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Abstract. Irreducible representations of quantum groups SLq(2) (in Woronowicz’ approach)
were classified in J.Wang, B.Parshall, Memoirs AMS 439 in the case of q being an odd root
of unity. Here we find the irreducible representations for all roots of unity (also of an even
degree), as well as describe ”the diagonal part” of the tensor product of any two irreducible
representations. An example of a not completely reducible representation is given. Non-existence
of Haar functional is proved. The corresponding representations of universal enveloping algebras
of Jimbo and Lusztig are provided. We also recall the case of general q. Our computations are
done in explicit way.

0. Introduction. The quantum SL(2) group is by definition a quantum group (A,4)

that has the same representation theory as SL(2), i.e. all nonequivalent irreducible rep-

resentations are us, s = 0, 1
2 , 1, . . . such that

dimus = 2s+ 1, ut©>us ≈
t+s⊕

r=|t−s|,
step=1

ur ,

s, t = 0, 1
2 , 1, . . . and matrix elements of u

1
2 generate A as an algebra with unity I.

Putting t, s = 1
2 in the above formula one can see that there must exist nonzero

intertwiners E ∈ Mor(u0, u
1
2 ©>u

1
2 ) and E′ ∈ Mor(u

1
2 ©>u

1
2 , u0). The operator E may be

1991 Mathematics Subject Classification: Primary 16W30; Secondary 20N99.
A version of this paper may also be obtained from: hep-th/9405079.
The paper is in final form and no version of it will be published elsewhere.

[223]



224 P. KONDRATOWICZ AND P. PODLEŚ

identified with a tensor E ∈ K⊗K, whereas the operator E′ with a tensor E′ ∈ K∗⊗K∗,
where K ≈ C2 is the carrier vector space of u

1
2 .

The classification of quantum SL(2) groups (described in the introduction of [16] and

repeated here) is based on consideration of these tensors. There are three cases:

1. The rank of the symmetric part of E is 0. Then

E = e1 ⊗ e2 − e2 ⊗ e1 , E′ = e1 ⊗ e2 − e2 ⊗ e1 ,

where e1, e2 is a basis in K, while e1, e2 is the dual basis in K∗. This case

corresponds to the undeformed (classical) SL(2).

2. The rank of the symmetric part of E is 1. Then there exists a basis e1, e2 in K

such that

E = e1 ⊗ e2 − e2 ⊗ e1 + e1 ⊗ e1 , E′ = −e1 ⊗ e2 + e2 ⊗ e1 + e2 ⊗ e2 .

This case has been considered e.g. in [16].

3. The rank of the symmetric part E is 2. Then there exists

q ∈ C \ {0, 1, roots of unity} ∪ {−1} and a basis e1, e2 in K such that

E = e1 ⊗ e2 − q e2 ⊗ e1 , E′ = e1 ⊗ e2 − q e2 ⊗ e1 .

This case has been considered in [15] and is recalled in section 1. For q = 1 one

obtains the case 1.

In all these cases A is the algebra with unity I generated by matrix elements of u = u
1
2

satisfying the relations

(u©>u)E = E , E′(u©>u) = E′ .

When q is a root of unity and q 6= ±1, the representation theory of the case 3. is

essentially different from that of SL(2). In this case these objects are ambiguously called

quantum SLq(2) groups at roots of unity. They are considered in the present paper in

section 2.

The basic facts concerning quantum qroups and their representations are recalled in

the appendix A. The quotient representations and the operation ˜ are investigated

in the appendix B.

0.1. Basic notions. The degree of a root of unity q ∈ C is the least natural number N

such that qN = 1. In the following we assume N ≥ 3, i.e. q = ±1 are not roots of unity

in our sense. We put

N0 =

 N , if N is odd,
N
2 , if N is even,

+∞ , if q is not a root of unity.

We denote by N the set of natural numbers {0, 1, 2, . . .}.

0.2. Results. When q is a root of unity, then all nonequivalent irreducible represen-

tations of quantum SLq(2) group are vt©>us, t = 0, 1
2 , 1, . . ., s = 0, 1

2 , 1, . . . ,
N0

2 −
1
2 .

Here

u = u
1
2 =

(
α β
γ δ

)
and v = v

1
2 =

(
αN0 βN0

γN0 δN0

)
.
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Moreover, v is a fundamental representation of a quantum group isomorphic to SLq′(2),

where q′ = qN
2
0 = ±1. The following formulae hold

vt©> v ≈ vt−
1
2 ⊕ vt+ 1

2 , dim vt = 2t+ 1 ,

us©>u ≈ us−
1
2 ⊕ us+ 1

2 , dimus = 2s+ 1 .

t = 0, 1
2 , 1, . . ., s = 1

2 , 1, . . . ,
N0

2 − 1. Let us summarize the main results of the paper.

The basic decomposition of the representation u
N0
2 −

1
2 ©>u is described by

u
N0
2 −

1
2 ©>u ≈

u
N0
2 −1 ∗ ∗
0 v ∗
0 0 u

N0
2 −1

 .

Moreover, the elements denoted by three stars and the matrix elements of the represen-

tations u
N0
2 −1 and v are linearly independent. Thus the representation u

N0
2 −

1
2 ©>u is not

completely reducible.

One has

vt©>us ≈ us©> vt .

We also describe the ”diagonal part” of tensor product of any two irreducible represen-

tations of SLq(2).

In sections 2.6—2.7 we describe representations of universal enveloping algebras of

Jimbo and Lusztig corresponding to the irreducible representations of SLq(2).

R e m a r k 0.1. The classification of irreducible representations of SLq(2) for N odd

is given in [11]. In the present paper we consider also N even, prove our results in

an explicit way and also show other results concerning representation theory of SLq(2)

(see sections 2.1., 2.4.—2.7.). Description of v as a fundamental representation of SL±1(2)

is also contained in [11],[10].

1. The general case. In this section we recall the theory of quantum SLq(2) groups

for general q ∈ C \ {0}, see [15], [12] and [11].

In the present section q ∈ C \ {0} unless it is said otherwise.

We set K = C2 with canonical basis e1, e2. We fix linear mappings E : C→ K ⊗K
and E′ : K ⊗K → C in the same way as in the case 3. of the classification of quantum

SL(2) groups in section 0.

(1.1) E(1) = e1 ⊗ e2 − qe2 ⊗ e1 ,

(1.2)
E′(e1 ⊗ e1) = 0 , E′(e2 ⊗ e2) = 0 ,

E′(e1 ⊗ e2) = 1 , E′(e2 ⊗ e1) = −q .

Definition 1.1. A is the universal algebra with unity generated by uij , i, j = 1, 2

satisfying

(1.3) (u©>u)E = E and E′(u©>u) = E′ ,

where u = (uij)
2
i,j=1.
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Setting

(1.4) u
1
2 = u =

(
α β
γ δ

)
∈M2×2(A) ,

the relations (1.3) take the form

(1.5)

αβ = qβα , αγ = qγα ,

βδ = qδβ , γδ = qδγ ,

βγ = γβ ,

αδ − qβγ = I , δα− 1

q
βγ = I .

Using (1.3) one can easily prove the following

Proposition 1.1. There exists unique structure of Hopf algebra in A such that u is

a representation (this representation is called fundamental).

Let

(1.6) αk =

{
αk for k ≥ 0
δ−k for k < 0 .

(1.7) Ak = span {αsβmγn : s ∈ Z, m, n ∈ N, |s|+m+ n ≤ k} , k ∈ N .

Proposition 1.2. Elements of the form

(1.8) αkγ
mβn , k ∈ Z , m, n ∈ N ,

form a basis of the algebra A. Moreover

(1.9) dimAk =

k∑
l=0

(l + 1)2.

The proof is given in [17] (Proposition 4.2.).

Elements of the form

(1.10) αkδlβm , k, l ∈ N , m ∈ Z

are also a basis of the algebra A, where by definition

(1.11) βm =

{
βm for m ≥ 0
γ−m for m < 0 .

