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Abstract. In this paper, complex 3-dimensional Γ-graded ε-skew-symmetric and complex 3-
dimensional Γ-graded ε-Lie algebras with either 1-dimensional or zero homogeneous components
are classified up to isomorphism.

1. Introduction. Generalised Lie algebras are a natural generalisation of Lie algebras

and Lie superalgebras. For the past twenty years, these algebras and their representations

have been an object of constant interest in both mathematics and physics (see, e.g., [1],

[3], [5], [6], [7], [11], [13], [14], [15], [16], [18], [19], [20], [23], [24], [25], [26], [28], [29], [30]

and references there).

It is a problem of fundamental importance, both from theoretical and applied points

of view, to obtain a classification of Lie algebras, Lie superalgebras and graded ε-Lie

algebras of a given dimension up to isomorphism. Such a classification can be useful not

only as an ordering tool, but also as a ground for investigation of representations of these

algebras (see the last section).

Hitherto, attention has been restricted to Lie algebras and Lie superalgebras (see,

e.g., [2], [4], [9], [10], [12], [17], [21], [27], [32], [33] and references there). Little has been

done with regard to the classification of all generalised Lie algebras of a given dimension.

The results obtained in this article can be considered as a contribution in that direction.

The present paper contains a classification of complex 3-dimensional Γ-graded ε-skew-

symmetric and ε-Lie algebras with either 1-dimensional or zero homogeneous components.

Let us start by looking at two examples of three-dimensional generalised Lie algebras.
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Example 1. The graded analogue of sl(2,C) is defined as a complex algebra with

three generators e1, e2 and e3 satisfying the commutation relations

e1e2 + e2e1 = e3, e1e3 + e3e1 = e2, e2e3 + e3e2 = e1.

Let L be a Z3
2-graded linear space L = L(1,1,0)⊕L(1,0,1)⊕L(0,1,1) with basis e1 ∈ L(1,1,0),

e2 ∈ L(1,0,1), e3 ∈ L(0,1,1). The homogeneous subspaces of L graded by the elements of

Z3
2 different from (1, 1, 0), (1, 0, 1) and (0, 1, 1) are zero and so are omitted. The bilinear

multiplication 〈· ; ·〉 : L× L 7→ L defined for the basis vectors e1, e2, e3 by the formulas

〈e1 ; e1〉 = e1e1 − e1e1 = 0, 〈e1 ; e2〉 = e1e2 + e2e1 = e3,

〈e2 ; e2〉 = e2e2 − e2e2 = 0, 〈e1 ; e3〉 = e1e3 + e3e1 = e2,

〈e3 ; e3〉 = e3e3 − e3e3 = 0, 〈e2 ; e3〉 = e2e3 + e3e2 = e1,

makes L into a three-dimensional algebra.

Example 2. The graded analogue of the Lie algebra of the group of plane motions

is defined as a complex algebra with three generators e1, e2 and e3 satisfying the com-

mutation relations e1e2 + e2e1 = e3, e1e3 + e3e1 = e2, e2e3 + e3e2 = 0. The linear space

L spanned by e1, e2, e3 can be made into a Γ-graded ε-Lie algebra. The grading group

Γ and the commutation factor ε are the same as in Example 1 . But the multiplication

〈· ; ·〉 is different and defined by

〈e1 ; e1〉 = e1e1 − e1e1 = 0, 〈e1 ; e2〉 = e1e2 + e2e1 = e3,

〈e2 ; e2〉 = e2e2 − e2e2 = 0, 〈e1 ; e3〉 = e1e3 + e3e1 = e2,

〈e3 ; e3〉 = e3e3 − e3e3 = 0, 〈e2 ; e3〉 = e2e3 + e3e2 = 0.

It is easy to check that the bilinear multiplications (brackets) in Examples 1 and 2

satisfy the following three axioms:

Γ-grading axiom:

〈Lα , Lβ〉 ⊆ Lα+β for any α, β ∈ Γ (1)

ε-skew-symmetry condition:

〈A,B〉 = −ε(deg(A),deg(B))〈B,A〉 (2)

ε-Jacobi identity:

ε(deg(C),deg(A))〈A, 〈B,C〉〉+ ε(deg(B),deg(C))〈C, 〈A,B〉〉+

ε(deg(A),deg(B))〈B, 〈C,A〉〉 = 0 (3)

for nonzero homogeneous A, B and C. Here deg(A) = α ∈ Γ if A ∈ Lα.

