) tends to zero and proves together with Section 6 the main theorem.

It remains to explain the first two steps in the proof. Note that the parameter r in
(1) is in the denominator. So, wherever |fi| is big the contribution to the integral will
be small (if you like only rε

i |fi|2 has to be big for ε < 1, because we have L2–bounds on
|∇Ai

fi| and L∞–bounds on φi). So we will just divide the domain of integration in the
part where |fi| is big and where it is small. First we integrate the right–hand side of (1)
by parts to obtain∫

M

(2|∂̄∗Aφi|2 + |fi|2|φi|2)dM ≤
∫

M

2
1 + ri|fi|2

(|fi| |∇Aφi|+ |fi| |φi|+ |φi| |d|fi||)dM.

Now using the convergence assumption on the subsequence, observing s
1+rs2 ≤

√
2

3
√

r
and

dividing the domain in V i = {x ∈M | r
1
4
i |fi| ≤ 1} and its complement we have∫

M

(2|∂̄∗φi|2 + |fi|2|φi|2)dM ≤ const.
( 1
√
ri

+
∫

V i

|φi|
|d|fi||

1 + ri|fi|2
dM

)
The key observation at this point is that the right–hand side of the inequality has to
converge to zero under the assumption made on the subsequence. This is proved by
standard techniques. Remember that the |fi| converge to some positive function f in L2

1.
So it is sufficient to prove that ∫

M

|df |
1 + ri|fi|2

dM

converges to zero. We first show that for∫
M

|df |
1 + rif2

dM

and then for the difference. We divide the domain in the part where f2 > 1
n and its

complement. Over the first domain the integral is bounded by

const.
n

ri
‖df‖L2

which goes to zero for fixed n as r tends to infinity. For the integral over the latter region
Taubes uses
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Lemma 1. 0 ≤ f ∈ L2
1(M). Then

lim
ε→0

∫
{x∈M |f<ε}

|df | = 0.

For the difference compute the integrand

|df |r2i
|fi|2 − |f |2

(1 + ri|f |2)(1 + ri|fi|2)
.

Integrate over {f2 > 1
n} and its complement. By appeal to Lemma 1 the latter is bounded

by a sequence which r–independently tends to zero as n tends to infinity where the
former tends to zero for fixed n as r tends to infinity because the measure of the set
{
∣∣|fi|2 − |f |2

∣∣ > 1
2n} tends to zero. Now go back to (2). We obtain∫

M

(|∇Aifi|2 +
(|fi|2 − |φi|2 − 1)

2
(|fi|2 − 1) + |fi|2|φi|2)dM

=
∫

M

2
1 + ri|fi|2

〈b ◦ ∇Ai
fi, φi〉dM

using ∫
M

(|fi|2 − |φi|2 − 1)dM =
∫

M

(FA − FA0) ∧ ω = 0.

With wi = (1− |fi|2) we end up with

(3)
∫

M

(|∇Aifi|2 +
w2

i

2
+
|fi|2|φi|2

2
+ |φi|2)dM =

∫
M

1
1 + ri|fi|2

〈b ◦ ∇Ai
fi, φi〉dM.

But we have seen that the right–hand side of this equation tends to zero forcing the
L2–norm of wi to vanish at infinity, so the measure for any δ > 0 of {x ∈M | |fi|2 < δ}
converges to zero, completing the first step.

On the other hand taking absolute values and integrating the right–hand side over
Vi = {|fi|2 < 1

2} and its complement gives∫
M

(|∇Aifi|2 + w2
i + |φi|2 +

|fi|2|φi|2

2
)dM

≤ 2‖b‖∞
ri

∫
M

|∇Aifi| |φi|dM + ‖b‖∞
∫

Vi

|∇Aifi| |φi|dM.

Use inequalities like 2xy ≤ 1
εx

2 + εy2 and suppose ri to be large enough to get∫
M

(2|̄∂Ai
fi|2 + |fi|2|φi|2)dM

=
∫

M

(|∇Aifi|2 + w2
i + |φi|2 +

|fi|2|φi|2

2
)dM ≤ ‖b‖2∞

2ε(1− ε− ‖b‖∞
ri

)

∫
Vi

|φi|2dM.

Then with (1) and (2) we have an estimate∫
M

(2|∂̄∗Ai
φi|2 + |fi|2|φi|2)dM ≤ const.

