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Abstract. We give a systematic discussion of the relation between q-difference equations
which are conditionally Uq(G)-invariant and subsingular vectors of Verma modules over Uq(G)
(the Drinfeld-Jimbo q-deformation of a semisimple Lie algebra G over CI or IR). We treat in
detail the cases of the conformal algebra, G = su(2, 2), and its complexification, G = sl(4). The
conditionally invariant equations are the q-deformed d’Alembert equation and a new equation
arising from a subsingular vector proposed by Bernstein-Gel’fand-Gel’fand.

1. Introduction. It is well known that the d’Alembert equation

�f(x) = 0 (1.1)

is Poincaré and even conformal invariant, cf., e.g., [1]. Here f(x) is a scalar field of fixed

conformal weight, x = (x0, x1, x2, x3) denotes the Minkowski space-time coordinates, and

� is the d’Alembert operator: � = ∂µ∂µ = (~∂)2 − (∂0)2.

In the present paper we would like to present representation-theoretic reinterpreta-

tions of this fact. There are two aspects of this. First, from the point of view of induced

representations of the conformal algebra su(2, 2) one can not automatically obtain repre-

sentations which are also irreducible finite-dimensional (e.g., scalar above) representations

of the Lorentz subalgebra. To ensure this one has to impose additional conditions and to

restrict to functions which obey these conditions. In the case at hand there are two such

conditions and it is on such functions that (1.1) is conformal invariant. That is why we

shall call the conformal invariance of (1.1) conditional. (Using approaches different from

ours other conditionally invariant equations were considered in [20], [21], [3], [17], [16],

(for some more comment see subsection 3.1).)
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The second aspect is that we can find a counterpart of (1.1) in the representation the-

ory of Verma modules over the complexification sl(4) of su(2, 2). Namely, this counterpart

is a subsingular vector of a Verma module (definition below).

In the present paper we consider (1.1) and conditional invariant equations in general

applying the approach of [6]. The needed results from [6] stated in condensed form (and in

some detail in subsection 3.1) are: to every singular, resp., subsingular vector of a Verma

module over a semi-simple (also reductive) Lie algebra G there corresponds a differential

operator and equation invariant, resp., conditionally invariant with respect to G. (Both

statements are valid also for the corresponding Lie group with some additional subtleties,

cf. [6].)

One of the specifics of the approach of [6] is that if one wants to consider (conditional)

invariance with respect to some real Lie algebra G0 one has also to know the invariance

with respect to the complexification G of G0 . The same is true in the q-deformed case.

That is why we treat in parallel sl(4) and the conformal algebra su(2, 2), and analogously

Uq(sl(4)) and Uq(su(2, 2)).

We treat in detail the q = 1 case since some of our results are new also in this classical

situation. In particular, we give also (1.1) with nontrivial right hand side and we present

a new conditionally invariant equation.

The paper is organized as follows. The notion of subsingular vector is explained in

Subsection 2.1 for arbitrary (q-deformed) simple Lie algebras. Then we restrict to sl(4)

and Uq(sl(4)) and we give the singular and subsingular vectors we shall need. In parallel

we give the explicit conditions for irreducibility of the lowest weight modules. Here the

exposition is common for generic q. These results are applied in Sections 3, resp. 4, to

get explicitly the conditionally invariant equations for q = 1, resp. for generic q.

2. Subsingular vectors

2.1. Let G=G+⊕H⊕G− be a semisimple Lie algebra, whereH is a Cartan subalgebra

of G, G+, resp., G−, are the positive, resp., negative root vector spaces of the root system

∆ = ∆(G,H), corresponding to the decomposition ∆ = ∆+ ∪ ∆− into positive and

negative roots. Let ∆S = {αi|i = 1, . . . , r = rank G} be the system of simple roots of

∆. We use the standard deformation Uq(G) [15], [18] given in terms of the Chevalley

generators X±i , Hi ∈ H, i = 1, . . . , r of G. The elements Hi span the Cartan subalgebra

H of G, while the elements X±i generate the subalgebras Uq(G±).

A lowest weight module (LWM) MΛ over Uq(G) is given by the lowest weight Λ ∈ H∗
(H∗ is the dual of H) and a lowest weight vector v0 so that Xv0 = 0 if X ∈ G−,

Hv0 = Λ(H)v0 if H ∈ H. In particular, we use the Verma modules V Λ over Uq(sl(G))

which are the lowest weight modules such that V Λ ∼= Uq(G+)v0.

Let us introduce the numbers:

mi = mi(Λ)
.
= (ρ− Λ)(Hi) = 1− Λ(Hi) = 1− (Λ, α∨i ) , i = 1, . . . , r (2.1)

where ρ = 1
2

∑
β∈∆+ β, (ρ(Hk) = (ρ, αk) = 1), (·, ·) is the scalar product of the roots

normalized so that for the short roots α we have (α, α) = 2, α∨ ≡ 2α/(α, α).

We note that these numbers completely determine the lowest weight Λ and shall be
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used also for the characterization of the LWM. The collection of these numbers shall be

called the signature of Λ and denoted χ(Λ) or just χ :

χ = χ(Λ)
.
= (m1, . . . ,mr) (2.2)

Analogously, we shall also use numbers corresponding to arbitrary positive roots :

mα = mα(Λ)
.
= (ρ− Λ)(Hα) = (ρ− Λ, α∨) , α ∈ ∆+ (2.3)

where Hα ∈ H corresponds to the root α by the isomorphismH ∼= H∗, (as Hi corresponds

to αi). Certainly, each mα is a fixed linear combination of mi , however, these numbers

have independent importance as we shall see just below. Naturally, mαi = mi .

In the present paper we restrict to the case when the deformation parameter q is not

a nontrivial root of 1. (For the case when q is a nontrivial root of 1 we refer to [7].) In

this case a Verma module V Λ is reducible [2] (q = 1), [7] iff at least one of the numbers

mα is a positive integer:

mα ∈ IN (2.4)

Whenever (2.4) is fulfilled there exists a singular vector vs = vα,mα in V Λ such that

vs 6∈ CIv0, Xvs = 0, ∀X ∈ G− and Hvs = (Λ + mαα)(H) vs , ∀H ∈ H. The space Iα =

Uq(G+) vα,mα is a proper submodule of V Λ isomorphic to the Verma module V Λ+mαα

with a shifted lowest weight Λ +mαα [6], [7]. Clearly, this implies that V Λ and V Λ+mαα

have the same values of the Casimir operators.

R e m a r k 1. Note that if we were considering highest instead of lowest weights, the

analog of the numbers mk , (mα), would be defined as mh.w.
k = 1+Λ(Hi), (mh.w.