In Examples 1 and 2, Γ is the group Z3
2, and ε : Γ× Γ 7→ C is defined by the matrix

[ε(i, j)] =

 1 −1 −1

−1 1 −1

−1 −1 1

.
Elements of this matrix specify in the natural way values of ε on the set {(1, 1, 0), (1, 0, 1),

(0, 1, 1)} × {(1, 1, 0), (1, 0, 1), (0, 1, 1)} ⊂ Z3
2 × Z3

2. (The elements (1, 1, 0), (1, 0, 1), (0, 1, 1)

are ordered and numbered by the numbers 1, 2, 3 respectively.) The values of ε on other
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elements from Z3
2 × Z3

2 do not affect the multiplication 〈· ; ·〉. It is easily seen that the

function ε can be extended to the whole Γ× Γ so that

ε(g + h, f) = ε(g, f) · ε(h, f), ε(f, g + h) = ε(f, g) · ε(f, h), (4)

ε(g, h) · ε(h, g) = 1, (5)

for f, g, h ∈ Γ.

For an arbitrary abelian group Γ a function ε obeying (4) and (5) is called a com-

mutation factor on Γ. A Γ-graded linear space L =
⊕

γ∈Γ Lγ equipped with a bilinear

multiplication 〈· ; ·〉 : L×L 7→ L obeying the Γ-grading axiom and the ε-skew-symmetry

condition is called a Γ-graded ε-skew-symmetric algebra. If moreover the ε-Jacobi identity

is satisfied, then L is called a Γ-graded ε-Lie algebra. Γ-graded ε-Lie algebras are also

called coloured Lie algebras or generalised Lie algebras. For an arbitrary generalised Lie

algebra of dimension n the multiplication is given by the relations 〈ei, ej〉 =
∑n
k=1 a

k
i,jek,

where the basis {ei}ni=1 consists of homogeneous elements. The coefficients aki,j are called

structure constants. Because of bilinearity of 〈·, ·〉, they form a tensor called a structure

tensor. The conditions (1), (2) and (3) imply additional restrictions on the structure

tensor. A generalised Lie algebra is completely defined by a choice of commutation fac-

tor and structure constants. After a change of basis one gets new structure constants

ali,j
′

= cti · csj · c̃lk · akt,s = 1
detC · c

t
i · csj ·∆k

l · akt,s where C−1 = ||c̃lk||nl,k=1 is the inverse of the

matrix C of the change of bases in L and ∆k
l = (−1)k+lmk

l , m
k
l being a complementary

minor for the element clk.

R e m a r k 1. We saw that the linear spaces spanned by the generators e1, e2 and e3

in Examples 1 and 2 can be made into a Γ-graded ε-Lie algebras. The graded analogue

of sl(2,C) and the graded analogue of the Lie algebra of the group of plane motions are

their universal enveloping algebras.

Attention! The following three assumptions will be made:

1. The matrices of commutation factors contain values corresponding only to non-zero

homogeneous subspaces, as in Examples 1 and 2. The information about zero components

is useless.

2. All commutation factors are assumed to be injective. Injectivity means that the

matrix of a commutation factor contains no equal rows (and hence no equal columns).

This can always be achieved by joining the homogeneous subspaces corresponding to

equal rows into one homogeneous subspace. Note that such procedure does not influence

the defining commutation relations.

3. All commutation factors are assumed to take values 1 or -1.

Isomorphism of generalised skew-symmetric or generalised Lie algebras is defined as

follows.

Definition 1. A generalised skew-symmetric (Lie) algebra L1 and a generalised

skew-symmetric (Lie) algebra L2 with injective commutation factors are said to be iso-

morphic if there exists a map σ : L1 7→ L2 such that:
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1) σ is an ordinary isomorphism of algebras L1 and L2;

2) homogeneous elements are mapped into the homogeneous ones;

3) σ preserves the commutation factor.

2. The classification of Γ-graded ε-skew-symmetric algebras. In Table 1, we

present in lexicographic order all 3-dimensional injective commutation factors.

Proposition 1. There are 44 injective commutation factors of dimension 3.