This follows from the fact that each of the elements (1.10) of a given degree (a degree of

an element (1.8) or (1.10) is the sum of absolute values of its indices) can be expressed

as a finite linear combination of the elements (1.8) of the same or less degree and from

the fact that the numbers of both kinds of elements of the same degree are equal.

The above consideration shows that

Ap = span
{
αkδlβm : k + l + |m| ≤ p, k, l ∈ N, m ∈ Z

}
for p ∈ N .

In virtue of (1.3) EE′, id ∈Mor(u©> 2, u©> 2). One has (id− EE′)(ei ⊗ ej) = ej ⊗ ei,
i, j = 1, 2 for q = 1. It means that id−EE′ is equivalent to a transposition in this case.

Using this intertwiner one can investigate symmetric and antisymmetric vectors (vectors
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such that (id−EE′)v = ±v ). For general q we are interested in intertwiners of the form

σ = id + λEE′, satisfying the condition

(1.12) (σ ⊗ id)(id⊗ σ)(σ ⊗ id) = (id⊗ σ)(σ ⊗ id)(id⊗ σ)

After some calculations one gets λ = −q−2,−1. Taking λ = −1 one obtains

σ = id− EE′

(the other value of λ corresponds to σ−1). Using (1.1) and (1.2) one has

(1.13)

σ(e1 ⊗ e1) = e1 ⊗ e1 ,

σ(e1 ⊗ e2) = q e2 ⊗ e1 ,

σ(e2 ⊗ e1) = q e1 ⊗ e2 + (1− q2) e2 ⊗ e1 ,

σ(e2 ⊗ e2) = e2 ⊗ e2 .

It can be easily found that

(1.14) σ2 = (1− q2)σ + q2 ,

i.e. (σ − id)(σ + q2) = 0.

The eigenvalue 1 corresponds to symmetric vectors

e1 ⊗ e1 , q e1 ⊗ e2 + e2 ⊗ e1 , e2 ⊗ e2 ,

while the eigenvalue −q2 corresponds to an antisymmetric vector

e1 ⊗ e2 − q e2 ⊗ e1 .

Let us define intertwiners

(1.15) σk = id⊗ . . .⊗ id︸ ︷︷ ︸
k−1 times

⊗ σ ⊗ id⊗ . . .⊗ id︸ ︷︷ ︸
M−k−1 times

, k = 1, 2, . . . ,M − 1

acting in K⊗M (M ∈ N).

This definition and the properties (1.14) and (1.12) of σ imply the relations of Hecke

algebra:

(1.16)

σkσl = σlσk ,

σkσk+1σk = σk+1σkσk+1 ,

σk
2 = (1− q2)σk + q2

 |k − l| ≥ 2 ,

k, l = 1, . . . ,M − 1 .

Let

(1.17) Ek = id⊗ . . .⊗ id︸ ︷︷ ︸
k−1 times

⊗E ⊗ id⊗ . . .⊗ id︸ ︷︷ ︸
M−k−1 times

, k = 1, 2, . . . ,M − 1 .

(1.18) E′k = id⊗ . . .⊗ id︸ ︷︷ ︸
k−1 times

⊗E′ ⊗ id⊗ . . .⊗ id︸ ︷︷ ︸
M−k−1 times

, k = 1, 2, . . . ,M − 1 .

Let us define a subspace of symmetric vectors

(1.19) K
M
2 = K⊗sym M = {x ∈ K⊗M : σkx = x , k = 1, . . . ,M − 1} .

The intertwiner Ek is an injection and therefore

(1.20) K
M
2 = {x ∈ K⊗M : E′kx = 0 , k = 1, . . . ,M − 1} .
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K
M
2 is equal to the intersection of kernels of intertwiners E′k, k = 1, . . . ,M − 1, hence it

is an invariant subspace of K⊗M . Thus one can define the subrepresentation

(1.21) u
M
2 = u©>M |

K
M
2

.

In particular, u0 = I, u
1
2 = u.

Each permutation π ∈ Π(M) can be written as follows

(1.22) π = ti1 . . . tim ,
1 ≤ i1, . . . , im ≤M − 1 ,

i1, . . . , im ∈ N ,

where tj = (j, j + 1) is a transposition and m = m(π) is minimal. It is known that m(π)

is equal to the number of π-inversions. The intertwiner

(1.23) σπ = σi1 . . . σim

does not depend on a choice of a minimal decomposition (1.22), which can be obtained

from (1.16) (cf [14], page 154).

Let us define an operator of q-symmetrization SM : K⊗M → K⊗M given by (cf. [5])

(1.24) SM =
∑

π∈Π(M)

q−2 m(π)σπ .

Proposition 1.3. (σk − id)SM = 0 for k = 1, . . . ,M − 1.

P r o o f. Let us call a permutation π ∈ Π(M) ”good”, if π−1(k) < π−1(k + 1) for

fixed k. A ”bad” permutation is meant to be not a ”good” one. If π = ti1 . . . til is

a minimal decomposition of a ”good” permutation into transpositions, then a minimal

decomposition of the ”bad” permutation tkπ is tkti1 . . . til and m(tkπ) = m(π) + 1,

σtkπ = σkσπ. In such a way ”good” and ”bad” permutations correspond bijectively.

According to (1.24), one has

SM =
∑

π∈Π(M)

π is ′′good′′

q−2 m(π)σπ

︸ ︷︷ ︸
‖

S
(0)

M

+
∑

π′∈Π(M)

π′ is ′′bad′′

q−2 m(π′)σπ′

= (id + q−2σk)S
(0)
M ,

where S
(0)
M is defined in the first line of the formula. Using (1.16) one can check the equa-

tion σkSM = SM . Q.E.D.

Corollary 1.4. ImSM ⊂ K
M
2 .

Let us define Factx for x ∈ C as follows

(1.25) Factx(M) =
∑

π∈Π(M)

x2 m(π) .

Using the mathematical induction one can prove

Proposition 1.5. Factx(M) =

{∏M
k=1

1−x2k

1−x2 , x 6= ±1

M ! , x = ±1 .

Corollary 1.6. Fact 1
q
(M) = 0 if and only if M ≥ N0.
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Using (1.24), Proposition 1.3. and (1.25), one can obtain

Proposition 1.7. S2
M = Fact 1

q
(M)SM .

Proposition 1.8. dimK
M
2 = M + 1.

P r o o f. For a given element x ∈ K⊗M one can write a decomposition

(1.26) x =
∑

i1,...,iM=1,2

xi1,...,iM ei1 ⊗ . . .⊗ eiM ,

where xi1,...,iM ∈ C. According to (1.20), the statement x ∈ K
M
2 is equivalent to:

∀k = 1, 2, . . . ,M − 1 E′kx = 0, which can be replaced by: for all k = 1, 2, . . . ,M − 1 and

for all xi1,...,iM such that ik = 1 and ik+1 = 2 the following holds

(1.27) x...
k
∨
12... = q x...

k
∨
21... ,

where
k
∨ denotes the k–th position of an index. It means that all the coefficients xi1,...,iM

can be uniquely computed from the coefficients x1...1, x1...12, . . ., x2...2. One can conclude

now that the thesis holds. Q.E.D.

Proposition 1.9. The linear span Wl of ej1 ⊗ . . . ⊗ ejM , j1, . . . , jM = 1, 2 with

a given number l of m such that jm = 1, is invariant w.r.t. the intertwining operators

σk, k = 1, 2, . . . ,M − 1 as well as w.r.t. the operator SM .

The above proposition can be directly obtained from (1.15), (1.13) and the defini-

tion (1.24) of SM .

Proposition 1.10. The following inequalities hold

1. dim ImSM ≥M + 1 for M ∈ N such that M < N0,

2. dim ImSN0
≥ N0 − 1 (for N0 <∞).