α = (ρ+

Λ)(Hα)); the shifted weight is Λ−mh.w.
α α. However, the statement about the reducibility

is unchanged. [6]. ♦

It is important that one can find explicit formulae for the singular vectors. The singular

vector introduced above is given by [6], [7]:

vs = vα,mα = Pα,mα(X+
1 , . . . , X

+
r )v0 (2.5)

where Pα,mα is a homogeneous polynomial in its variables of degrees mni, where ni ∈ ZZ+

come from α =
∑
niαi, αi - the system of simple roots. The polynomial Pα,mα is unique

up to a non-zero multiplicative constant. The papers [6], [7] contain all explicit singular

vectors needed in the present paper. Note that we refer to both, since [6] gives formulae

for q = 1, while [7] gives such formulae for general q. (More general explicit formulae for

singular vectors, including all singular vectors for Uq(sl(n)), are contained in [8]. Note

that the modules considered in [7], [8] are highest weight modules and the singular vectors

are polynomials in X−i ; the translation of those formulae to the lowest weight module

setting is straightforward in view of the above Remark.)

Certainly, (2.4) may be fulfilled for several positive roots (even for all of them). Let

∆Λ denote the set of all positive roots for which (2.4) is fulfilled, and let us denote:

ĨΛ≡∪α∈∆ΛI
α . Clearly, ĨΛ is a proper submodule of V Λ. Let us also denote FΛ≡V Λ/ĨΛ.

Further we shall use also the following notion. The singular vector v1 is called descen-

dant of the singular vector v2 6∈ CIv1 if there exists a homogeneous polynomial P12 in X+
i



206 V. K. DOBREV

so that v1 = P12v2 . Clearly, in this case we have: I1 ⊂ I2 , where Ik is the submodule

generated by vk .

The Verma module V Λ contains a unique proper maximal submodule IΛ (⊇ ĨΛ) [2],

[4]. Among the lowest weight modules with lowest weight Λ there is a unique irreducible

one, denoted by LΛ, i.e., LΛ = V Λ/IΛ. (If V Λ is irreducible then LΛ = V Λ.)

It may happen that the maximal submodule IΛ coincides with the submodule ĨΛ

generated by all singular vectors. This is, e.g., the case for all Verma modules if rank

G ≤ 2, or when (2.4) is fulfilled for all simple roots (and, as a consequence for all positive

roots). Here we are interested in the cases when ĨΛ is a proper submodule of IΛ. We need

the following notion.

Definition. Let V Λ be a reducible Verma module. A vector vsu ∈ V Λ is called a

subsingular vector if vsu 6∈ ĨΛ and the following holds:

Xvsu ∈ ĨΛ , ∀X ∈ G− (2.6)

R e m a r k 2. The image of a subsingular vector in the factor-module FΛ is a singular

vector of FΛ. For shortness we shall say the subsingular vector ‘becomes’ a singular vector

in the corresponding factor-module. From this it is also clear that a subsingular vector

may be represented by a homogeneous polynomial in X+
i . ♦

We need to be more explicit even in the general case. First of all it is clear that it is

enough for a vector to be subsingular if (2.6) holds for the negative simple root vectors

X−i . We can rewrite (2.6) in the following way:

X−i vsu =
∑
α∈∆i

Qiαv
α,mα (2.7)

whereQiα are homogeneous polynomials such that the RHS is a homogeneous polynomial,

and ∆i is a subset of ∆Λ ⊂ ∆+, such that α ∈ ∆i iff Qiα is a nonzero polynomial. Let

us denote by ∆su the union of ∆i : ∆su ≡ ∪ri=1∆i . We shall call ∆su the set of roots

associated with the subsingular vector vsu. The corresponding set of singular vectors

{vα,mα |α ∈ ∆su} will be called singular vectors associated with the subsingular vector vsu.

Clearly ∆su is a subset of ∆Λ and in general a proper subset. Let Isu ≡ ∪α∈∆suI
α(⊆ ĨΛ),

Fsu ≡ V Λ/Isu ; then vsu becomes a singular vector in Fsu , i.e., when we factorize all

singular vectors associated with it.

Clearly, if two singular vectors v1 and v2 belong to ∆Λ (∆i , ∆su) and v1 is descendant

of v2 , then we can omit v1 from the set ∆Λ (∆i , ∆su).

Clearly, vsu and ĨΛ generate a submodule IΛ
su so that:

Isu ⊆ ĨΛ ⊂ IΛ
su ⊆ IΛ ⊂ V Λ (2.8)

2.2. We restrict now to G = sl(4), (cf. [9], [10]). For the six positive roots of the root

system of sl(4) one has from (2.1), (2.3) (cf. [6]):

m1 = 1− Λ(H1) (2.9a)

m2 = 1− Λ(H2) (2.9b)

m3 = 1− Λ(H3) (2.9c)

m12 = 2− Λ(H12) = m1 +m2 (2.9d)
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m23 = 2− Λ(H23) = m2 +m3 (2.9e)

m13 = 3− Λ(H13) = m1 +m2 +m3 (2.9f)

Thus the signature here is : χ = (m1,m2,m3).

For further reference we give the value of the sl(4) second order Casimir operator [22]

in terms of the above notation:

C2 =
1

2

(
m2

13 +m2
2 +

1

2
(m1 −m3)2

)
− 5 (2.10)

which is normalized to take zero value on the trivial irrep (mk = 1) (and thus on all

representations partially equivalent to it).

In the case of sl(4) and Uq(sl(4)) there are two generic situations to have subsingular

vectors. This follows from general results of [19] and is analyzed in detail (from the

mathematical point of view) in [13]. We discuss examples of subsingular vectors from

both situations in the next subsections.

2.3. Here we treat the Bernstein-Gel’fand-Gel’fand example of a subsingular vector

which appeared in the seminal paper [2] (q = 1) and which we give for general q. It occurs

for Λ(H1) = Λ(H3) = 1, Λ(H2) = 0, i.e., χ = (m1,m2,m3) = (0, 1, 0). Thus there are

four positive mα ∈ IN from (2.9) : m2 = m12 = m23 = m13 = 1. Correspondingly, there

are four singular vectors:

v2 = X+
2 v0, m2 = 1 (2.11a)

v′12 = X+
1 X

+
2 v0 = X+

1 v2, m12 = 1

v′23 = X+
3 X

+
2 v0 = X+

3 v2, m23 = 1

v′13 = X+
1 X

+
3 X

+
2 v0 = X+

1 X
+
3 v2, m13 = 1

(2.11b)

However, only the singular vector v2 is relevant since the others are its descendants.

What is important for us is that there is the following subsingular vector:

vbgg =
(
X+

1 X
+
2 X

+
3 −X

+
3 X

+
2 X

+
1

)
v0 (2.12a)

It is easy to see:

X−1 vbgg = v′23 = X+
3 v2

X−2 vbgg = 0

X−3 vbgg = −v′12 = −X+
1 v2

(2.13)

thus, indeed, (2.6) is fulfilled, while comparing with (2.7) we see that indeed v2 is asso-

ciated with vbgg.