Table 1

ε1 =

(
1 1 1
1 1 −1
1 −1 1

)
ε2 =

(
1 1 1
1 1 −1
1 −1 −1

)
ε3 =

(
1 1 1
1 −1 1
1 1 −1

)
ε4 =

(
1 1 1
1 −1 −1
1 −1 1

)
ε5 =

(
1 1 −1
1 1 1
−1 1 1

)
ε6 =

(
1 1 −1
1 1 1
−1 1 −1

)
ε7 =

(
1 1 −1
1 −1 1
−1 1 1

)
ε8 =

(
1 1 −1
1 −1 1
−1 1 −1

)
ε9 =

(
1 1 −1
1 −1 −1
−1 −1 1

)
ε10 =

(
1 1 −1
1 −1 −1
−1 −1 −1

)
ε11 =

(
1 −1 1
−1 1 1

1 1 1

)
ε12 =

(
1 −1 1
−1 1 1

1 1 −1

)
ε13 =

(
1 −1 1
−1 1 −1

1 −1 −1

)
ε14 =

(
1 −1 1
−1 −1 1

1 1 1

)
ε15 =

(
1 −1 1
−1 −1 1

1 1 −1

)
ε16 =

(
1 −1 1
−1 −1 −1

1 −1 −1

)
ε17 =

(
1 −1 −1
−1 1 1
−1 1 −1

)
ε18 =

(
1 −1 −1
−1 1 −1
−1 −1 1

)
ε19 =

(
1 −1 −1
−1 1 −1
−1 −1 −1

)
ε20 =

(
1 −1 −1
−1 −1 1
−1 1 1

)
ε21 =

(
1 −1 −1
−1 −1 1
−1 1 −1

)
ε22 =

(
1 −1 −1
−1 −1 −1
−1 −1 1

)
ε23 =

(
−1 1 1

1 1 1
1 1 −1

)
ε24 =

(
−1 1 1

1 1 −1
1 −1 1

)
ε25 =

(
−1 1 1

1 1 −1
1 −1 −1

)
ε26 =

(
−1 1 1

1 −1 1
1 1 1

)
ε27 =

(
−1 1 1

1 −1 1
1 1 −1

)
ε28 =

(
−1 1 1

1 −1 −1
1 −1 1

)
ε29 =

(
−1 1 −1

1 1 1
−1 1 1

)
ε30 =

(
−1 1 −1

1 1 −1
−1 −1 1

)
ε31 =

(
−1 1 −1

1 1 −1
−1 −1 −1

)
ε32 =

(
−1 1 −1

1 −1 1
−1 1 1

)
ε33 =

(
−1 1 −1

1 −1 −1
−1 −1 1

)
ε34 =

(
−1 1 −1

1 −1 −1
−1 −1 −1

)
ε35 =

(
−1 −1 1
−1 1 1

1 1 1

)
ε36 =

(
−1 −1 1
−1 1 1

1 1 −1

)
ε37 =

(
−1 −1 1
−1 1 −1

1 −1 1

)
ε38 =

(
−1 −1 1
−1 1 −1

1 −1 −1

)
ε39 =

(
−1 −1 1
−1 −1 −1

1 −1 1

)
ε40 =

(
−1 −1 1
−1 −1 −1

1 −1 −1

)
ε41 =

(
−1 −1 −1
−1 1 1
−1 1 −1

)
ε42 =

(
−1 −1 1
−1 1 −1

1 −1 1

)
ε43 =

(
−1 −1 −1
−1 −1 1
−1 1 1

)
ε44 =

(
−1 −1 −1
−1 −1 1
−1 1 −1

)
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The matrix of any isomorphism can be decomposed into product of a substitution

matrix and a diagonal matrix, since all homogeneous subspaces are one-dimensional.

So, we have an action of the substitution group S3 on the set ICF (3) of injective 3-

dimensional commutation factors. We will denote this action by TS3

ICF (3). The orbits of

the action TS3

ICF (3) are tabulated in Table 2.

Table 2

S3

Orb(TS3
ICF (3))

(1) (1; 2) (1; 3) (2; 3) (1; 2; 3) (1; 3; 2)

ν1 ε1 ε5 ε11 ε1 ε5 ε11

ν2 ε2 ε6 ε35 ε4 ε29 ε14

ν3 ε3 ε23 ε26 ε3 ε23 ε26

ν4 ε7 ε24 ε7 ε12 ε12 ε24

ν5 ε8 ε25 ε32 ε15 ε36 ε28

ν6 ε9 ε30 ε20 ε13 ε17 ε37

ν7 ε10 ε31 ε43 ε16 ε41 ε39

ν8 ε18 ε18 ε18 ε18 ε18 ε18

ν9 ε19 ε19 ε42 ε22 ε42 ε22

ν10 ε21 ε38 ε33 ε21 ε38 ε33

ν11 ε27 ε27 ε27 ε27 ε27 ε27

ν12 ε34 ε34 ε44 ε40 ε44 ε40

It determines an equivalence relation such that for every orbit ν of the action there

corresponds a class W (ν) of graded ε-skew-symmetric algebras with commutation factors

from this orbit.