P r o o f. Let us fix M . Using Proposition 1.9. one can see that in a decomposition of

(1.28) SM (e1 ⊗ . . .⊗ e1︸ ︷︷ ︸
k times

⊗ e2 ⊗ . . .⊗ e2︸ ︷︷ ︸
M−k times

) , k = 0, . . . ,M

there are only the elements of the basis ei1 ⊗ . . .⊗ eiM that have the number of e1 equal

to k.

It can be easily computed that an element e1 ⊗ . . .⊗ e1︸ ︷︷ ︸
k times

⊗ e2 ⊗ . . .⊗ e2︸ ︷︷ ︸
M−k times

has the coef-

ficient equal to

Fact 1
q
(k) Fact 1

q
(M − k) .

For M < N0 all these coefficients are nonzero and the elements (1.28) are linearly inde-

pendent. In the case M = N0 one gets coefficients equal 0 only for k = 0 and k = N0.

Q.E.D.

Using Corollary 1.4., Proposition 1.10. and Proposition 1.8., we get

Corollary 1.11. If M is a natural number such that M < N0 then

dim ImSM = M + 1 ,

ImSM = K
M
2 .
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Lemma 1.12. Let ϕ be the intertwiner defined by

ϕ : Ks− 1
2 −→ Ks ⊗K ,

ϕ(x) = (S2s ⊗ id)(x⊗ E(1)) , x ∈ Ks− 1
2 ,

for given s = 0, 1
2 , 1, . . . such that 2s < N0 − 1. Moreover , let the representation us−

1
2 be

irreducible. Then

1. kerϕ = {0},
2. Imϕ corresponds to the representation us−

1
2 ,

3. Imϕ ∩Ks+ 1
2 = {0}.

P r o o f. We compute

ϕ(e1 ⊗ . . .⊗ e1)

= S2s(e1 ⊗ . . .⊗ e1)⊗ e2 − q S2s(e1 ⊗ . . .⊗ e1 ⊗ e2)⊗ e1

= Fact 1
q
(2s) e1 ⊗ . . .⊗ e1 ⊗ e2−

q
[

Fact 1
q
(2s− 1) e1 ⊗ . . .⊗ e1 ⊗ e2 ⊗ e1 + . . .

]
6= 0 .

Thus irreducibility of us−
1
2 implies 1. The result of 2. is now obvious.

Imϕ corresponds to the irreducible representation us−
1
2 . Thus if 3. would not hold

then Imϕ⊂Ks+ 1
2 , because Ks+ 1

2 is us©>u invariant (see (1.20)). This implies ϕ(e1⊗. . .⊗
e1) ∈ Ks+ 1

2 . Applying (1.26) and (1.27) to the underlined elements of x = ϕ(e1⊗. . .⊗e1)

one gets

Fact 1
q
(2s) = q (−q)Fact 1

q
(2s− 1) ,

which is impossible (see Proposition 1.5). This contradiction shows 3. Q.E.D.

Proposition 1.13. Let the representations u0, u
1
2 , . . . , us be irreducible for fixed s∈ N

2

such that 1
2 ≤ s <

N0

2 −
1
2 . Then

1. us©>u ≈ us−
1
2 ⊕ us+ 1

2 ,

2. the representation us+
1
2 is irreducible.

P r o o f. 1. Using (1.20) one has

Ks+ 1
2⊂Ks ⊗K .

Applying the intertwiner ϕ of Lemma 1.12. one gets

(1.29) Ks+ 1
2 ⊕ Imϕ ⊂ Ks ⊗K .

The dimensions of both sides of the inclusion are the same. This proves 1.

2. Analogously as in 1. one has ui©>u ≈ ui−
1
2 ⊕ ui+

1
2 , i = 1

2 , 1,
1
2 , . . . , s. Using

the mathematical induction, u©> l can be decomposed into a direct sum of some copies of

u
l
2 , u

l
2−1, . . ., u

1
2 or u0, l = 0, 1, . . . , 2s+ 1.

Therefore

(1.30)
dimA2s+1 = dim span

{
(u©> l)km : l = 0, 1, . . . , 2s+ 1 , k,m = 1, . . . , 2l

}
≤ dim span

{
u
l
2

km : l = 0, 1, . . . , 2s+ 1 , k,m = 1, . . . , (l + 1)
}
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Comparing this with (1.9) one obtains that the matrix elements of the representation

us+
1
2 must be linearly independent and the representation us+

1
2 must be irreducible.

Q.E.D.

Using the last proposition and the mathematical induction one can prove

Theorem 1.14. The representations us, s ∈ N
2 , s < N0

2 are irreducible and the fol-

lowing decomposition holds

us©>u ≈ us−
1
2 ⊕ us+ 1

2 , s <
N0

2
− 1

2
.

Corollary 1.15. In particular the representation u©>M is a direct sum of some copies

of representations u
M
2 , u

M
2 −1, . . ., u

1
2 or u0 for M ∈ N such that M < N0.

Using the above theorem and Proposition A.2. in [7] one gets

Corollary 1.16. Each representation of SLq(2) is a direct sum of some copies of

us, s ∈ N/2, for q ∈ C \ {0, roots of unity}.

2. The case of roots of unity. The complex number q is assumed to be a root of

unity all over the section. In this case N0 is finite (see section 0) and N0 ≥ 2.

2.1. The basic decomposition. From the proof of Lemma 1.12 one can see that a de-

composition of u
N0
2 −

1
2 ©>u may be completely different from the one in Theorem 1.14.

The aim of the present subsection is to find it.

Let L be the subspace of K⊗N0 given by the formula

(2.1) L = span
{
ek ⊗ . . .⊗ ek ∈ K⊗N0 : k = 1, 2

}
.

One can see that dimL = 2 and L⊂K
N0
2 .

Lemma 2.1. Let ϕ be the following intertwiner

ϕ : K
N0
2 −1 −→ K

N0
2 −

1
2 ⊗K ,

ϕ(x) = (SN0−1 ⊗ id)(x⊗ E(1))

for x ∈ K
N0
2 −1. Then

1. kerϕ = {0},
2. Imϕ corresponds to the irreducible representation u

N0
2 −1,

3. K
N0
2 = Imϕ⊕ L.

P r o o f. 1. and 2. See Lemma 1.12.

3. One can easily check (in different manners for k=1, 2, . . . , N0−2 and for k=N0−1)

that

E′kϕ(e1 ⊗ . . .⊗ e1) = 0 for k = 1, 2, . . . , N0 − 1 .

It means that

(2.2) ϕ(e1 ⊗ . . .⊗ e1) ∈ K
N0
2 .

Moreover, the above element is different from zero.
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According to 2. Imϕ corresponds to an irreducible representation and therefore

(2.3) Imϕ ⊂ K
N0
2 .

Decomposing an element of Imϕ into elements of the basis ei1⊗. . .⊗eiN0
, i1, . . . , iN0

=

1, 2, one can see that the elements ek⊗ . . .⊗ ek, k = 1, 2 have the coefficients equal 0 (we

use Proposition 1.9). Thus

Imϕ ∩ L = {0} .

Calculating the dimensions one can prove

K
N0
2 = Imϕ⊕ L .

Q.E.D.

R e m a r k 2.1. Let ŜM , M ∈ N be an intertwiner defined as follows

ŜM = SM |
K
M
2
− 1

2⊗K

ŜM : K
M
2 −

1
2 ⊗K −→ K

M
2

One can prove

Imϕ = Im ŜN0
= ImSN0

⊂ K
N0
2 = ker ŜN0

⊂ kerSN0
,

which gives (cf Proposition 1.7) the equalities Ŝ2
N0

= 0, S2
N0

= 0. The situation for

M < N0 was completely different: SM was proportional to a projection and hence

ImSM ⊕ kerSM = K⊗M ,

Im ŜM ⊕ ker ŜM = K
M
2 −

1
2 ⊗K .

Proposition 2.2. Let

(2.4) v =

(
αN0 βN0

γN0 δN0

)
.

Then v is a quotient irreducible representation of a subrepresentation of u
N0
2 −

1
2 ©>u,

corresponding to the quotient space K
N0
2 /Imϕ ≈ L.