∫
Vi

|φi|2dM
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for i sufficiently large. Again Weitzenböck, the second monopole equation and the formula
for |(∇ω)0,2|2 give∫

M

|∂̄∗Ai
φi|2dM =

∫
M

(|∇Aiφi|2 −
|fi|2 − |φi|2 − 1

2
|φi|2 − Fω

A0
|φi|2)dM

or∫
M

|∇Ai
φi|2dM ≤ |

∫
M

(|∂̄∗Ai
φi|2 +

|fi|2|φi|2

2
+ (Fω

A0
− 1)|φi|2)dM | ≤ const.

∫
Vi

|φi|2dM

proving the second statement and completing the proof of the theorem.

6. Uniqueness and nondegeneracy. The uniqueness follows easily from the com-
putations of the last section. We proved that for r sufficiently large each solution has the
form (A, (f, 0)). But then on the other hand equation (3) shows that |f | ≡ 1. Now we
gauge the solution with g = f̄ ∈ G and obtain a solution (A,1). If we remember that

0 = ∂̄A1 = ∂̄1 + (A−A0)(0,1)1 = ((A−A0)(0,1), 0) ∈ (Ω0 ⊕Ω0,2)(M),

A = A0 follows easily.
It remains to verify the nondegeneracy of the functional at (A0,1). That means to

verify that the second cohomology of the deformation complex vanishes which in the case
the virtual dimension of the moduli space is zero is equivalent to the vanishing of the first
cohomology at irreducible solutions. We use the observation of LeBrun (see [LB]) which
can be carried out for the irreducible solution (A0,1).

Assume (a, g, ϕ) ∈ Ω1(iR)×(Λ0⊕Λ0,2) is a 1–cocycle. Write a = α−ᾱ with α ∈ Ω0,1.
This is equivalent to lying in the kernel of the Hessian H of the corresponding Lagrangian
(which has semi–definite Hessian at solutions of the equations). With Weitzenböck the
Lagrangian can be transformed to∫

M

(
4(|∂̄Af |2 + |∂̄∗Aφ|2) +

1
2

∣∣Fω
A − Fω

A0
+ 1− (|f |2 − |φ|2)

∣∣2
+ 2
∣∣F 0,2

A − F 0,2
A0

− f̄φ− 2r
1 + r|f |2

f̄ b ◦ ∇Af
∣∣2)dM

=
∫

M

(
4(|∂̄Af |2 + |∂̄∗Aφ|2)−

8
1 + r|f |2

Re〈b ◦ ∂Af, φ〉+
1
2

∣∣Fω
A − Fω

A0
+ 1− (|f |2 − |φ|2)

∣∣2
+ 2
∣∣F 0,2

A − F 0,2
A0

− 2r
1 + r|f |2

f̄ b ◦ ∇Af
∣∣2 + 2|f |2|φ|2

)
dM.

Computing the Hessian at (A0,1) we obtain∫
M

(
8(|∂̄g +

α

2
|2 + |∂̄∗ϕ|2) + |Λ(da)− 2iRe g|2 + 4

∣∣(da)0,2 − 2r
1 + r

b ◦ (∂g − ᾱ

2
)
∣∣2

+ 4|ϕ|2 − 16
1 + r

Re〈ϕ, b ◦ ∇g + b ◦ ᾱ
2
〉
)
dM.

Using (1) we derive for the difference

H(α, (g, ϕ))−H(α, (g,−ϕ)) =
∫

M

(
− 32

1 + r
Re〈ϕ, b ◦ ∇g + b ◦ ᾱ

2
〉
)
dM.
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On the other hand, because 1 = (1, 0), (2) leads to

= −
∫

M

(32|∂̄g +
α

2
|2 + 16|ϕ|2)dM.

Now via gauge fixing we assume without loss of generality that g is purely real. Then we
end up with∫

M

(32|∂̄g +
α

2
|2 + 16|ϕ|2)dM =

∣∣∣∣∫
M

(
− 32

1 + r
Re〈ϕ, b ◦ ∇g + b ◦ ᾱ

2
〉
)
dM

∣∣∣∣
≤
∫

M

∣∣ 32
1 + r

Re〈ϕ, b ◦ ∇g + b ◦ ᾱ
2
〉
∣∣dM

≤ const.
1 + r

∫
M

(32|∂g − ᾱ

2
|2 + 16|ϕ|2)dM =

const.
1 + r

∫
M

(32|∂̄g − α

2
|2 + 16|ϕ|2)dM,

on account of ∂g = ∂̄g in the gauge fixing, from which we conclude for r sufficiently large
the vanishing of (α, (g, ϕ)): ϕ = 0 is obvious,

∂̄g = −α
2

and
Λ(da) = 2i Re g = 2ig

imply
∂̄∗∂̄g + ∂∗∂g + g = 0,

so g = 0 follows and consequently the vanishing of α.