It is useful for future applications to have different expression for the subsingular

vectors. Formula (2.12a) is in the unordered Chevalley basis. An expression in the ordered

PBW basis is:

vbgg =
(
X+

13 + qX+
3 X

+
12 + q−1X+

23X
+
1

)
v0 (2.12b)

which for q = 1 is exactly equal to (2.12a) and for q 6= 1 differs from (2.12a) by the

inessential term (q − q−1)X+
1 X

+
3 X

+
2 v0 ∈ ĨΛ. For q = 1 a third expression coinciding
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with (2.12a, b) is:

vbgg =
(
X+

12X
+
3 +X+

23X
+
1

)
v0 , q = 1 (2.12c)

Note that we have translated the result of [2] into our lowest weight module setting

and that the actual expression for vbgg in [2], (given naturally for q = 1), is not correct.

(Also formulae (2.11b) are not given in [2].)

Let |̃ 2 〉 denote the lowest weight vector of the factor–module F2 = V Λ/I2 . Then the

singular vectors in (2.11) become null-conditions, the relevant one (2.11a) giving:

X+
2 |̃ 2 〉 = 0 (2.14)

Clearly, vbgg becomes a singular vector in F2. If we factor out also vbgg we have the

following null conditions in the resulting irreducible module LΛ with lowest weight vector

| 2 〉 :

X+
2 | 2 〉 = 0 (2.15a)(

X+
1 X

+
2 X

+
3 −X

+
3 X

+
2 X

+
1

)
| 2 〉 = 0 (2.15b)

2.4. In this and the remaining subsections of this Section we consider the other

archetypal sl(4) example [19], [13]. In this subsection we give some preliminaries. We

take first an arbitrary Verma module V Λ and the following vector:

vf = Pv0. (2.16)

where P is the following homogeneous polynomial in Uq(G+) :

P = X+
13X

+
2 − q−1X+

12X
+
23 (2.17)

Below we shall need the following technical result:

X−2 vf = q−1
(
[Λ(H2) + 1]qX

+
2 X

+
1 − [Λ(H2)]qX

+
1 X

+
2

)
X+

3 v0+

+ q−1X+
3

(
[Λ(H2)− 1]qX

+
1 X

+
2 − [Λ(H2)]qX

+
2 X

+
1

)
v0 = (2.18a)

= q−1
(
[Λ(H2) + 1]qX

+
2 X

+
3 − [Λ(H2)]qX

+
3 X

+
2

)
X+

1 v0+

+ q−1X+
1

(
−[Λ(H2)− 1]qX

+
1 X

+
2 + [Λ(H2)]qX

+
2 X

+
1

)
v0 (2.18a)

where [x]q ≡
(
qx − q−x

)
/λ, λ ≡ q − q−1.

Also for future reference we note several equivalent forms of the polynomial P valid

for any weight:

P = X+
13X

+
2 − q−1X+

12X
+
23 = (2.19a)

= X+
13X

+
2 − qX

+
23X

+
12 = (2.19b)

= q−1
(
X+

1 X
+
2 X

+
3 X

+
2 +X+

2 X
+
3 X

+
2 X

+
1 − [2]qX

+
2 X

+
1 X

+
3 X

+
2

)
= (2.19c)

= q−1
(
X+

3 X
+
2 X

+
1 X

+
2 +X+

2 X
+
1 X

+
2 X

+
3 − [2]qX

+
2 X

+
1 X

+
3 X

+
2

)
(2.19d)

and two forms valid if a ≡ Λ(H2) 6= 1 :

P =
q−1

[a− 1]q

(
X+

3 X
+
2 − [2]qX

+
2 X

+
3

) (
[a− 1]qX

+
1 X

+
2 − [a]qX

+
2 X

+
1

)
+
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+
1

[a− 1]q
X+

2

(
[a− 1]qX

+
1 X

+
2 − [a]qX

+
2 X

+
1

)
X+

3 = (2.20a)

=
q−1

[a− 1]q

(
X+

1 X
+
2 − [2]qX

+
2 X

+
1

) (
[a− 1]qX

+
3 X

+
2 − [a]qX

+
2 X

+
3

)
+

+
1

[a− 1]q
X+

2

(
[a− 1]qX

+
3 X

+
2 − [a]qX

+
2 X

+
3

)
X+

1 (2.20b)

The need for the introduction of the parameter a will become clear below.

2.5. Consider now a Verma module V Λ with lowest weight Λ satisfying the conditions:

Λ(H3) = 0⇐⇒ m3 = 1 (2.21a)

Λ(H1 +H2) = 1⇐⇒ m12 = 1 (2.21b)

We shall denote its signature as:

χ1(a) = χ(Λ) = (a, 1− a, 1) , a = Λ(H2) ∈ CI (2.21c)

cf. (2.9c, d). We would like to study this family of representations (and a conjugate one)

since for these the (q-) d’Alembert operator will be a (conditionally) invariant operator.

This will become clear in Sections 3 and 4 while here we find the necessary singular and

subsingular vectors.

From the above two conditions follow that there are two singular vectors which are

explicitly given by [6], [7]:

v3 = X+
3 v0, m3 = 1 (2.22a)

v12 =
(
[a− 1]qX

+
1 X

+
2 − [a]qX

+
2 X

+
1

)
v0, m12 = 1 (2.22b)

(There is also a singular vector corresponding to m13 = 2 [6], [7], which, however, is a

descendant of v3.)

In the above setting we shall show the special place of the the vector vf (which will

give rise to the (q-) d’Alembert operator as we shall see in the next sections). We have

the following result:

If a 6= 1 the vector vf is a linear combination of descendants of the singular vectors

v3 and v12 , while if a = 1 the vector vf is a subsingular vector.

It is straightforward to show this statement. Let first a 6= 1. Then using (2.20a) we

have:

vf = Pv0 =
q−1

[a− 1]q

(
X+

3 X
+
2 − [2]qX

+
2 X

+
3

)
v12+

+
1

[a− 1]q
X+

2

(
[a− 1]qX

+
1 X

+
2 − [a]qX

+
2 X

+
1

)
v3

(2.23)

To show that for a = 1 vf is a subsingular vector one may use a calculation valid for any

a (using also (2.18a)) :

X−1 vf = 0

X−2 vf = q−1
(
[a+ 1]qX

+
2 X

+
1 − [a]qX

+
1 X

+
2

)
v3 + q−1X+

3 v12

X−3 vf = 0

(2.24)
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though this calculations obscures the fact that for a = 1 the singular vector v12 is a

descendant one, as we shall see below, where we also show that vf is not an element of

ĨΛ.

We now write down systematically all situations.

2.5.1. If a 6∈ ZZ there are no other nondescendant singular vectors, besides (2.22) and

the maximal invariant submodule is: IΛ = I ′1 = Iα3 ∪ Iα12 . We denote by L′1 = V Λ/I ′1
the corresponding irreducible factor–module, and by | 1′ 〉 the lowest weight vector of L′1.

