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Abstract. Contractions of Poisson–Lie groups are introduced by using Lie bialgebra contrac-
tions. As an application, contractions of SL(2, R) Poisson–Lie groups leading to (1+1) Poincaré
and Heisenberg structures are analysed. It is shown how the method here introduced allows a
systematic construction of the Poisson structures associated to non-coboundary Lie bialgebras.
Finally, it is sketched how contractions are also implemented after quantization by using the Lie
bialgebra approach.

1. Introduction. In a previous work [2], contractions of quantum algebras have

been studied and classified by making use of the Lie bialgebra structure that underlies any

quantum universal enveloping algebra. This paper completes those results by introducing,

through the link between Poisson–Lie (PL) groups and Lie bialgebras stated in [5], a

contraction method for PL groups.

Such a procedure turns out to be interesting from two different points of view: on one

hand, as an efficient way to construct PL structures associated to non–coboundary Lie

bialgebras, for which no Sklyanin bracket is available. On the other, as a first excursion in

the field of contractions of general Poisson structures and their dynamical implications.

As a first step, we briefly review in Section 2 the basics of Lie algebra and Lie bialgebra

contraction theories, with special emphasis in the ability of contractions to “generate
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cohomology”. In Section 3 the PL contraction method is developed by making use of the

results for Lie bialgebras given in the previous section and the duality between Lie group

coordinates and Lie algebra generators. The resultant scheme is illustrated by means

of two different PL sl(2, R) groups whose contractions lead to Heisenberg and Poincaré

(1+1) Poisson bivectors. Finally, the connection with the quantum algebra contraction

procedure developed in [2] is outlined.

It is worth to be commented that, throghout the paper, Poisson bivectors are expressed

in local coordinates, for which the contraction prescription is always well defined. The

usual version of quadratic Sklyanin brackets can be recovered when the entries of a given

matrix realization of the group are considered. We also emphasize the fact that, as far

as contractions are concerned, first order terms in the deformation parameter seem to

provide all the information needed to contract the whole quantum structure. It could be

interesting to see whether this is or not a general property of quantum deformations and,

among other open problems, how this approach can be applied to multiparametric PL

groups and which are the physical implications of dynamical systems with PL symmetries.

2. Lie bialgebra contractions. After recalling the concept of Lie algebra contrac-

tion, firstly introduced in [6], the extension of the contraction procedure to Lie bialgebras

is presented [2].

2.1. Lie algebra contractions. We shall present contractions by following the “univer-

sal” (representation independent) approach of [7].

Definition 1. Let (A,m) and (A′,m′) be two algebras with the same underlying

vector space V and products m and m′, i.e., m : V ⊗ V → V . Let us assume that there

exists a continuous uniparametric family φε of linear mappings

φε : V → V, ε ∈ (0, 1], φε
∣∣
ε=1

= id, (2.1)

such that φε is invertible when ε 6= 0 and singular when ε = 0. The algebra (A′,m′) is

said to be a contraction of (A,m) if m′ can be defined as

m′ = lim
ε→0

mε = lim
ε→0

φ−1ε ◦m ◦ (φε ⊗ φε). (2.2)

Let us note that, when A and A′ are Lie algebras with Lie brackets m and m′, (2.2)

can be written as

[X,Y ]′ := lim
ε→0

φ−1ε [φε(X), φε(Y )]. (2.3)

Definition 2. [8] Let g be a Lie algebra whose associated vector space V is written

as a direct sum

V =
⊕
i

Vi, i = 0, 1, . . . , N ≥ 1. (2.4)

The mapping φε will be called generalized Inönü–Wigner (IW ) contraction if

φε|Vi = εni Id|Vi , 0 ≤ n0 < n1 < n2 < . . . < nN , ni ∈ R. (2.5)

It can be shown that a given Lie algebra admits a generalized IW contraction if and

only if

[Vi, Vj ] ⊂
⊕
k

Vk, (2.6)
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where by (2.6) we understand that a given subspace Vk can give a contribution to the

right hand side of the bracket if nk ≤ ni + nj .

Example 3. Let us consider the three dimensional Lie algebra sl(2, R), with commu-

tation rules

[J3, J±] = ±2 J±, [J+, J−] = J3. (2.7)

The contraction mapping φε1 defined by

φε1(J3) = J3, φε1(J+) = ε1 J+, φε1(J−) = ε1 J− (2.8)

gives rise, from (2.3), to the brackets φ−1ε1 ◦m ◦ (φε1 ⊗ φε1), i.e.,

[J3, J±] = ±2 J±, [J+, J−] = ε1
2 J3, (2.9)

whose limit ε1 → 0 leads to the defining relations of the (1+1) Poincaré algebra.