P r o o f. In virtue of (1.21) K
N0
2 is u

N0
2 −

1
2 ©>u-invariant subspace.

Using Lemma 2.1. one can see that K
N0
2 /Imϕ ≈ L corresponds to a representation.

Its matrix elements are the matrix elements of the representation u©>N0 that appear at

the intersections of columns and rows corresponding to e1⊗ . . .⊗ e1 and e2⊗ . . .⊗ e2 and

are given by (2.4). The elements of v are elements of the basis (1.8) of the algebra A and

therefore v is irreducible. Q.E.D.

Lemma 2.3. Let us define an intertwiner

Ê′m−1 = E′m−1|
K
m
2
− 1

2⊗K
,

Ê′m−1 : K
m
2 −

1
2 ⊗K −→ K⊗(m−2) ,

m = 2, 3, . . .. Then

1. ker Ê′m−1 = K
m
2 ,
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2. Im Ê′m−1 = K
m
2 −1,

3. Im Ê′m−1 corresponds to the representation u
m
2 −1.

P r o o f. 1. follows from (1.20) and the definition of Ê′m−1.

2. One can see (cf 1.27) that

(2.5) Im Ê′m−1 ⊂ K
m
2 −1 .

One has

dim(K
m
2 −

1
2 ⊗K) = dim ker Ê′m−1 + dim Im Ê′m−1 .

Thus dim Im Ê′m−1 = m− 1 (see Proposition 1.8.). That and (2.5) prove 2.

3. follows from (1.21). Q.E.D.

Corollary 2.4. The following decomposition holds (cf Appendix B.)

us ©̃>u ≈ ũs−
1
2 ⊕ ũs+ 1

2 for s = 1
2 , 1, . . ..

P r o o f. We notice K
m
2 −

1
2 ⊗K/ker Ê′m−1

≈ Im Ê′m−1 and set s = m
2 −

1
2 . Q.E.D.

Corollary 2.5. The quotient space (K
N0
2 −

1
2 ⊗K)/K

N0
2 corresponds to the represen-

tation u
N0
2 −1, which is irreducible.

Theorem 2.6.

1. u
N0
2 −

1
2 ©>u ≈

u
N0
2 −1 ∗ ∗
0 v ∗
0 0 u

N0
2 −1

.

2. ũ
N0
2 ≈ u

N0
2 −1 ⊕ v.

3. All elements denoted by three stars are linearly independent from each other as

well as from the matrix elements of the representations u
N0
2 −1 and v.

P r o o f. 1. and 2. We use Lemma 2.1., Proposition 2.2. and Corollary 2.5.

3. Using Theorem 1.14. one can see that the representation u©>N0 decomposes into

some copies of u
N0
2 −

1
2 ©>u, u

N0
2 −1, u

N0
2 −2, . . ., u

1
2 or u0.

The following is obvious

AN0 = span
{

(u©> k)ij : k = 0, 1, . . . , N0, i, j = 1, 2, . . . , 2k
}
,

where Ak is defined by (1.7).

According to Corollary 1.15. and 1. of Theorem 2.6. one has

AN0 = span


(

elements denoted

by three stars

)
, vi′j′ , u

k
2
ij :

i′, j′ = 1, 2,
k = 0, 1, 2, . . . , N0 − 1,
i, j = 1, 2, . . . , k + 1

 .

Comparing the dimensions of both sides one gets 3. (see (1.9)). Q.E.D.

2.2. Irreducible representations

Proposition 2.7. (cf. [10]) Let A′ be the subalgebra of A generated by the elements

α′ = αN0 , β′ = βN0 , γ′ = γN0 , δ′ = δN0 .

Then A′ is isomorphic to the algebra A for the changed parameter q′ = qN0
2

.
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R e m a r k 2.2. The new parameter q′ may be equal ±1.

P r o o f. Using Proposition 1.2. one can see that the elements α′kγ
′mβ′n, k ∈ Z,

m,n ∈ N, are linearly independent in the algebra A′, where α′k are defined in analogous

way as αk (see (1.6)).

It suffices to prove that the elements α′, β′, γ′, δ′ fulfill the relations (1.5) for the new

parameter q′. The first five relations are immediate to prove, the last two will be consid-

ered now.

One has the following equation of polynomials

(2.6)

N0−1∏
j=0

(1 + q2jx) = 1 + qN0(N0−1)xN0 .

Using the mathematical induction one can obtain

αN0δN0 =

N0−1∏
j=0

(1 + q2j(qβγ)) ,

which using (2.6) can be written as

αN0δN0 = I + qN
2
0 βN0γN0 .

This corresponds to the last but one relation of (1.5). The last relation can be proved in

a similar way. Q.E.D.

One can easily check the following

Proposition 2.8. A′ is contained in the center of A for q being a root of unity of

an odd degree.

Using the notations introduced in Proposition 2.7., representations vs, s = 0, 1
2 , 1, . . .,

can be defined in an analogous way as the representations us, s = 0, 1
2 , 1, . . ., (but for

the parameter q′ = qN
2
0 , see (1.21)).

According to Theorem 1.14. one has (N0 = +∞ for q = ±1)

Corollary 2.9. The representations vs, s = 0, 1
2 , 1, . . . are irreducible. Moreover

the following decomposition holds

vs©> v ≈ vs−
1
2 ⊕ vs+ 1

2 .

Proposition 2.10. (cf. [2] and Theorem 3.12 of [1]) The representations

vt©>us , t = 0,
1

2
, 1, . . . , s = 0,

1

2
, 1, . . . ,

N0

2
− 1

2

are irreducible and nonequivalent.

P r o o f. It suffices to prove linear independence of matrix elements of representations

vt©>us, t = 0, 1
2 , 1, . . ., s = 0, 1

2 , 1, . . . ,
N0

2 −
1
2 . But matrix elements of vt©>us belong to

AN02t+2s and the numbers N02t+ 2s are different for different pairs (t, s). Therefore we

need to prove (for given t, s) the linear independence modulo AN02t+2s−1 of the matrix

elements (
vt©>us

)
ik,jl

= vtiju
s
kl , i, j = 1, 2, . . . , 2t k, l = 1, 2, . . . , 2s
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which is equivalent to the linear independence (in our sense) of the elements

(2.7) αN0aβ
N0bγN0cαkβ

mγn ,

where a, k ∈ Z, b, c,m, n ∈ N are such that |a|+ b+ c = 2t and |k|+m+n = 2s (matrix

elements of us modulo A2s−1 are basis of A2s/A2s−1
, cf (1.30), similarly for vt).

Doing some computations one can see that the linear independence of the elements

(2.7) is equivalent to the linear independence of the elements

(αN0)a(βN0)b(γN0)c αkβmγn , (1)

(δN0)a(βN0)b(γN0)c δkβmγn , a ≥ 1 or k ≥ 1, (2)

(αN0)a−1(βN0)b(γN0)c αN0−kβm+kγn+k , a, k ≥ 1 , (3)

(δN0)a−1(βN0)b(γN0)c δN0−kβm+kγn+k , a, k ≥ 1 , (4)

where a, b, c, k,m, n ∈ N are such that a + b + c = 2t and k + m + n = 2s. The above

elements are proportional to some elements of the basis (1.8).

It can be easily seen that the elements (1) and (3) are of a different form than the el-

ements (2) and (4).

Moreover the elements may be characterized by the number being the sum of the pow-

ers of the elements: β, γ and α (or δ), where we do not take into consideration αN0 , βN0 ,

γN0 , δN0 . The number 2s corresponds to the elements (1) and (2), the number N0 + 2s

corresponds to the elements (3) and (4). Remember that 2s < N0.

The elements (1), (2), (3) and (4) have the degree N02t+ 2s, hence they are indepen-

dent modulo AN02t+2s−1 and the proof is finished. Q.E.D.