Then the expressions in (2.22) become null-conditions, namely we have:

X+
3 | 1′ 〉 = 0 (2.25a)(

[a− 1]qX
+
1 X

+
2 − [a]qX

+
2 X

+
1

)
| 1′ 〉 = 0 (2.25b)

2.5.2. If a ∈ −IN then in addition to (2.22) there is one more singular vector [6], [7]

corresponding to m2 = 1− a ∈ IN + 1 :

v2 =
(
X+

2

)1−a
v0 (2.26)

and two descendants corresponding to m23 = 2−a, m13 = 2. Thus the maximal invariant

submodule is: IΛ = I ′′1 = Iα3 ∪ Iα12 ∪ Iα2 , L′′1 = V Λ/I ′′1 is the irreducible factor–module,

| 1′′ 〉 is the lowest weight vector of L′′1 . Then the null-conditions are:

X+
3 | 1′′ 〉 = 0 (2.27a)(

[a− 1]qX
+
1 X

+
2 − [a]qX

+
2 X

+
1

)
| 1′′ 〉 = 0 (2.27b)(

X+
2

)1−a | 1′′ 〉 = 0 (2.27c)

2.5.3. If a = 0 then there is a singular vector corresponding to m2 = 1 and given by

(2.26) with a = 0. Here also (2.22b) is descendant and the maximal invariant submodule

is generated by the singular vectors (2.22a) and (2.26), IΛ = I ′′′1 = Iα3 ∪ Iα2 . We denote

by L′′′1 = V Λ/I ′′′1 the irreducible factor–module; | 1′′′ 〉 the lowest weight vector of L′′′1 .

Then the null-conditions are:

X+
3 | 1′′′ 〉 = 0 (2.28a)

X+
2 | 1′′′ 〉 = 0 (2.28b)

2.5.4. If a ∈ IN + 1 then there exists another singular vector [6], [7]:

v1 =
(
X+

1

)a
v0 (2.29)

Thus the maximal invariant submodule is: IΛ = IIV1 = Iα3 ∪ Iα12 ∪ Iα1 , LIV1 = V Λ/IIV1

is the irreducible factor–module, | 1IV 〉 is the lowest weight vector of LIV1 . Then the

null-conditions are:

X+
3 | 1IV 〉 = 0 (2.30a)(

[a− 1]qX
+
1 X

+
2 − [a]qX

+
2 X

+
1

)
| 1IV 〉 = 0 (2.30b)(

X+
1

)a | 1IV 〉 = 0 (2.30c)

2.5.5. Finally, if a = 1 then the non-descendant singular vectors are v3 = X+
3 v0, cf.

(2.22a), and v1 = X+
1 v0, cf. (2.29) with a = 1, while (2.22b) is descendant of (2.29), and



(CONDITIONALLY) INVARIANT q-DIFFERENCE EQUATIONS 211

there appears also a singular vector v′23 , cf. (2.11b), corresponding to m23 = 1 which is

descendant to (2.22a). Here we have also the subsingular vector vf , cf. (2.16), (2.24),

from the latter the essential one simplifying here to:

X−2 vf = q−1
(
[2]qX

+
2 X

+
1 −X

+
1 X

+
2

)
v3 − q−1X+

3 X
+
2 v1 (2.31)

Now it remained from the proof above to show that vf can not be represented as a linear

combination of descendants of v1 and v3, and thus does not belong to ĨΛ, which is easy

to see also by inspecting (2.19).

We denote by ĨΛ = Iα1 ∪ Iα3 the submodule generated by these singular vectors, by

F1 = V Λ/ĨΛ the factor–module, by |̃ 1 〉 the lowest weight vector of F1. We have the

following null conditions in F1 :

X+
3 |̃ 1 〉 = 0 (2.32a)

X+
1 |̃ 1 〉 = 0 (2.32b)

The vector vf becomes a singular vector in F1 which we denote as:

vf1 = P|̃ 1 〉 (2.33)

Factoring out the submodule built on vf1
we obtain the irreducible factor–module L1 =

V Λ/IΛ
1 . We denote by | 1 〉 the lowest weight vector of L1. Then the null-conditions are:

X+
3 | 1 〉 = 0 (2.34a)

X+
1 | 1 〉 = 0 (2.34b)(

X+
3 X

+
2 − [2]qX

+
2 X

+
3

)
X+

1 X
+
2 | 1 〉 = 0 (2.34c)

where for (2.34c) we have used (2.34a) and (2.19d). An equivalent condition to (2.34c)

is: (
X+

1 X
+
2 − [2]qX

+
2 X

+
1

)
X+

3 X
+
2 | 1 〉 = 0 (2.34c′)

where we have used (2.34b) and (2.19c).

Conditions (2.30) and (2.34) ((2.34c, c′) in a different, but equivalent form) were given

first in [14]. The corresponding irreps (for a ∈ IN) were shown [14] to be a construction

of the irreducible massless representations of a q - conformal algebra (with |q| = 1)

characterized by the helicity h = (a− 1)/2 ∈ (1/2)ZZ+ .

2.6. Analogously consider a Verma module V Λ with lowest weight Λ satisfying the

conditions:

Λ(H1) = 0⇐⇒ m1 = 1 (2.35a)

Λ(H2 +H3) = 1⇐⇒ m23 = 1 (2.35b)

χ3(a) = χ(Λ) = (1, 1− a, a) , a = Λ(H2) ∈ CI (2.35c)

cf. (2.9a, d). This case is conjugate to the one considered in the previous subsection and

all statements and formulae may be obtained verbatim by exchanging indices 1 ←→ 3,

12 ←→ 23. Thus, we shall give for future reference only the final formulae analogous to

(2.30). Namely, the conditions fulfilled in the irreducible lowest weight module L3 (with
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a ∈ IN + 1) are:

X+
1 | 3 〉 = 0 (2.36a)(

[a− 1]qX
+
3 X

+
2 − [a]qX

+
2 X

+
3

)
| 3 〉 = 0 (2.36b)(

X+
3

)a | 3 〉 = 0 (2.36c)

Conditions (2.36) were given first in [14].

It is interesting to note that a lowest weight can satisfy both (2.21) and (2.35) which

happens only for the special case a = 1, which was considered in the previous subsection.

3. Conditionally invariant equations

3.1. We now write down explicitly the conditionally invariant equations related to the

subsingular vectors considered in the previous section. For simplicity we treat the case

q = 1 first and the q-deformed analogs in next Section.

We use the approach of [6] which we give in a condensed form here. We work with

induced representations, called elementary representations (ERs). The functions of the

ERs can be taken to be complex-valued C∞ functions on the group G. The representation

action is given by the left regular action, which infinitesimally is:

(XLϕ)(g) ≡ d

dt
ϕ(exp(−tX)g)|t=0 (3.1)

where X ∈ G, g ∈ G, G is the Lie algebra of G. These functions possess the properties

of right covariance [6]. For our purposes it is enough to consider holomorphic elementary

representations for which right covariance means:

X̂ϕ = Λ(X) · ϕ, X ∈ H (3.2a)

X̂ϕ = 0, X ∈ G− (3.2b)

where Λ ∈ H∗, and X̂ is the right action of the generators of the algebra G

(X̂ϕ)(g) ≡ d

dt
ϕ(g exp(tX))|t=0 (3.3)

Right covariance is used also to pass from functions on the groupG to the so-called reduced

functions ϕ̂ on the coset space G/B, where B = exp(H) exp(G−) is a Borel subgroup of

G. Note that G/B is a completion of G+ = exp(G+) and in practical calculations one is

usually using the local coordinates of G+.