The classes W (ν) are disjoint. Every algebra belongs to one of these classes. Moreover,

there are no isomorphic algebras belonging to different classes, since if L and L′ are

isomorphic, then ε and ε′ belong to the same orbit. This means that isomorphic algebras

belong to the same class. From this it follows that the problem of classification of all

algebras under consideration may be reduced to classifying separately algebras of each

class W (ν).

The set of all orbits Orb(TS3

ICF (3)) can be decomposed as Orb(TS3

ICF (3)) = Orb1∪Orb2∪
Orb3, where Orb1 = {ν8, ν10}, Orb2 = {ν4, ν5, ν6, ν7, ν9, ν11, ν12}, Orb3 = {ν1, ν2, ν3}. We

will use the following notations:

P1 = W (ν8) ∪W (ν10)

P2 = W (ν4) ∪W (ν5) ∪W (ν6) ∪W (ν7) ∪W (ν9) ∪W (ν11) ∪W (ν12)

P3 = W (ν1) ∪W (ν2) ∪W (ν3).

Then Pi ∩ Pj = ∅, i 6= j, every algebra belongs to one of the classes Pi, and there are

no isomorphic algebras belonging to different classes. The classes P1, P2 and P3 exhaust

all possible variants of grading sets, i.e. sets of elements labelling non-zero homogeneous
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subspaces. It is easily seen that

( P1 )⇔ ( ∀ i ∈ {1, 2, 3} : ωi 6= ω0, ω1 + ω2 = ω3)

( P2 )⇔ ( ∀ i ∈ {1, 2, 3} : ωi 6= ω0, ω1 + ω2 6= ω3)

( P3 )⇔
(

∃ i ∈ {1, 2, 3} :

ωi = ω0, ωk + ωj 6= ωi, i 6= j 6= k 6= i, {j, k} ⊆ {1, 2, 3}

)
,

where ω1, ω2, ω3 are elements grading the non-zero homogeneous subspaces, and ω0 is the

identity of the grading group. In grading sets for the class P3 there is one marked element,

namely, the identity of the grading group. We may always assume that the homogeneous

subspace graded by the identity element is placed first (before the other two subspaces),

since the other possibilities can be reduced to this one by an appropriate change of basis.

The classification table 3 is divided into three parts corresponding to the classes P1,

P2, P3. The matrices C in Table 3 describe the change of basis transforming the general

commutation relations defining the algebras of a class Pi to the commutation relations in

the canonical algebras from this class. Both the general commutation relations and the

canonical ones are given in the table.

Now we will formulate and prove a classification theorem for 3-dimensional Γ-graded

ε-skew-symmetric algebras with one-dimensional or zero homogeneous components. The

proof of the classification is partly contained in the classification table itself. However,

the calculations leading to the classification are not included in the article because of the

lack of space.

Theorem 2. Any 3-dimensional Γ-graded ε-skew-symmetric algebra with one-dimen-

sional or zero homogeneous components is isomorphic, in the sense of Definition 1, to

one of the algebras specified in Table 3. The algebras from different entries of the table

or with different values of the parameter µ are non-isomorphic.

Table 3

P1 : 〈e1, e1〉 = 0, 〈e2, e2〉 = 0, 〈e3, e3〉 = 0

〈e1, e2〉 = γe3, 〈e1, e3〉 = βe2, 〈e2, e3〉 = αe1.