2.3. All irreducible representations. Let

Acent = {a ∈ A : τ(4(a)) = 4(a)} ,

where τ : A⊗A→ A⊗A is a linear mapping such that τ(a⊗ b) = b⊗ a for all a, b ∈ A,

4 is the comultiplication.

Lemma 2.11.

Acent = span

{
Tr (vt©>us) : t = 0,

1

2
, 1, . . . , s = 0,

1

2
, 1, . . . ,

N0

2
− 1

2

}
.

Using the above lemma, the fact that traces of all irreducible representations form

a linearly independent subset in Acent and Proposition 2.10., one obtains

Theorem 2.12. The representations

vt©>us, t = 0,
1

2
, 1, . . . , s = 0,

1

2
, 1, . . . ,

N0

2
− 1

2

are all nonequivalent irreducible representations of the quantum group (A, u) for q being

a root of unity.

Note that for q=±1 the above theorem is also true. In this case one could put N0 =1

and u = v.
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P r o o f. (of Lemma 2.11.). Due to Corollary 2.9., Theorem 2.6. and Theorem 1.14.,

(2.8)

Tr (vt©>us) = Tr (vt) Tr (us) , s =
1

2
, 1, . . . ,

N0

2
− 1

2
, t =

1

2
, 1, . . . ,

Tr (vt+
1
2 ) = Tr (vt) Tr (v)− Tr (vt−

1
2 ) , t =

1

2
, 1, . . . ,

Tr (v) = Tr (u
N0
2 −

1
2 ) Tr (u)− 2 Tr (u

N0
2 −1) ,

Tr (us+
1
2 ) = Tr (us) Tr (u)− Tr (us−

1
2 ) , s =

1

2
, 1, . . . ,

N0

2
− 1 ,

Tr (u) = α+ δ .

We get that the statement of the lemma is equivalent to

(2.9) Acent = span {(α+ δ)n : n = 0, 1, 2, . . .} .

Let us consider a linear mapping ψ : A→ A⊗A defined as

(2.10) ψ = 4− τ ◦ 4 ,

The equation (2.9) is equivalent to

(2.11) kerψ = span {(α+ δ)n : n = 0, 1, 2, . . .} .

Let ψ
P

= ψ|
AP

for P = 0, 1, 2, . . .. The equation (2.11) can be replaced by the following

∀ P = 0, 1, 2, . . . kerψ
P

= span {(α+ δ)n : n = 0, 1, . . . , P} .

Note that dim kerψ
P
≥P +1 (because (α+ δ)n∈kerψ

P
). Thus the above equality follows

from the inequality

(2.12) dim Imψ
P
≥ dimAP − (P + 1) ,

which we are going to prove now.

The comultiplication 4 of the Hopf algebra A is given by

(2.13)
4(α) = α⊗ α+ β ⊗ γ , 4(δ) = γ ⊗ β + δ ⊗ δ ,
4(β) = α⊗ β + β ⊗ δ , 4(γ) = γ ⊗ α+ δ ⊗ γ .

Let us take into account elements of the form

4(αkδlβm) , k, l ∈ N , m ∈ Z , such that k + l + |m| = p ,

for certain p ∈ {0, 1, 2, . . . , P}. There are two cases

1. m 6= 0. Using (1.11) and (2.13) one has

4(αkδlβm) = cαk+mγl ⊗ αkβm+l + (elements with at least one δ) + x ,

4(αkδlγm) = dαkγm+l ⊗ αk+mβl + (elements with at least one δ) + y ,

where c, d ∈ C , c, d 6= 0 , x, y ∈ Ap−1 ⊗Ap +Ap ⊗Ap−1 .

2. m = 0, l ≥ 1.

4(αkδl) = αkγl ⊗ αkβl + (elements with at least one δ) + x ,

where x ∈ Ap−1 ⊗Ap +Ap ⊗Ap−1 .

One can easily see that the underlined elements and the elements one gets acting

with τ on, are linearly independent for k, l ∈ N, m ∈ Z such that k+ l+ |m| = p (m 6= 0
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or l ≥ 1), p = 0, 1, . . . , P (see the basis (1.10)). Hence the elements ΨP (αkδlβm) are also

linearly independent. We have not considered only the elements ΨP (αk), k = 0, 1, . . . , P .

Thus we just proved (2.12) as well as the Lemma 2.11. Q.E.D.

2.4. More about irreducible representations. In this subsection we describe the ”di-

agonal part” of tensor product of any two irreducible representations of SLq(2).

Using (1.27) one gets that

(2.14) e(i) =
∑

i1,i2,...,i2s=1,2
#{k:ik=2}=i

q−#{ (m,s) : m<s, im>is } ei1 ⊗ . . .⊗ ei2s ,

i = 0, 1, . . . , 2s, form a basis of Ks, where #B denotes the number of elements in a set B.

Analogous basis elements for vt are called

(2.15) e′(i) , i = 0, 1, . . . , 2t ,

where ek, k = 1, 2 are replaced with

(2.16) e′k = ek ⊗ . . .⊗ ek︸ ︷︷ ︸
N0 times

, k = 1, 2 ,

and q is replaced by q′ = qN
2
0 in the formula (2.14) .

Proposition 2.13. The representations vt©>us and us©> vt, t = 0, 1
2 , 1, . . ., s =

0, 1
2 , 1, . . . ,

N0

2 −
1
2 , are equivalent. An invertible interwiner S satisfying

(S ⊗ I)(us©> vt) = (vt©>us)(S ⊗ I)

is (in the bases consisting of tensor products of (2.14 ) and (2.15 )) given by

Sij,mn = (qN0)2jt+2isδinδjm ,

where δab = 1 for a = b and 0 otherwise. Note that qN0 = ±1.

P r o o f. One can easily compute the rules (see (1.5), cf Proposition 2.8.)

(2.17)

αN0 δ = δ αN0 , αN0 β = qN0 β αN0 , αN0 γ = qN0 γ αN0 ,
δN0 α = α δN0 , β δN0 = qN0 δN0 β , γ δN0 = qN0 δN0 γ ,
α βN0 = qN0 βN0 α , βN0 δ = qN0 δ βN0 , βN0 γ = γ βN0 ,
α γN0 = qN0 γN0 α , γN0 δ = qN0 δ γN0 , γN0 β = β γN0 .

One has

(2.18)
u e1 = e1 ⊗ α+ e2 ⊗ γ ,
u e2 = e1 ⊗ β + e2 ⊗ δ .

Let (us)ij ∈ A be matrix elements of us given in the basis (2.14), i.e.

u©> 2se(j) =
∑2s
i=0 (us)ij e(i). Then one has

(2.19) (us)ij =
∑

k∈Z, l,r∈N

l+r=i−j (mod2)

|k|+l+r=2s (mod2)

aklrαkβ
lγr , aklr ∈ C .
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The only elements that change the quantity of e2 in e(j) are β and γ (see (2.18)) (this

corresponds to the first condition in the above sum). If α ”meets” δ they produce βγ

and I (see 1.5) (this corresponds to the second condition).

Similarly, replacing (2.14) by (2.15), one gets that (vt)mn is a linear combination of

αN0k′β
N0l
′
γN0r

′
with l′ + r′ = m− n(mod 2), |k′|+ l′ + r′ = 2t(mod 2).

Using (2.14), (2.17) and (2.19), one can obtain

(us)ij(v
t)mn = (qN0)2s(n−m)+2t(j−i)(vt)mn(us)ij .

Q.E.D.

R e m a r k 2.3. The equivalence of representations vt©>us and us©> vt follows also

from (2.8) and Proposition B.3.

Using Proposition 2.13., Corollary 2.4. and Corollary 2.9. one gets

Proposition 2.14.

(vt©>us) ©̃> (vt
′
©>us

′
) ≈

t+t′⊕
r=|t−t′|,

step=1

s+s′⊕
r′=|s−s′|,

step=1

vr©> ũr′ ,

t, t′ = 0,
1

2
, 1, . . . , s, s′ = 0,

1

2
, 1, . . . ,

N0

2
− 1

2
,

(for s = s′ = 0 we can omit ˜ ).