7. Further consequences and limits. From the computations of Section 5 one
obtains some more immediate obstructions against symplectic structures and vanishing
results for Seiberg–Witten invariants summarized in [T1]. Proving the first step in the
verification of Proposition 3 we made use of the fact that∫

M

(|fi|2 − |φi|2 − 1)dM =
∫

M

−i(FA − FA0) ∧ ω = 0.

Note that if we have a general SpinC–structure with detS+(L) = K−1 ⊗ L2, or more
precisely

S+(L) = L⊕K−1 ⊗ L

then everything will go as in the case where L was the trivial bundle, but∫
M

−i(FA − FA0) ∧ ω = −4πc1(L) ∪ [ω][M ]

(note that A and A0 live on different line bundles in general). So, carrying out the remain-
ing estimates one concludes the vanishing of the Seiberg–Witten invariant for S+(L) if
c1(L)∪ [ω][M ] < 0. The case when this number vanishes is more subtle: One still obtains
the vanishing of the form–part of the spinor, i.e. 0 = φi ∈ Ω0,2(L). But equation (3)
forces the function component of the spinor to satisfy |f | ∼= 1. That means that L has to
be trivial. One should also note that the monopole equations have a symmetry in the two
components of the spinor. If we play with the parameter δ and consider the monopole
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equation

∂̄Af + ∂̄∗Aφ = 0

F+
A + F+

A0
= i(|f |2 − |φ|2 + 1)ω + (f̄φ− fφ̄)− 2r

1 + r|φ|2
(φ̄b∗ ◦ ∇Aφ− φb∗ ◦ ∇Aφ)

instead, exchanging in all the estimates the f ’s and φ’s we obtain a similar result for the
Chern class c1(K ⊗ L−1). We summarize

Theorem 4 [T1]. Suppose M is a compact , closed , symplectic 4–manifold with
b+2 > 1. Then the Seiberg–Witten invariants for the SpinC–structure with

S+(L) = L⊕K−1 ⊗ L

vanishes if
(i) c1(L) ∪ [ω][M ] < 0
(ii) c1(K ⊗ L−1) ∪ [ω] < 0 or
(iii) c1(L) ∪ [ω][M ] = 0 and L is a nontrivial line bundle or
(iv) c1(K ⊗ L−1) ∪ [ω][M ] = 0 and K ⊗ L−1 is a nontrivial line bundle.

As an immediate consequence we obtain that c1(K)∪ [ω][M ] has to be positive or K
has to be the trivial line bundle. A somewhat different observation can be made in the
case of CP2:

Theorem 5 [T1]. There is no symplectic structure on CP2 with

c1(K) ∪ [ω][M ] > 0.

P r o o f. One observes that the original monopole equation

DAψ = 0

F+
A = i(|f |2 − |φ|2)ω + (f̄φ− fφ̄)

gives zero Seiberg–Witten invariant on account of the existence of a metric with positive
scalar curvature, while the perturbed version

DAψ = 0

F+
A − F+

A0
= i(|f |2 − |φ|2 − 1)ω + (f̄φ− fφ̄)

gives nonzero invariant. The only reason for that can be a “wall crossing” for the family
of equations

DAψ = 0

F+
A − sF+

A0
= i(|f |2 − |φ|2 − s)ω + (f̄φ− fφ̄)

at some parameter s ∈ (0, 1). At this parameter exists a reducible solution (ψ ≡ 0) and
we end up with

(1− s)c1(K−1) ∪ [ω][M ] = s · volω(M) > 0.

The considerations above also show to what extend these techniques of Taubes can
be used: If c1(L)∪ [ω][M ] > 0 and c1(K ⊗L−1)∪ [ω][M ] > 0 the line of arguments stops
at the point described in this section. One has to use different methods which Taubes
proposes to do in [T2].
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8. Monopoles and pseudo–holomorphic curves. Being so powerful in detecting
holomorphic sections of line bundles in the Kähler case there was strong hope that the
Seiberg–Witten invariants could compute the Gromov invariants defined in [G] counting
pseudo–holomorphic curves homologous to a certain homology class. In his big research
announcement [T2] Taubes proposes to settle this issue. We shortly discuss the results.