1) α 6= 0, β 6= 0, γ 6= 0,

〈e1, e1〉 = 0, 〈e2, e2〉 = 0, 〈e3, e3〉 = 0,

〈e1, e2〉 = e3, 〈e1, e3〉 = e2, 〈e2, e3〉 = e1
ε : ε18, ε21

C =


1√
β
√
γ

0 0

0 1√
α
√
γ

0

0 0 1
√
α
√
β


2) α 6= 0, β 6= 0, γ = 0,

〈e1, e1〉 = 0, 〈e2, e2〉 = 0, 〈e3, e3〉 = 0,

〈e1, e2〉 = 0, 〈e1, e3〉 = e2, 〈e2, e3〉 = e1
ε : ε21

C =


1√
β

0 0

0 1√
α

0

0 0 1√
β
√
α


3) α = 0, β 6= 0, γ 6= 0,

〈e1, e1〉 = 0, 〈e2, e2〉 = 0, 〈e3, e3〉 = 0,

〈e1, e2〉 = e3, 〈e1, e3〉 = e2, 〈e2, e3〉 = 0

ε : ε18, ε21

C =


1√
β
√
γ

0 0

0 1√
γ

0

0 0 1√
β


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Table 3 (cont.)

4) α 6= 0, β = 0, γ = 0,

〈e1, e1〉 = 0, 〈e2, e2〉 = 0, 〈e3, e3〉 = 0,

〈e1, e2〉 = 0, 〈e1, e3〉 = 0, 〈e2, e3〉 = e1
ε : ε21

C =

 1 0 0

0 1√
α

0

0 0 1√
α


5) α = 0, β = 0, γ 6= 0,

〈e1, e1〉 = 0, 〈e2, e2〉 = 0, 〈e3, e3〉 = 0,

〈e1, e2〉 = e3, 〈e1, e3〉 = 0, 〈e2, e3〉 = 0

ε : ε18, ε21

C =

 1√
γ

0 0

0 1√
γ

0

0 0 1


6) α = 0, β = 0, γ = 0,

〈e1, e1〉 = 0, 〈e2, e2〉 = 0, 〈e3, e3〉 = 0,

〈e1, e2〉 = 0, 〈e1, e3〉 = 0, 〈e2, e3〉 = 0

ε : ε18, ε21

C =

 1 0 0

0 1 0

0 0 1



P2 : 〈e1, e1〉 = 0, 〈e2, e2〉 = 0, 〈e3, e3〉 = 0

〈e1, e2〉 = 0, 〈e1, e3〉 = 0, 〈e2, e3〉 = 0

ε : ε7, ε8, ε9, ε10, ε19, ε27, ε34

P3 : 〈e1, e1〉 = 0, 〈e2, e2〉 = αe1, 〈e3, e3〉 = βe1
〈e1, e2〉 = γe2, 〈e1, e3〉 = te3, 〈e2, e3〉 = 0.

1) α 6= 0, β 6= 0, γ 6= 0, t 6= 0,

〈e1, e1〉 = 0, 〈e2, e2〉 = e1, 〈e3, e3〉 = e1,

〈e1, e2〉 = µe2, 〈e1, e3〉 = e3, 〈e2, e3〉 = 0

ε : ε3 µ ∈ C \ {0}
C =


1
t

0 0

0 1√
α
√
t

0

0 0 1√
β
√
t


2) α 6= 0, β 6= 0, γ 6= 0, t = 0,

〈e1, e1〉 = 0, 〈e2, e2〉 = e1, 〈e3, e3〉 = e1,

〈e1, e2〉 = e2, 〈e1, e3〉 = 0, 〈e2, e3〉 = 0

ε : ε3

C =


1
γ

0 0

0 1√
α
√
γ

0

0 0 1√
β
√
γ


3) α = 0, β 6= 0, γ 6= 0, t 6= 0,

〈e1, e1〉 = 0, 〈e2, e2〉 = 0, 〈e3, e3〉 = e1,

〈e1, e2〉 = µe2, 〈e1, e3〉 = e3, 〈e2, e3〉 = 0

ε : ε2, ε3 µ ∈ C \ {0}
C =


1
t
0 0

01 0

00 1√
β
√
t


4) α 6= 0, β 6= 0, γ = 0, t 6= 0,

〈e1, e1〉 = 0, 〈e2, e2〉 = e1, 〈e3, e3〉 = e1,

〈e1, e2〉 = 0, 〈e1, e3〉 = 0, 〈e2, e3〉 = 0

ε : ε3

C =

 1 0 0

0 1√
α

0

0 0 1√
β


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Table 3 (cont.)