Proposition 2.15. ˜utN0+s ≈
(
vt−

1
2 ©>u

N0
2 −s−1

)
⊕
(
vt©>us

)
,

˜
utN0+(

N0
2 −

1
2 ) ≈

(
vt©>u

N0
2 −

1
2

)
,

t =
1

2
, 1, . . . , s = 0,

1

2
, 1, . . . ,

N0

2
− 1 ,

where the representation vt©>us is not a subrepresentation of utN0+s (this is only the quo-

tient representation).

P r o o f. Using mathematical induction one can easily prove the decomposition of

the thesis (cf Corollary 2.4. and Theorem 2.6.2.). It remains to prove that the represen-

tation vt©>us is not a subrepresentation of utN0+s.

Let B be an algebra with unity I generated by two elements a, a−1 such that a a−1 =

a−1 a = I. Let F be a homomorphism of A into B such that

F(α) = a , F(δ) = a−1 , F(β) = 0 , F(γ) = 0 .

One can obtain (cf (2.18))

F(u) e1 = e1 ⊗ a , F(u) e2 = e2 ⊗ a−1 ,

F(us) e(i) = e(i) ⊗ a2s−2i , F(vs) e′(i) = e′(i) ⊗ a
(2s−2i)N0 ,

s = 0,
1

2
, 1, . . . , i = 0, 1, . . . , 2s .
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Assume that there exists an invariant subspace W of KtN0+s corresponding to vt©>us.
Using F one can prove that e(0) belongs to W . On the other hand (cf (2.14) and (2.18))

ure(0) =

2r∑
i=0

e(i) ⊗ α2r−iγi ,

where r = tN0 + s in our case (it suffices to compare the elements multiplying

e1 ⊗ . . . e1 ⊗ e2 ⊗ . . . e2). The coefficients α2r−iγi (i = 0, 1, . . . , r) are linearly indepen-

dent (see Proposition 1.2.). Thus W is not an invariant subspace. Q.E.D.

R e m a r k 2.4. A related fact at the level of universal enveloping algebras is given in

Proposition 9.2 of [6].

One can prove

SM (σk − id) = 0 for k = 1, . . . ,M − 1, M ∈ N

in a similar way as Proposition 1.3. Let i1, i2, . . . , iM = 1, 2 be such that #{k : ik = 2} =

m. Using (1.13) one gets

SM ei1 ⊗ . . .⊗ eiM = q−#{ (r,t) : r<t, ir>it } SMe1 ⊗ . . .⊗ e1 ⊗ e2 ⊗ . . .⊗ e2︸ ︷︷ ︸
m times

.

On the other hand (cf Corollary 1.4. and the proof of Proposition 1.10.)

SMe1 ⊗ . . .⊗ e1 ⊗ e2 ⊗ . . .⊗ e2︸ ︷︷ ︸
m times

= Fact 1
q
(M −m) Fact 1

q
(m) e(m) .

Thus ImSM = span {e(m) : M −N0 < m < N0}. Therefore ImSN0+2s is a carrier vector

space of u
N0
2 −s−1 in Proposition 2.15. for t = 1

2 , 0 ≤ s ≤ N0

2 − 1. Moreover, SM = 0 for

M ≥ 2N0 − 1.

2.5. Haar measure.

Theorem 2.16. The quantum group SLq(2) does not have the Haar functional.

P r o o f. Assume that the Haar functional h does exist. Let us take into consideration

the representation ˜utN0+s of Proposition 2.15. for t = 1
2 , s = N0

2 −1. One has an explicit

form ˜uN0−1 ≈ I ⊕ (v©>u
N0
2 −1) ,

where I is a subrepresentation of uN0−1. Applying h to (A.3) one obtains (h⊗ h)4 = h,

hence P = (id⊗ h)uN0−1 is a projection. But

TrP = hTruN0−1 = hTr ˜uN0−1

= Tr (id⊗ h)
[
I ⊕

(
v©>u

N0
2 −1

)]
= Tr (1⊕ 0⊕ . . .⊕ 0) = 1 ,

and P ≈ 1⊕ 0⊕ . . .⊕ 0. Applying (A.3) to uN0−1, one obtains PuN0−1 = uN0−1P = P I

and

uN0−1 ≈ I ⊕
(
v©>u

N0
2 −1

)
in contradiction with Proposition 2.15. Q.E.D.
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2.6. Enveloping algebra. In this subsection we describe representations of Uqsl(2)

corresponding to the irreducible representations of SLq(2).

Let us recall (cf [5], [9]) that quantum universal enveloping algebra U = Uqsl(2) is

the algebra with identity I generated by q
1
2H , q−

1
2H , J+, J−, satisfying

q
1
2H q−

1
2H = q−

1
2H q

1
2H = I ,

q
1
2H J± q−

1
2H = q±1 J± ,[

J+, J−
]

=
(q

1
2H)2 − (q−

1
2H)2

q − q−1

with Hopf algebra structure given by

4 q± 1
2H = q±

1
2H ⊗ q± 1

2H ,

4 J± = q
1
2H ⊗ J± + J± ⊗ q− 1

2H .

There exists (cf [8], [4]) unique bilinear pairing U ×A 3 (l, a)→ 〈l , a〉 ∈ C satisfying

〈l1l2 , a〉 = 〈l1 ⊗ l2 ,4a〉 ,
〈l , a1a2〉 = 〈4l , a1 ⊗ a2〉 ,
l, l1, l2 ∈ U , a, a1, a2 ∈ A ,

〈q 1
2H , α〉 = q

1
2 ,

〈q− 1
2H , α〉 = q−

1
2 ,

〈q 1
2H , I〉 = 1 ,

〈J− , γ〉 = q−
1
2 ,

〈q 1
2H , δ〉 = q−

1
2 ,

〈q− 1
2H , δ〉 = q

1
2 ,

〈q− 1
2H , I〉 = 1 ,

〈J+ , β〉 = q
1
2 ,

q
1
2H , q−

1
2H , J+, J− vanish at α, β, γ, δ, I in all other cases (nonzero l±ij of [8] are given by

l+11(a) = l−22(a) = 〈q 1
2H , a〉 ,

l+22(a) = l−11(a) = 〈q− 1
2H , a〉 ,

l+12(a) = (q − q−1) 〈J− , a〉 ,
l−21(a) = −(q − q−1) 〈J+ , a〉 ,

a ∈ A. X±, K of [4] correspond to q∓
1
2 J±, q

1
2H ). We shall write l(a) instead of 〈l , a〉.

For any representation w of the quantum group we introduce a unital representation

Πw of the algebra U by

[Πw(l)]ij = l(wij) = [(id⊗ l)w]ij , i, j = 1, 2, . . . ,dimw .

We are going to describe Πw for any irreducible representation w of SLq(2). Let us fix

s = 0, 1
2 , 1, . . . ,

N0

2 −
1
2 . One can obtain

4(2s)q±
1
2H = q±

1
2H ⊗ . . .⊗ q± 1

2H︸ ︷︷ ︸
2s times

,(2.20)

4(2s)J± =

2s∑
m=1

q
1
2H ⊗ . . .⊗ q 1

2H︸ ︷︷ ︸
m−1 times

⊗J± ⊗ q− 1
2H ⊗ . . .⊗ q− 1

2H︸ ︷︷ ︸
2s−m times

.(2.21)

Using (2.20) one can show that

(2.22) (id⊗ q± 1
2H)us e(j) = q±(s−j) e(j) , j = 0, 1, . . . , 2s .
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Using (2.21) one has

(2.23)

(id⊗ J−)u©> 2s =

2s∑
m=1

(
q

1
2 0

0 q−
1
2

)
⊗ . . .⊗

(
q

1
2 0

0 q−
1
2

)
︸ ︷︷ ︸

m−1 times

⊗

(
0 0
q−

1
2 0

)
⊗
(
q−

1
2 0

0 q
1
2

)
⊗ . . .⊗

(
q−

1
2 0

0 q
1
2

)
︸ ︷︷ ︸

2s−m times

.