The weight Λ completely characterizes these representations, which we denote by CΛ,

each of which is then in correspondence with the lowest weight representations with the

same lowest weight, in particular, with the Verma module V Λ.

Now the main ingredient of the procedure of [6] is that to every singular vector there

corresponds an intertwining differential operator. Namely, to the singular vector vs =

vα,mα (cf. (2.5)) of the Verma module V Λ there corresponds an intertwining differential

operator

Dα,mα : CΛ −→ CΛ+mαα (3.4)

given explicitly by:

Dα,mα = Pα,m(X̂+
1 , . . . , X̂

+
r ) (3.5)
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where Pα,m is the same polynomial as in (2.5), and X̂+
i is the right action (3.3). This

operator gives rise to the G-invariant equation:

Dα,mα ϕ̂ = ϕ̂′, ϕ̂ ∈ CΛ, ϕ̂′ ∈ CΛ+mαα (3.6)

In the same way a subsingular vector produces a differential operator and equation

which are conditionally invariant. The latter means that this invariance hold only on

the intersection of the kernels of all intertwining operators Dα,mα such that α and the

singular vectors vα,mα are associated with the singular vector in question, i.e., on the

space:

Csu = {ϕ̂ ∈ CΛ|Dα,mα ϕ̂ = 0, ∀α ∈ ∆su} (3.7)

(cf. subsection 2.1.). A conditionally invariant equation has nontrivial RHS if we take

the situation corresponding to the reducible factor–module FΛ = V Λ/ĨΛ; the latter is

realized when we do not impose in FΛ the null condition corresponding to the subsingular

vector which in FΛ is a singular vector. A conditionally invariant equation has trivial RHS

if we take the situation corresponding to the irreducible factor–module LΛ = V Λ/IΛ, i.e.,

if we impose in FΛ the null condition corresponding to the subsingular vector. Below we

consider both situations, for which we are prepared by the detailed analysis of Section 2.

R e m a r k 3. Note that one may exchange the left and right actions in the above con-

siderations, i.e., consider the representations acting as right regular representations with

properties of left covariance. Independently, if one uses highest weight representations

(cf. Remark 1) one then uses the coset G/B′, where B′ = exp(H) exp(G+) is the Borel

subgroup of G conjugate to B. ♦

R e m a r k 4. As we noted if one wants to treat the case of a real noncompact algebra

G0 one has to use also the results for its complexification G. The application of these

results to G0 has some subtleties [6]. However, in the case at hand when G0 = su(2, 2) and

G = sl(4) the passage to su(2, 2) is straightforward [5]. Also considering representations of

the corresponding groups (which are used here only to provide the representation spaces)

involves some subtleties [6], which, however, are not felt in the case under consideration

[5]. ♦

Referring further the general case to [6] we restrict here to G = sl(4), G = SL(4).

We pass to functions on the flag manifold Y = SL(4)/B, where B is the Borel subgroup

of SL(4) consisting of all upper diagonal matrices. (Equally well one may take the flag

manifold SL(4)/B′, where B′ is the Borel subgroup of lower diagonal matrices.) We

denote the six local coordinates on Y by x±, v, v̄, z, z̄. From the explicit form of the

singular vectors it is clear that we need only the right action of the three simple root

generators. Denoting this right action of X+
k by Rk , we have from [6]:

R1 = ∂z ≡
∂

∂z

R2 = z̄z∂+ + z∂v + z̄∂v̄ + ∂−

R3 = ∂z̄ ≡
∂

∂z̄

(3.8)
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where

∂± ≡
∂

∂x±
, ∂v ≡

∂

∂v
, ∂v̄ ≡

∂

∂v̄
, (3.9)

Things are arranged so that in the conformal setting we can use the same coordi-

nates [5]. In this case the coordinates x±, v, v̄ are related to the Minkowski space-time

coordinates x0, x1, x2, x3 :

x± ≡ x0 ± x3, v ≡ x1 − ix2, v̄ ≡ x1 + ix2 (3.10)

while z, z̄ encode the inducing Lorentz representation as explained below. In particular,

one may use the following covariant representation for R2 [5] employing the Pauli matrices

σµ :

R2 = ( z̄ 1 )σµ∂
µ

(
z
1

)
σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

) (3.11)

Note also that under the natural conjugation:

ω(x±) = x±, ω(v) = v̄, ω(z) = z̄ (3.12)

Y is also a flag manifold of the conformal group SU(2, 2).

The reduced function spaces of the ERs in which our equations are defined are

complex-valued C∞ functions on the flag manifold. The holomorphic ERs of sl(4) are

labelled by the signature χ = (m1,m2,m3).

In the su(2, 2) case most applications in physics are in the case when m1,m3 ∈ IN
and one uses reduced functions which are polynomials in the variables z, z̄ of degrees

m1 − 1,m3 − 1, resp. These then carry finite-dimensional irreducible representations of

the Lorentz algebra of dimension m1m3. Let us stress that this is an indexless notation

on which all Lorentz components of the fields are gathered together by the polynomial

dependence in z, z̄. To restore the components one has to take the entries of the inde-

pendent terms in z, z̄, cf. [5]. Note that in the physics literature often is used, instead

of (m1,m2,m3), the labelling [d, j1, j2], where d = 2 − (m13 + m2)/2 is the conformal

weight, j1 = (m1 − 1)/2, j2 = (m3 − 1)/2, so that finite-dimensional Lorentz irreps one

has: jk ∈ ZZ+/2.

3.2. We start with the equations arising from the BGG example of subsingular vector.

Substituting (3.8) in (2.14) we obtain the following sl(4) and su(2, 2) invariant equation:

R2ϕ̂ =
(
z̄z∂+ + z∂v + z̄∂v̄ + ∂−

)
ϕ̂ = 0 (3.13a)

while the subsingular vector vbgg gives rise to the following conditionally invariant equa-

tion: (
R1R2R3 −R3R2R1

)
ϕ̂ =

(
∂v∂z̄ − ∂v̄∂z +

(
z̄∂z̄ − z∂z

)
∂+

)
ϕ̂ = ϕ̂′ (3.13b)

where ϕ̂ ∈ CΛ and satisfies (3.13a), ϕ̂′ ∈ CΛ′
, Λ′ = Λ−α13 , the corresponding signatures

being χ = (0, 1, 0), χ′ = (−1, 1,−1). (Note that the second Casimir operator has the same

value in the two representations: C2(χ) = C2(χ′) = −4, cf. (2.10).) If we consider the
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irreducible factor-module LΛ, which means that we should use (2.15) instead of (2.14),

we have instead of (3.13b):(
∂v∂z̄ − ∂v̄∂z +

(
z̄∂z̄ − z∂z

)
∂+

)
ϕ̂ = 0 (3.13c)

3.3. We pass now to equations arising from the other archetypal sl(4) example. We

consider the case when the lowest weight satisfies conditions (2.21).