5) α = 0, β 6= 0, γ 6= 0, t = 0,

〈e1, e1〉 = 0, 〈e2, e2〉 = 0, 〈e3, e3〉 = e1,

〈e1, e2〉 = e2, 〈e1, e3〉 = 0, 〈e2, e3〉 = 0

ε : ε2, ε3

C =


1
γ

0 0

01 0

00 1√
β

1√
γ


6) α = 0, β = 0, γ 6= 0, t 6= 0,

〈e1, e1〉 = 0, 〈e2, e2〉 = 0, 〈e3, e3〉 = 0,

〈e1, e2〉 = µe2, 〈e1, e3〉 = e3, 〈e2, e3〉 = 0

ε : ε1, ε2, ε3 µ ∈ C \ {0}
C =

 1
t
00

010

001


7) α = 0, β 6= 0, γ = 0, t 6= 0,

〈e1, e1〉 = 0, 〈e2, e2〉 = 0, 〈e3, e3〉 = e1,

〈e1, e2〉 = 0, 〈e1, e3〉 = e3, 〈e2, e3〉 = 0

ε : ε2, ε3

C =


1
t
0 0

01 0

00 1√
β
√
t


8) α = 0, β 6= 0, γ = 0, t = 0,

〈e1, e1〉 = 0, 〈e2, e2〉 = 0, 〈e3, e3〉 = e1,

〈e1, e2〉 = 0, 〈e1, e3〉 = 0, 〈e2, e3〉 = 0

ε : ε2, ε3

C =

 10 0

01 0

00 1√
β


9) α = 0, β = 0, γ 6= 0, t = 0,

〈e1, e1〉 = 0, 〈e2, e2〉 = 0, 〈e3, e3〉 = 0,

〈e1, e2〉 = e2, 〈e1, e3〉 = 0, 〈e2, e3〉 = 0

ε : ε1, ε2, ε3

C =

 1
γ

00

010

001


10) α = 0, β = 0, γ = 0, t 6= 0,

〈e1, e1〉 = 0, 〈e2, e2〉 = 0, 〈e3, e3〉 = 0,

〈e1, e2〉 = 0, 〈e1, e3〉 = e3, 〈e2, e3〉 = 0

ε : ε2

C =

 1
t
00

010

001


11) α = 0, β = 0, γ = 0, t = 0,

〈e1, e1〉 = 0, 〈e2, e2〉 = 0, 〈e3, e3〉 = 0,

〈e1, e2〉 = 0, 〈e1, e3〉 = 0, 〈e2, e3〉 = 0

ε : ε1, ε2, ε3

C =

 1 0 0

0 1 0

0 0 1



3. The classification of Γ-graded ε-Lie algebras. In this section we will classify all

3-dimensional Γ-graded ε-Lie algebras with one-dimensional homogeneous components.

Using the classification of graded ε-skew-symmetric algebras presented in Theorem 2,

the graded ε-Lie algebras can be classified by checking which of the ε-skew-symmetric

algebras satisfy the ε-Jacobi identity.

Because of the bilinearity of bracket multiplication, the left part of the ε-Jacobi iden-

tity is a 3-linear form and so is completely defined by its values on a basis. Therefore, it

suffices to check the ε-Jacobi identity for the basis elements.

Let {ei}3i=1 be a basis of L, such that ei ∈ Lωi , i = 1, 2, 3.
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For basis elements ei1 , ei2 , ei3 the ε-Jacobi identity can be written in the form

ε(i3, i1)〈ei1 , 〈ei2 , ei3〉〉+ ε(i2, i3)〈ei3 , 〈ei1 , ei2〉〉+
ε(i1, i2)〈ei2 , 〈ei3 , ei1〉〉 = 0,

where {i1, i2, i3} ∈ {1, 2, 3} and ε(i, j) = ε(ωi, ωj).

Table 4 presents values of the left part of the ε-Jacobi identity for the basis elements

in each of the cases P1, P2, P3.

Table 4

P1 P2 P3
(1; 1; 1) 0 0 0
(1; 1; 2) β · γ · (ε(2, 1)− ε(3, 1))e2 0 0
(1; 2; 2) α · γ(ε(2, 2)− 1)e1 0 α · γ(ε(2, 2)− 1)e1
(2; 2; 2) 0 0 −3α · γ · ε(2, 2)e2
(1; 1; 3) β · γ · (ε(3, 1)− ε(2, 1))e3 0 0
(1; 2; 3) 0 0 0
(1; 3; 2) 0 0 0
(1; 3; 3) α · β · (ε(3, 2)− ε(3, 1))e1 0 β · t · (ε(3, 3)− 1)e1
(2; 2; 3) α · γ · (1− ε(2, 2))e3 0 −α · tε(2, 3)e3
(2; 3; 3) α · β · (ε(3, 1)− ε(3, 2))e2 0 −β · γ · ε(3, 2)e2
(3; 3; 3) 0 0 −3β · t · ε(3, 3)e3