On the other hand

(2.24) (id⊗ J−)us e(j) =

2s∑
m=0

J−(usmj) e(m) .

Thus J−(usmj) equals to the coefficient multiplying e1⊗ . . .⊗e1⊗e2⊗ . . .⊗e2. Consider-

ing (2.23), that coefficient can be nonzero only for m = j + 1, j < 2s (cf (2.14)). In that

case it is obtained from the following explicitly written part of e(j)

e(j) =

m−1∑
r=0

q−r e1 ⊗ . . .⊗ e1︸ ︷︷ ︸
2s−m times

⊗
r times︷ ︸︸ ︷

e2 ⊗ . . .⊗ e2⊗e1 ⊗ e2 ⊗ . . .⊗ e2︸ ︷︷ ︸
m times

+ . . .

Doing some computations,

J−(usj+1,j) = qs−1 1− q−2(j+1)

1− q−2
,

j < 2s. Doing similar computations for J+ and using (2.22) one obtains

Πus(q
± 1

2H) e(j) = q±(s−j) e(j) ,

Πus(J
−) e(j) = qs−j−1[j + 1] e(j+1) ,

Πus(J
+) e(j) = qj−s[2s− j + 1] e(j−1) ,

j = 0, 1, . . . , 2s, where [l] = ql−q−l
q−q−1 , e(2s+1) = e(−1) = 0. Using (2.20) and (2.21), one has

(id⊗ q± 1
2H) v e′1 = q±

N0
2 e′1 ,

(id⊗ q± 1
2H) v e′2 = q∓

N0
2 e′2 ,

(id⊗ J±) v e′i = 0 , i = 1, 2 .

Therefore (cf (2.14)—(2.16))

Πvt(q
± 1

2H) e′(i) = q±N0(t−i) e′(i) ,

Πvt(J
±) e′(i) = 0 , i = 0, 1, . . . , 2t ,

t = 0, 1
2 , 1, . . .. Thus for w = vt©>us we have

Πw(q±
1
2H) e′(i) ⊗ e(j) = q±[N0(t−i)+s−j] e′(i) ⊗ e(j) ,

Πw(J−) e′(i) ⊗ e(j) = qN0(t−i)+s−j−1[j + 1] e′(i) ⊗ e(j+1) ,

Πw(J+) e′(i) ⊗ e(j) = qN0(t−i)+j−s[2s− j + 1] e′(i) ⊗ e(j−1) ,
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i = 0, 1, . . . , 2t , j = 0, 1, . . . , 2s , t = 0,
1

2
, 1, . . . , s = 0,

1

2
, 1, . . . ,

N0

2
− 1

2
.

Hence Πw ≈ π−t ⊕ π−t+1 ⊕ . . . ⊕ πt, where πr, r ∈ Z/2, is the (2s+ 1)-dimensional

representation of U described by (1) in [9], with ω = qN0r ∈ {1,−1, i,−i} (for s = N0

2 −
1
2

we take (2) for even roots or (4) for odd roots instead of (1), µ = 2(s+N0r), α = β = 0).

2.7. Enveloping algebra according to Lusztig. Let us introduce the generators of [6]

as follows:

(2.25) E = q
1
2 q

1
2HJ+ , F = q−

1
2 J−q−

1
2H , K =

(
q

1
2H
)2

.

One can compute:

KK−1 = K−1K = 1 ,

KEK−1 = q2E , KFK−1 = q−2F ,

EF − FE =
K −K−1

q − q−1
,

4E = K ⊗ E + E ⊗ I ,
4F = F ⊗K−1 + I ⊗ F ,
4K = K ⊗K .

Let UL be the Hopf algebra over C(q) generated by E, F , K±1 satisfying the above

relations, where q is an indeterminate (v in [6]) commuting with every element of UL.

We also have a bilinear pairing UL ×A→ C(q
1
2 ) :

〈K ,α〉 = q , 〈K , δ〉 = q−1 ,

〈K−1 , α〉 = q−1 , 〈K−1 , δ〉 = q ,

〈E , β〉 = q
3
2 , 〈F , γ〉 = q−

3
2 ,

〈K , I〉 = 〈K−1 , I〉 = 1

and zero for the rest of combinations. According to [6] UA is C[q, q−1] algebra generated

by:

K , K−1 , E , F , E(M) =
EM

[M ]!
, F (M) =

FM

[M ]!
,

where M =2, 3, . . . and [M ]! =
∏M
j=1

qj−q−j
q−q−1 = q−

M2

2 +M
2 Factq(M)∈C[q, q−1]. We think

about A also as C[q, q−1] algebra.

Using the mathematical induction w.r.t. n, l,m one can derive the formula (a corrected

version of (13) of [4]) for a bilinear pairing UA ×A→ C[q
1
2 , q−

1
2 ] :

(2.26)

〈EkKtF i , αnβ
lγm〉

=



[k]! [i]! q
3
2 (k−i)−t(k+i)+n(t+k)δklδim , n ≤ 0

[k]! [i]! q
3
2 (k−i)−t(k+i)+n(t+k)−(k−l)2

·
Fact 1

q
(n)

Fact 1
q

(k−l)Fact 1
q

(n−k+l)

· (δk−l,0 + δk−l,1 + . . .+ δk−l,n) δk−l,i−m , n > 0
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In the same way as in section 2.6 we get:

Πus(K
±1) e(j) = q±2(s−j) e(j) ,

Πus(E) e(j) = q
3
2 [2s− j + 1] e(j−1) ,

Πus(F ) e(j) = q−
3
2 [j + 1] e(j+1) ,

j = 0, 1, . . . , 2s, s = 0, 1
2 , 1, . . . ,

M
2 −

1
2 , where e(2s+1) = e(−1) = 0. Matrix v =(

αM βM

γM δM

)
(see (2.4)) is not a representation at the moment, since q is an indeter-

minate. Using (2.26) we get:

〈E , v〉 = 〈F , v〉 =

(
0 0
0 0

)
,

〈K±1 , v〉 =

(
q±M 0

0 q∓M

)
.

Hence
Πvt(K

±1) e′(i) = q±2M(t−i) e′(i) ,

Πvt(E) e′(i) = 0 ,

Πvt(F ) e′(i) = 0 ,

t = 0, 1
2 , 1, . . ., i = 0, 1, . . . , 2t. Thus for w = vt©>us we have

Πw(K±1) e′(i) ⊗ e(j) = 〈K±1 , vt〉〈K±1 , us〉 e′(i) ⊗ e(j)

= q±2((s−j)+M(t−i)) e′(i) ⊗ e(j) ,

Πw(E) e′(i) ⊗ e(j) = 〈K , vt〉〈E , us〉 e′(i) ⊗ e(j)

= q
3
2 +2M(t−i)[2s− j + 1] e′(i) ⊗ e(j−1) ,

Πw(F ) e′(i) ⊗ e(j) = 〈I , vt〉〈F , us〉 e′(i) ⊗ e(j)

= q−
3
2 [j + 1] e′(i) ⊗ e(j+1) ,

i = 0, 1, . . . , 2t , j = 0, 1, . . . , 2s , t = 0,
1

2
, 1, . . . , s = 0,

1

2
, 1, . . . ,

M

2
− 1

2
.

Using mathematical induction we can prove that 〈Ek , u©> 2s〉=0 for 2s < k. In particular

we have

〈E(M) , us〉 = 0 for s <
M

2
.

In analogous way we get

〈F (M) , us〉 = 0 for s <
M

2
.

Using formula (a+ b)M =
∑M
r=0

Factq(M)

Factq(r)Factq(M−r)
arbM−r, where ba = q2ab, we get

(2.27) 4(E(M)) =

(
M−1∑
r=1

qr(M−r)

[r]![M − r]!
ErKM−r ⊗ EM−r

)
+KM ⊗ E(M) + E(M) ⊗ I .
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In virtue of (2.26)

〈E(M) , v〉 =

(
0 q

3
2M

0 0

)
, 〈F (M) , v〉 =

(
0 0

q−
3
2M 0

)
.