We shall substitute the operators Rk into the null conditions (2.25), (2.27), (2.28),

(2.30), (2.32), (2.34). In all cases we have the equation arising from the singular vector

v3 = X+
3 v0 , (null conditions (2.25a), (2.27a), (2.28a), (2.30a), (2.32a), (2.34a)) :

R3ϕ̂ = ∂z̄ϕ̂ = 0 (3.14)

which means that our functions do not depend on the variable z̄ - this is valid for the

signature χ1(a) and arbitrary a. (In the conjugate situation with signature χ3(a) our

functions do not depend on the variable z.)

Further, we have the equations arising from the singular vector v2, when a ∈ ZZ− ,

(null conditions (2.27c), (2.28b)) :

(R2)
1−a

ϕ̂ = 0, a ∈ ZZ− (3.15)

Next, we have the equations arising from the singular vector v1, when a ∈ IN , (null

conditions (2.30c), (2.32b), (2.34b)) :

(∂z)
a
ϕ̂ = 0, a ∈ IN (3.16)

which means that our functions are polynomials in the variable z of degree a− 1. Thus

for a = 1 our functions do not depend also on z.

Next we write down the equation arising from the singular vector v12 (null conditions

(2.25b), (2.27b), (2.30b)) :(
(a− 1)R1R2 − aR2R1

)
ϕ̂ =

(
(a− 1)(∂v + z̄∂+)−R2∂z

)
ϕ̂ = 0 (3.17)

It is also valid in all cases, however, for a=0 it follows from (3.15) and for a=1 it follows

from (3.16). Now, since (3.17) is a first degree polynomial in z̄, on which our functions

do not depend, it actually consists of two equations, though not invariant by themselves,

i.e., we have: (
(a− 1− z∂z)∂v − ∂−∂z

)
ϕ̂ = 0 (3.18a)(

(a− 1− z∂z)∂+ − ∂v̄∂z
)
ϕ̂ = 0 (3.18b)

Finally, we obtain the conditionally invariant equations corresponding to the subsin-

gular vector vf . Let us denote by P̂ the polynomial P with X+
k replaced by Rk. Now we

shall obtain this operator in explicit form:

P̂ϕ̂ = (R3R2 − 2R2R3)R1R2ϕ̂ = (3.19a)

= (z∂+ + ∂v̄ −R2∂z̄) ∂zR2ϕ̂ = (3.19b)

= ((z∂+ + ∂v̄)∂zR2 −R2∂z(z∂+ + ∂v̄)) ϕ̂ = (3.19c)

= (∂v̄∂v − ∂−∂+) ϕ̂ = �ϕ̂ (3.19d)
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where we used (3.14) in passing from (3.19b) to (3.19c). Thus, we have recovered the

d’Alembert operator. Note that (3.19) is valid for arbitrary a since we have used only

condition (3.14) which is valid for all of our representations.

Now for a = 1 if we take only invariant equations arising from the conditions (2.32),

(i.e., we work with the counterpart of the factor-module F1), we have the following system

of differential equations:

∂z̄ϕ̂ = 0 (3.20a)

∂zϕ̂ = 0 (3.20b)

�ϕ̂ = ϕ̂′ (3.20c)

where ϕ̂ ∈ CΛ and satisfies (3.20a, b), ϕ̂′ ∈ CΛ′
, Λ′ = Λ − α13 − α2 , the corresponding

signatures being χ = (1, 0, 1), χ′ = (1,−2, 1). (Note that the second Casimir operator

has the same value in the two representations: C2(χ) = C2(χ′) = −3, cf. (2.10).) If we

consider the irreducible factor-module L1, which means that we should use (2.34) instead

of (2.32), we have instead of (3.20c):

�ϕ̂ = 0 (3.20d)

where ϕ̂ is as in (3.20c) and again satisfies (3.20a, b).

Thus, from the subsingular vector vf we have obtained the d’Alembert equations

(3.20c, d) as conditionally sl(4) and su(2, 2) invariant equations.

Now we pass to the cases when a 6= 1. In these cases the vector vf is a linear combi-

nation of the singular vectors v1 and v12 and it becomes zero when these singular vectors

are factorized. Since vf gives rise to the d’Alembert operators for all a we expect that

the d’Alembert equation (3.20d) will hold automatically if the invariant equations (3.14),

(3.17) (arising from v1, v12) hold. This is indeed so. We use the two equations (3.18)

which are the two components of (3.17). First we take ∂v̄ derivative from (3.18a) and ∂−
derivative from (3.18b) and subtracting the two we get:

(a− 1− z∂z)
(
∂−∂+ − ∂v̄∂v

)
ϕ̂ = (a− 1− z∂z) �ϕ̂ = 0 (3.21a)

This still follows from (3.20d). Analogously, taking ∂+ derivative from (3.18a) and ∂v
derivative from (3.18b) and subtracting the two we get:

∂z
(
∂−∂+ − ∂v̄∂v

)
ϕ̂ = ∂z�ϕ̂ = 0 (3.21b)

This also follows from (3.20d). Now, clearly from (3.21a, b) follows:

(a− 1) �ϕ̂ = 0 (3.21c)

which implies the d’Alembert equation if a 6= 1.

Using the conjugate situation with signature χ3(a) we recover the d’Alembert equation

on functions which do not depend on z and satisfy(
(a− 1)R3R2 − aR3R1

)
ϕ̂ =

=
(

(a− 1)(∂v̄ + z∂+)−R2∂z̄

)
ϕ̂ = 0

(3.22)
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instead of (3.17). Furthermore the analogs of (3.18a, b), (3.14), (3.16), resp., are:(
(a− 1− z̄∂z̄)∂v̄ − ∂−∂z̄

)
ϕ̂ = 0 (3.23a)(

(a− 1− z̄∂z̄)∂+ − ∂v∂z̄
)
ϕ̂ = 0 (3.23b)

∂zϕ̂ = 0 (3.23c)

(∂z̄)
aϕ̂ = 0, a ∈ IN (3.23d)

Thus if a ∈ IN , then the functions of the irreducible representations are polynomials in z̄

of degree a− 1.

If a ∈ ZZ− our functions satisfy (3.15) as those with signature χ1(a).

Finally the d’Alembert equation (3.20d) follows from equations (3.23a, b) (a 6= 1). We

do not need to consider a = 1 since the two signatures coincide.