The set of triples {1, 2, 3}3 splits into orbits under the action of the permutation

s = (1; 2; 3). Each orbit consist of 3 elements and determines the ordered triple of basis

elements for which the ε-Jacobi identity is written down. It is enough to know the left

part of ε-Jacobi identity for one element of each orbit. The first column of the Table is a

list of triples of indices (one from each orbit) for which we calculate the left part of the

ε-Jacobi identity. In the second, third and fourth column, the left parts of the ε-Jacobi

identity for the algebras from the classes P1, P2, P3 respectively, are given for each triple

from the first column. Note that in the second column the parameters α, β, γ are the

structure constants for the algebras from the class P1, but in the fourth column α, β, γ

are the structure constants for the algebras from the class P3.

From Table 4, the necessary and sufficient conditions for the ε-Jacobi identity to be

satisfied can be obtained in each case Pi by putting the corresponding left parts of the

ε-Jacobi identity equal to 0.

As a result, we get the following classification Theorem.

Theorem 3. The classification of 3-dimensional injective generalised ε-Lie algebras

with one-dimensional or zero homogeneous components is provided by the following list

of (canonical) algebras:

(P1, ε18, 1), (P1, ε18, 3), (P1, ε18, 5), (P1, ε18, 6);

(P1, ε21, 3), (P1, ε21, 4), (P1, ε21, 5), (P1, ε21, 6);

(P2, ε7), (P2, ε8), (P2, ε9), (P2, ε10), (P2, ε19), (P2, ε27), (P2, ε34);

(P3, ε1, 6), (P3, ε1, 9), (P3, ε1, 11);

(P3, ε2, 6), (P3, ε2, 8), (P3, ε2, 9), (P3, ε2, 10), (P3, ε2, 11);

(P3, ε3, 6), (P3, ε3, 8), (P3, ε3, 9), (P3, ε3, 11).
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Here (Pi, εj , k) denotes an algebra from the subclass k of the class Pi with commutation

factor εj (see Table 3).

R e m a r k 2. Theorem 3 gives a classification of complex graded ε-Lie algebras of

dimension 3 with 1-dimensional homogeneous components. The ε-Jacobi identity provides

us with the Poincaré-Birkhoff-Witt theorem (see [25], [28]). It means that the graded

ε-Lie algebras can be considered as algebras with quadratic permutation relations, and

it is important to study, for such algebras, the involutions (real structures) and their

?-representations by bounded and unbounded operators in a Hilbert space.

4. Some interesting problems. This section is devoted to some interesting problems

connected with the results of this paper.

1) The first problem is the classification of all graded ε-Lie algebras up to isomorphism.

It is not yet solved, as it is still open for Lie algebras and superalgebras. Some progress

towards a solution of this problem for Lie algebras was achieved by a study of their

deformations and contractions. Therefore, it is very likely that similar methods can be

applied successfully for graded ε-Lie algebras.

2) After complex graded ε-Lie algebras were classified, the problem of classifying their

real structures (involutions) naturally arises. Moreover, if real graded ε-Lie algebras were

classified, then it would be interesting to study the correspondence between these real

algebras and the real structures of the complex ε-Lie algebras.

3) Once all involutions for graded ε-Lie algebras are found, we can begin on the

problem of classifying, up to unitary equivalence, ?-representations of these real structures

by bounded and unbounded operators in a Hilbert space. The main part of this problem

is the classification of their irreducible ?-representations. In [8], [22], all the irreducible

representations of the real structures of the algebra (P1, ε18, 1) were classified. In [31] the

irreducible representations of the algebra (P1, ε18, 3) with the identity involution were

classified. The methods developed in [22], [31] could be applied to other algebras from

the classification in Theorem 3 or to more general generalised Lie algebras.

4) Finally, let us note that the classification presented in this paper contains infinite

families of algebras, depending on some continuous parameter. It would be interesting

to investigate how representations of these algebras and the representations of their real

structures behave under a change of parameter. In particular, do the representations

change continuously when the parameter tends to the limit points of the parameter set?
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