Denote by Mc(M,ω) the space of smooth pseudo–holomorphic curves in a closed,
compact symplectic 4–manifold (M,ω) equipped with a compatible almost complex struc-
ture J homologous to c ∈ H2(M ;Z). Note that only in the case of a torus there are topo-
logically different parametrizations with smooth immersions, producing smooth pseudo–
holomorphic tori with multiplicities. For a generic almost complex structure this is a
smooth, oriented manifold of even dimension

c · c− c · c1(K) ≡ 0 mod 2.

Pick a set of (c · c− c · c1(K))/2 points {xi} in M . For a generic choice of the latter

Mc,{xi} = {C ∈Mc|{xi} ⊂ C}

is a discrete set of points with orientation. The Gromov invariant as an invariant of the
symplectic manifold (M,ω) is defined as the oriented number of points

Gc(M,ω) = ]̂Mc,{xi}

Now the main theorem Taubes announces to prove is

Theorem 6. Let (M,ω) be a compact , closed , symplectic 4–manifold with b2+ > 1.
Then the Seiberg–Witten invariant for the SpinC–structure with S+(L) = L⊕K−1 ⊗ L

is ±Gc1(L). In other words the Gromov invariants are diffeomorphism invariants of the
4–manifold.

From the theorem and this observation one concludes a series of remarkable state-
ments: Suppose b+2 > 1 and J is a generic, compatible almost complex structure.

1. c1(K) is represented by a smooth pseudo–holomorphic curve consisting of several
components C of genus g(C) = C ·C+1 (possibly with multiplicities only if the component
is a torus). If M is minimal (i.e. admits no embedded pseudo–holomorphic 2–spheres of
self intersection −1) then c1(K) · c1(K) ≥ 0.

Assume the Seiberg–Witten invariant is nonzero for S+(L) = L⊕K−1 ⊗ L. Then
c1(L) and c1(K ⊗ L−1) are represented by smooth pseudo–holomorphic curves. Their
components are components of the representative of c1(K) with smaller multiplicities.
The converse statement is true.

An immediate consequence is the vanishing of the Seiberg–Witten invariants in the
case of a positive dimensional moduli space of monopoles if b+2 > 1.

2. If M is minimal, then

−4
3
(1− b1)−

2
3
b2 ≤ σ(M).

3. Suppose M admits an embedded sphere S with S ·S = −1 and c1(K) ·S 6= 0. Then
M admits a pseudo–holomorphic 2–sphere in the same homology class.



SEIBERG-WITTEN EQUATIONS ON SYMPLECTIC 4-MANIFOLDS 103

4. Suppose M is minimal and c1(K) · c1(K) = 0. Then c1(K) is Poincaré dual to a
union of disjoint, embedded, pseudo–holomorphic tori (possibly with multiplicities) with,
of course, zero self intersection (by adjunction formula). Moreover, for any S+(L) with
nontrivial Seiberg–Witten invariant, c1(L) is Poincaré dual to a subset of these tori (with
smaller multiplicities).

R e m a r k 2. The statements are (although reminiscent) slightly weaker than those
obtained in Kähler geometry. There, in the case of c1(K) ·c1(K) > 0, one obtains that the
holomorphic curve representing c1(K) is connected obtained by purely algebraic means
using the Hodge index theorem (see [FM]). It would be interesting to know whether
there are symplectic manifolds with nonconnected pseudo–holomorphic representatives of
c1(K) allowing more SpinC–structures S+(L) with nontrivial Seiberg–Witten invariant
then L = C or L = K as in the Kähler case under this assumption.

P r o o f. The first statement is a direct consequence of the two main Theorems. Recall
that the dimension of the moduli space of monopoles for S+(L) is

d(L) = c1(L) · c1(L)− c1(K) · c1(L)

but P.D.(c1(L)) consists of components of P.D.(c1(K)) with smaller multiplicities by
the second part of the statement. So, the dimension obstruction follows. The second
statement plays with the index formula for the virtual dimension of the moduli space
using c1(K) · c1(K) ≥ 0. The third statement observes that there is a diffeomorphism
acting on H2(M ;Z) as reflection on the hyperplane orthogonal to the class [S]. But then
c1(K) changes to c1(K)− (2c1(K) · S)(P.D.([S])) which has to have nontrivial Seiberg–
Witten invariant. That means that a multiple of [S] has to be represented by a multiple of
pseudo–holomorphic embedded spheres. But the only way to achieve this is to represent
[S] by a pseudo–holomorphic sphere of self intersection −1. The last statement is the
special case of the first.
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