We summarize now the results of this subsection. The first result is that the d’Alem-

bert equation (1.1), (3.20d) holds in the representation spaces with signatures χ1(a) =

(a, 1 − a, 1), resp., χ3(a) = (1, 1 − a, a), if our functions do not depend on the variable

z̄, resp., z and in addition satisfy (3.20a, b), resp., (3.23a, b). For a = 1 the d’Alembert

equations (3.20c, d) are conditionally sl(4) and su(2, 2) invariant, while for a 6= 1 the

d’Alembert equation (3.20d) just follows from (3.20a, b), resp., (3.23a, b). If a ∈ IN then

our functions are polynomials in z, resp., z̄, of degree a− 1.

In the su(2, 2) setting we again recall that the variables z, z̄ are representing the

spin dependence coming from the Lorentz representation [5], [11], [12]. The above result

then is restated so in the case a 6∈ IN : the d’Alembert equation holds if the fields carry

holomorphic (depending only on z) or antiholomorphic (depending only on z̄) infinite-

dimensional representations of the Lorentz algebra; in addition they satisfy (3.20a, b),

resp., (3.23a, b). In the case a ∈ IN we restrict to Lorentz representations which are

finite-dimensional; in fact, of dimension a.

The case a = 1 is remarkable in one more respect, namely, in this case one may have

a nontrivial RHS, cf. (3.20c). It is easy to check that there are no other cases with

nontrivial RHS. In fact, for a 6= 1 (3.20d) follows from (3.20a, b), or (3.23a, b). This can

be shown also independently. Indeed, in the first case the candidate signatures would

be: χ1(a) = (a, 1− a, 1), χ′1(a) = (a,−1− a, 1). We know that a necessary condition to

have an invariant equation is that the two representations would have the same Casimir

operators, in particular, one should have C2(χ1(a)) − C2(χ′1(a)) = 0, where C2 is given

in (2.10). Calculating this difference we obtain:

C2(χ1(a))− C2(χ′1(a)) = 2(a− 1) (3.24)

which is not zero unless a = 1.

The cases a > 1 are interesting in other contexts, especially, if we consider together the

representations with the conjugated signatures χ1(a) and χ3(a) with the same a ∈ IN+1.

In particular, in the case a = 2 the two conjugated fields are two-component spinors and

(3.17), (3.22) are the two conjugated Weyl equations.

The cases a = 3 are maybe most interesting. The Lorentz dimension is 6 (= 2a) and

the resulting field is the Maxwell field. As was shown in detail in [11] equations (3.17),



218 V. K. DOBREV

(3.22) are just a rewriting of the free Maxwell equations:

∂µFµν = 0, ∂µ∗Fµν = 0 (3.25)

R e m a r k 5. Actually, in [11] were considered the general Maxwell equations with

nonzero current, i.e.,

∂µFµν = Jν , ∂µ∗Fµν = 0 (3.26)

which are then equivalent to a modification of (3.17), (3.22) with nonzero right-hand-sides

which are given explicitly in formulae (5a,b) of [11]. More than that, in [11] is discussed

an hierarchy of Maxwell equations involving two conjugated families of representations:

χ+
n = (n+3,−n−2, n+1), χ−n = (n+1,−n−2, n+3), n ∈ ZZ+ , from which the Maxwell

case is obtained for n = 0. Note that there is no other intersection of this Maxwell

hierarchy with the two families χ1(a) and χ3(a) (cf. (2.21c), (2.35c)) which we consider

in the present paper. ♦

We may write out many other equations with indices, however, one of the main points

here is that in this form equations (3.20) and (3.23) are valid different representation

spaces, the different representations manifesting themselves only through the parameter a.

R e m a r k 6.1. It is interesting to note that there are other conditionally invariant

equations involving the d’Alembert operator, from which (3.20c) is a partial case (m = 1),

namely:

�mϕ̂ = ϕ̂′, m ∈ IN (3.27)

where ϕ̂ ∈ CΛ, ϕ̂′ ∈ CΛ′
, Λ′ = Λ − m (α13 + α2), the corresponding signatures being

χ = (m, 0,m), χ′ = (m,−2m,m). These are produced by subsingular vectors of weights

m (α13 + α2), [13]. The functions ϕ̂, ϕ̂′ carry irreducible Lorentz representations which

are symmetric traceless tensors of rank m− 1. (For early examples, namely, (3.27) with

m = 2, obtained from other considerations, cf. [21], [3], [17].)

R e m a r k 6.2. We should note that there are conditionally invariant equations in-

volving the d’Alembert operator, which do not arise from subsingular vectors but from re-

duction of integral intertwining operators. These equations are also given by (3.27), how-

ever, the corresponding signatures are: χ = (m,n,m), χ′ = (m,n − 2m,m), m,n ∈ IN ,

cf., e.g., [16].

R e m a r k 6.3. We should note that in (most of) the physical applications (3.27)

is not considered conditionally invariant. The reason is that there only representations

induced from finite-dimensional Lorentz representations are considered. The fact that

these representations are also subspaces of reducible representations is ignored and thus

the restriction to these subspaces is not considered to be a condition (cf. [20], [21], [3],

[17], [16]).

4. Conditionally invariant q-difference equations

4.1. We give now the treatment of the conditionally invariant equations in the q-

deformed case. We need first to introduce our reduced representation spaces CΛ with

signatures χ = χ(Λ) = (m1,m2,m3), cf. [10], [11]. The elements of CΛ , which we
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shall call (abusing the notion) functions, are formal power series in the noncommuting

variables z, v, x−, x+, v̄, z̄, which generate the q-deformation Yq of the flag manifold Y
(the commutation relations of these variables using the same notation are given in [11]).

More explicitly, these reduced functions are given by:

ϕ̂(Ȳ ) =
∑

i,j,k,`,m,n∈ZZ+

µijk`mnϕ̂ijk`mn

ϕ̂ijk`mn = zivjxk−x
`
+v̄

mz̄n
(4.1)

where Ȳ denotes the set of the six variables.

Next we introduce the following operators acting on our functions:

M̂κϕ̂(Ȳ ) =
∑

i,j,k,`,m,n∈ZZ+

µijk`mnM̂κϕ̂ijk`mn, (4.2a)

Tκϕ̂(Ȳ ) =
∑

i,j,k,`,m,n∈ZZ+

µijk`mnTκϕ̂ijk`mn, (4.2b)

where κ = z,±, v, v̄, z̄, and the explicit action on ϕ̂ijk`mn is defined by:

M̂zϕ̂ijk`mn = ϕ̂i+1,jk`mn, (4.3a)

M̂vϕ̂ijk`mn = ϕ̂i,j+1,k`mn, (4.3b)

M̂−ϕ̂ijk`mn = ϕ̂ij,k+1,`mn, (4.3c)

M̂+ϕ̂ijk`mn = ϕ̂ijk,`+1,mn, (4.3d)

M̂v̄ϕ̂ijk`mn = ϕ̂ijk`,m+1,n, (4.3e)

M̂z̄ϕ̂ijk`mn = ϕ̂ijk`m,n+1, (4.3f)