In the same manner, let φε2 be the contraction mapping

φε2(J3) = ε22 J3, φε2(J+) = ε2 J+, φε2(J−) = ε2 J−. (2.10)

The transformed brackets are now

[J3, J±] = ±ε22 2 J±, [J+, J−] = J3, (2.11)

and the limit ε2 → 0 gives the Heisenberg algebra as a contraction of sl(2, R).

Contractions provide a very efficient way to obtain non-semisimple Lie algebras from

semisimple ones. Among the two contractions introduced in the previous example, the

former is called a simple IW contraction (there exist only the subspaces V0, V1), the latter

is a generalized one.

2.2. Lie bialgebra contractions. We recall that a Lie bialgebra (g, η) is a Lie algebra g

endowed with a cocommutator η : g → g⊗ g such that η is a 1–cocycle and the dual map

η∗ : g∗ ⊗ g∗ → g∗ is a Lie bracket on g∗. A Lie bialgebra (g, η) is called a coboundary

bialgebra if there exists an element ρ ∈ g ⊗ g (the classical r–matrix), such that

η(X) = [1⊗X +X ⊗ 1, ρ], ∀X ∈ g. (2.12)

It can be easily shown that the map (2.12), defined by means of an arbitrary ρ, is a Lie

bialgebra if and only if the symmetric part of ρ is invariant and the antisymmetric part

of ρ is a solution of the generalized Classical Yang–Baxter Equation [5].

The main statements relative to Lie bialgebra contractions are as follows.

Theorem 4. [2] Let (g, η) be a Lie bialgebra and let g′ be a Lie algebra obtained by

means of a (generalized) IW contraction φε from g. If n is a positive real number such

that the limit

η′ := lim
ε→0

εn(φ−1ε ⊗ φ−1ε ) ◦ η ◦ φε (2.13)

exits, then (g′, η′) is a Lie bialgebra. Moreover , there is a unique minimal value f0 of n

such that , if n ≥ f0 the limit (2.13 ) exists, and if n > f0 that limit is zero.

The crucial point in this result is that the number f0 that ensures the existence of

the limit (2.13) is uniquely defined. Moreover, η′ turns out to be trivial when n > f0.
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Definition 5. If there exists a contraction φε of g to g′ and a real number n such that

η′ is given by (2.13), the Lie bialgebra (g′, η′) is called a contracted Lie bialgebra of (g, η).

The pair (φε, n) will be called a Lie bialgebra contraction (or bicontraction). The minimal

value f0 that ensures the existence of (2.13) will be called the fundamental contraction

constant of (g, η) associated to the contraction φε, and (φε, f0) will be a fundamental

bicontraction.

A rather similar result can be obtained (in the case of coboundary Lie bialgebras)

when the contraction of the classical r–matrix is considered:

Theorem 6. [2] Let (g, η(ρ)) be a coboundary Lie bialgebra where ρ is the classical

r–matrix. Let g′ be a Lie algebra obtained by means of a (generalized) IW contraction φε
from g. If n is a positive real number such that the limit

ρ′ := lim
ε→0

εn(φ−1ε ⊗ φ−1ε )(ρ) (2.14)

exists, then (g′, η′(ρ′)) is a coboundary Lie bialgebra. Moreover , there is a unique minimal

value c0 of n such that , if n ≥ c0 (2.14 ) exists and , if n > c0 such a limit is zero.

Complete proofs of theorems [4] and [6] can be found in [1]. In this last case we shall

adopt the following terminology.

Definition 7. The minimal value c0 that ensures the existence of the limit (2.14)

will be called coboundary contraction constant of the Lie bialgebra (g, η(ρ)) and relative

to the contraction mapping φε. The pair (φε, c0) is called a coboundary bicontraction of

(g, η(ρ)) linked to φε.

It is not difficult to prove that, for a given (g, η(ρ)) and φε, the relation f0 ≤ c0
is always fulfilled [1]. However, it must be emphasized that the expressions (2.13) and

(2.14) are different and, in general, different results for the fundamental and coboundary

contraction constants can be obtained. We shall take into account the following cases:

a) When f0 = c0, the bicontraction (φε, c0 = f0) is coboundary and fundamental. Both

the cocommutator η′ and the contracted r–matrix ρ are not trivial. As a consequence,

(g′, η′(ρ′)) is a coboundary Lie bialgebra.

b) If f0 < c0, the coboundary bicontraction (φε, c0 = f0) is not fundamental. Hence, the

contracted ρ′ will generate a trivial Lie bialgebra. On the contrary, the fundamental

bicontraction (φε, f0) is not a coboundary one. Besides, as we shall see in the sl(2, R)

case, the result of such a kind of contraction (φε, f0) will be a non–coboundary Lie

bialgebra.