Using the formula 〈ErKM−r , v〉 = 0 for r = 1, . . . ,M − 1, (2.27) and doing some com-

putations, we get

〈E(M) , v©> 2t〉 =

2t∑
m=1

(
qM

2

0
0 q−M

2

)
⊗ . . .⊗

(
qM

2

0
0 q−M

2

)
︸ ︷︷ ︸

m−1 times

⊗

(
0 q

3
2M

0 0

)
⊗
(

1 0
0 1

)
⊗ . . .⊗

(
1 0
0 1

)
︸ ︷︷ ︸

2t−m times

.

Let us now specialize q to be a root of unity of degree N ≥ 3 (cf [6]). Let M=N0. Doing

similar comparison of coefficients as in (2.23) and (2.24), we get

Πvt(E
(N0)) e′(i) = q

3
2N0−iN2

0 (2t− i+ 1) e′(i−1) , i = 0, 1, . . . , 2t ,

Πvt(F
(N0)) e′(i) = q−

3
2N0+iN2

0 (i+ 1) e′(i+1) , i = 0, 1, . . . , 2t ,

where t = 0, 1
2 , 1, . . .. Thus for w = vt©>us we get (cf (2.27)):

Πw(E(N0)) e′(i) ⊗ e(j) = 〈E(N0) , vt〉〈I , us〉 e′(i) ⊗ e(j)

= q
3
2N0−iN2

0 (2t− i+ 1) e′(i−1) ⊗ e(j) ,

Πw(F (N0)) e′(i) ⊗ e(j) = 〈F (N0) , vt〉〈K−N0 , us〉 e′(i) ⊗ e(j)

= q−
3
2N0+iN2

0−2sN0(i+ 1) e′(i+1) ⊗ e(j) ,

i = 0, 1, . . . , 2t , j = 0, 1, . . . , 2s , t = 0,
1

2
, 1, . . . , s = 0,

1

2
, 1, . . . ,

N0

2
− 1

2
.

Comparing with representations of [6] (in the case of N odd as in [6]) we infer that

w is isomorphic to the representation Lq(N2s+ 2t). Irreducibility of the obtained repre-

sentations is related to the Lemma 6.1 of [3].

A. Basic concepts. Here we recall the basic facts concerning quantum groups and

their representations (see [13]).

Let (A,4) be a Hopf algebra. We set 4(2) = 4,

4(n) = (4⊗ id⊗ . . .⊗ id)4(n−1) , n = 3, 4, . . . .

Let K be a finite dimensional vector space over C and e1, . . . , ed ∈ K its basis. Then

B(K)⊗A ∼= B(Cd)⊗A ∼= Md(A).

One can define a linear mapping

©⊥ : MN (A)×MN (A) −→ MN (A⊗A)

by

(v©⊥w)ij =
∑
k

vik ⊗ wkj , i, j = 1, 2, . . . , N .
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An element v ∈ B(K) ⊗ A is called a representation (in the carrier vector space K)

of a quantum group corresponding to a Hopf algebra (A,4, κ, e), iff

(id⊗4) v = v©⊥ v ,(A.1)

(id⊗ e) v = id .(A.2)

One can use the shortcut representation having in mind the above definition.

Let v and w be representations, Kv and Kw be its carrier vector spaces.

An operator S ∈ B(Kv,Kw) such that

(S ⊗ I) v = w (S ⊗ I)

is called a morphism (intertwiner) of representations v and w.

A set of morphisms intertwining v with w is denoted by Mor(v, w).

Representations v and w are called equivalent iff Mor(v, w) contains an invertible

element. Then we write v ≈ w.

One can define a linear mapping

©> : MN (A)×MN ′(A) −→ MNN ′(A)

by

(v©>w)ik,jl = vijwkl , i, j = 1, 2, . . . , N , k, l = 1, 2, . . . , N ′ ,

where v ∈ MN (A), w ∈ MN ′(A).

One can check that if v and w are representations, then v©>w is also a representation.

We denote v©> k = v©> . . . ©> v (k times).

Definition A.1. A functional h ∈ A′ is called a Haar functional of a quantum group

(A,4) if h(I) = 1 and

(A.3) ∀ a ∈ A (h⊗ id)4a = (id⊗ h)4a = h(a) I .

One has h(u) = 0 for any irreducible representation u different from I.

B. Quotient representations. Here we investigate the quotient representations and

the operation ˜ .

Let u ∈ B(K)⊗A be given by

(B.1) u =

R∑
r=1

mr ⊗ ur ,

where K = CN and m1,m2, . . . ,mR ∈ B(K) are linearly independent as well as

u1, u2, . . . , uR ∈ A. One can introduce a linear mapping û : K → K ⊗A given by

(B.2) ∀ x ∈ K ûx =

R∑
r=1

mr x⊗ ur .

This is the formula (2.7) in [13]. û corresponds to u, because B(K,K⊗A) and B(K)⊗A
are canonically isomorphic.
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Proposition B.1. Let (A,4) be a quantum group with a counit e and u ∈ MN (A).

Then the following two statements are equivalent :

1. u is a representation of (A,4).

2. For each x ∈ K i) (id⊗4)û x = (û⊗ id)û x,

ii) (id⊗ e)û x = x.

P r o o f. The equivalence of (A.1) and i) is proved in [13]. The equivalence of (A.2)

and ii) can be proved in a similar way. Q.E.D.

Let u be a representation and K be its carrier space. We say (as in [13]) that L is

u-invariant subspace if and only if

û(L) ⊂ L⊗A .

Then the element u|
L
∈ B(L) ⊗ A corresponding to the restriction û|

L
: L → L ⊗ A is

a representation acting on L.

The embedding L→ K intertwines u|
L

with u, u|
L

is called a subrepresentation of u

(cf [13]).

Definition B.1. Let u be a representation, K its carrier vector space, L⊂K u-

invariant space and let v = u|
L

. Let [x] ∈ K/L be an element of the quotient space

and x ∈ K a representative of the class. The representation w given by

(B.3) ∀ x ∈ K ŵ [x] =

R∑
r=1

[mr x]⊗ ur ,

is called a quotient representation and is denoted by u/v.

Doing some easy computations one can prove that the quotient representation w is

uniquely determined and that it is in fact a representation (use Proposition B.1).

Let us define a mapping

(B.4) ˜ : (representations) −→
(

completely reducible

representations

)
as follows

1. If u is an irreducible representation, then ũ = u.

2. If v is a subrepresentation of u, then we set ũ = ṽ ⊕ ˜(u/v).

Proposition B.2. Let u be a representation of a quantum group (A,4). Then the rep-

resentation ũ is uniquely determined up to an equivalence.

P r o o f. We first notice

(B.5) Tr ũ = Tru .

Then let

(B.6) ũ ≈ v1 ⊕ . . .⊕ vk
be a decomposition of ũ into irreducible components. Hence

Tru = Tr v1 + . . .+ Tr vk
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and (Tr vi are linearly independent if vi are nonequivalent irreducible representations)

(B.6) is uniquely determined. Q.E.D.

Let us introduce the notation

(B.7) ©̃> = ˜ ◦ ©> .

Proposition B.3. Let u, v be representations of a quantum group, such that Tru Tr v

= Tr v Tru and v©>u is irreducible. Then v©>u ≈ u©> v.

P r o o f. One has

Tr (u ©̃> v) = Tr (u©> v) = Tru Tr v = Tr v Tru = Tr (v©>u) = Tr (v ©̃>u) ,

which means that u ©̃> v ≈ v ©̃>u. The representation v ©̃>u ≈ v©>u is irreducible, there-

fore the representation u ©̃> v is irreducible. Thus one has u ©̃> v ≈ u©> v. Q.E.D.

One has u ©̃> v ≈ ũ ©̃> ṽ for any two representations u, v (trace of both sides is

the same).
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