Tzϕ̂ijk`mn = qiϕ̂ijk`mn, (4.4a)

Tvϕ̂ijk`mn = qjϕ̂ijk`mn, (4.4b)

T−ϕ̂ijk`mn = qkϕ̂ijk`mn, (4.4c)

T+ϕ̂ijk`mn = q`ϕ̂ijk`mn, (4.4d)

Tv̄ϕ̂ijk`mn = qmϕ̂ijk`mn, (4.4e)

Tz̄ϕ̂ijk`mn = qnϕ̂ijk`mn. (4.4f)

Now we define the q-difference operators by:

D̂κϕ̂(Ȳ ) =
1

λ
M̂−1
κ

(
Tκ − T−1

κ

)
ϕ̂(Ȳ ), κ = z,±, v, v̄, z̄. (4.5)

Note that although M̂−1
κ is not defined if the corresponding variable is of zero degree,

the operator D̂κ is well defined on such terms, and the result is zero (given by the action

of (Tκ − T−1
κ )). Of course, for q → 1 we have D̂κ → ∂κ.

Using the above operators the representation (left) action was given in [10] for general

n and for n = 4 in [12].

The q-difference analogues of the operators Rk , i.e., the right action of Uq(sl(4)) on

our functions is also known from [10]. Adapting this to our notation we have :

Rq1 = D̂zTz(TvT−T+Tv̄)
−1 (4.6a)
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Rq2 =
(
qM̂zD̂vT 2

v T
2
− + D̂−T−+

+ M̂zM̂z̄D̂+(TvT−)−1Tv̄ + q−1M̂z̄D̂v̄−

− λM̂vM̂z̄D̂−D̂+Tv̄

)
Tv̄T

−1
z̄

(4.6b)

Rq3 = D̂z̄Tz̄ (4.6c)

To obtain the (conditionally) invariant q-difference equations amounts now simply to

substitute X+
k with Rqk in the expressions of the (sub)singular vectors for general q.

4.2. Substituting (4.6) in (2.14) we obtain the following Uq(sl(4)) and Uq(su(2, 2))

invariant equation:

Rq2ϕ̂ =
(
qM̂zD̂vT 2

v T
2
− + D̂−T−+

+ M̂zM̂z̄D̂+(TvT−)−1Tv̄ + q−1M̂z̄D̂v̄−

− λM̂vM̂z̄D̂−D̂+Tv̄

)
Tv̄T

−1
z̄ ϕ̂ = 0

(4.7a)

The subsingular vector vbgg gives rise to the following conditionally invariant equation:(
Rq1R

q
2R

q
3 −R

q
3R

q
2R

q
1

)
ϕ̂ =

=

{
q4D̂vD̂z̄T 2

z T
2
v T

2
− − D̂v̄D̂zTzTz̄+

+ q2D̂+T+T
2
v̄

(
TzTz̄ +

(
q−1Tz̄T

−1
z − qTzT−1

z̄

)
/λ
)

+

+ qλM̂vD̂−D̂+D̂zTzTz̄Tv̄+

+ qλ
(
qM̂zD̂vT 2

v T
2
− + D̂−T−+

+ M̂zM̂z̄D̂+(TvT−)−1Tv̄ + q−1M̂z̄D̂v̄−

− λM̂vM̂z̄D̂−D̂+Tv̄

)
D̂z̄D̂zTz

}
(TvT−T+)−1ϕ̂ = ϕ̂′ (4.7b)

where ϕ̂,∈ CΛ and satisfies (4.7a), ϕ̂′ ∈ CΛ′
, Λ′ = Λ−α13 , the corresponding signatures

being as in (3.13). Clearly (4.7a, b) go into (3.13a, b) for q = 1. If we consider the irre-

ducible factor-module LΛ, which means that we should use (2.15) instead of (2.14), then

we have a zero RHS in (4.7b) as in (3.13c).

4.3. Finally, we write down the q-difference analogues of the d’Alembert equation

and of the equations ensuring its Uq(sl(4)) and Uq(su(2, 2)) invariance and from which

it follows (except for a = 1). Substituting (4.6) in (2.34) we obtain:

R3ϕ̂ = D̂z̄Tz̄ϕ̂ = 0 (4.8a)

(
[a− 1]qR

q
1R

q
2 − [a]qR

q
2R

q
1

)
ϕ̂ =

=

(
q2[a− 1]q

(
qD̂vT 2

v T
2
− + M̂z̄D̂+(TvT−)−1Tv̄

)
Tz−
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− q1−a
(
qM̂zD̂vT 2

v T
2
− + D̂−T−+

+ M̂zM̂z̄D̂+(TvT−)−1Tv̄ + q−1M̂z̄D̂v̄−

− λM̂vM̂z̄D̂−D̂+Tv̄

)
D̂z
)
Tz(TvT−T+)−1ϕ̂ = 0 (4.8b)

(
Rq3R

q
2 − [2]qR

q
2R

q
3

)
Rq1R

q
2ϕ̂ = 0 (4.8c)

As in the q = 1 case we use (4.8a) to split (4.8b) in two equations and to simplify (4.8c).

Finally, we have:

D̂z̄Tz̄ϕ̂ = 0 (4.9a)

(
qa+2[a− 1]qD̂vTzT 2

v T−−

−
(
qM̂zD̂vT 2

v T− + D̂−
)
D̂z
)
Tz(TvT+)−1ϕ̂ = 0 (4.9b)

(
qa+1[a− 1]qD̂+Tz(TvT−)−1Tv̄−

−
(
M̂zD̂+(TvT−)−1Tv̄ + q−1D̂v̄−

− λM̂vD̂−D̂+Tv̄

)
D̂z
)
Tz(TvT−T+)−1ϕ̂ = 0 (4.9b′)

{(
D̂vD̂v̄T 3

v T
−1
v̄ − qD̂−D̂+T

−2
−

)
TzT

−1
v −

− qD̂−D̂+

(
TvT

−1
z − T−1

v Tz
)}

(TvT+)−1TzT−T
2
v̄ ϕ̂ = 0 (4.9c)

In addition, if a ∈ IN we have also:(
D̂zTz(TvT−T+Tv̄)

−1
)a
ϕ̂ = 0 (4.9d)

In the scalar case a = 1 the relevant equations are (4.9a, c, d), in particular, using

(4.9c) and adding a nontrivial RHS we obtain the conditionally Uq(sl(4)) and Uq(su(2, 2))

invariant q-d’Alembert equation:{(
D̂vD̂v̄T 3

v T
−1
v̄ − qD̂−D̂+T

−2
−

)
T−1
v −

− qλD̂−D̂+M̂vD̂v
}

(TvT+)−1T−T
2
v̄ ϕ̂ = ϕ̂′, a = 1 (4.9e)

Analogously one may write down explicitly the conjugated invariant equations.

Clearly, for q = 1 (4.9c, e) go into the d’Alembert equations (3.20d, c), resp.
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