Example 8. Let us consider the sl(2, R) bialgebra (sl2, η(ρ)) given by the cocommu-

tator

η(J3) = 0, η(J+) = J+ ∧ J3, η(J−) = J− ∧ J3, (2.15)

which is generated by the classical r–matrix ρ = J+∧J−, that solves the modified CYBE.

If we consider the contraction mapping φε1 this coboundary bialgebra will be transformed

by means of (2.13), and we shall easily find that the minimal n that provides a well

defined limit ε1 → 0 (the fundamental contraction constant f0) is 0. So, in this case no

“regularization” εf01 is needed. Furthermore, it can be easily checked that the contracted
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cocommutator η′ coincides with η, and defines a Lie bialgebra structure on the (1+1)

Poincaré algebra

[J3, J±] = ±2 J±, [J+, J−] = 0. (2.16)

On the contrary, if we perform –by following (2.14)– the φε1 contraction process on

the classical r–matrix ρ that generates this bialgebra, it turns out that the coboundary

contraction constant c0 is 2: a factor ε21 has to be included to avoid the divergency of (2.14)

in the limit ε1 → 0. This means that the fundamental bicontraction (φε1 , n = f0 = 0)

is not a coboundary bicontraction, and the contracted bialgebra obtained from it is not

expected to be a coboundary one. This is actually the case: there does not exist any

element in g′⊗g′ (with g the algebra (2.16)) that originates η′ in the form (2.12). On the

other hand, if we consider the coboundary bicontraction (φε1 , n = c0 = 2), the contracted

r–matrix ρ′ exists, being again ρ′=J+∧J−. However, the cocommutator that this element

generates on the Poincaré algebra (2.16) is zero. This fact in accordance with Theorem

4 since (φε1 , n = 2) is not a fundamental bicontraction (n > f0).

Example 9. The contraction mapping φε2 (2.10) can be used to obtain, from the

bialgebra (sl2, η(ρ)) and following the same steps as in the previous example, Heisenberg

Lie bialgebra structures. The main point now is that computations lead to the same

fundamental and coboundary contractions constants: f0 = c0 = 2. Hence, the bicon-

traction (φε2 , 2) originates a coboundary Heisenberg Lie bialgebra, where the contracted

cocommutator η′ coincides again with η and the contracted r–matrix is ρ′ = J+ ∧ J−.

Example 10. Let us now consider a different sl(2, R) (coboundary) bialgebra that we

shall denote as (sl2, η+(ρ+)). It is usually called the non–standard one, defined by the

cocommutator

η+(J+) = 0, η+(J3) = J3 ∧ J+, η+(J−) = J− ∧ J+. (2.17)

The corresponding classical r–matrix is ρ = J3 ∧ J+/2, which is a solution of the CYBE.

The analysis of the bicontractions induced by φε1 and φε2 can be summarized as follows:

φε1 : f0 = 1, c0 = 1; φε2 : f0 = 1, c0 = 3. (2.18)

Note that the properties of these bicontractions are reversed when compared with the

ones studied in Example 8: the (1+1) non–standard Poincaré bialgebra is a coboundary

one as a result of the (φε1 , 1) contraction (moreover, ρ′ coincides with ρ), and the fun-

damental bicontraction (φε2 , 1) gives a non–coboundary Heisenberg structure. In both

cases, the contracted cocommutator turns out to be (2.17) again.

3. Contractions of Poisson–Lie groups. There exists a one to one correspon-

dence between PL structures on a (simply connected) Lie group G and Lie bialgebras

on g =Lie(G) [5]. Given a PL group (i.e., a Poisson bracket Λ on C∞(G) for which the

group multiplication is a Poisson map), let us write Λ in local coordinates (x1, . . . , xn)

as

Λ = πij(x)XR
i ∧XR

j , (i < j) i, j = 1, 2, . . . , n, (3.1)

where XR
i denotes right invariant vector fields and πij(x) ∈ C∞(G). Drinfel’d’s assertion

is that, if this Poisson bracket is compatible with the group multiplication and we identify
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the local coordinates with the generators of g∗, the bivector Λ defines uniquely a Lie

algebra g∗ with commutators {xi, xj} = f ijk xk where

f ijk =
d

dt
(πij(etXk))

∣∣
t=0

. (3.2)

Furthermore, the Lie bracket given by the tensor f is nothing but the dual η∗ of a

cocommutator mapping that defines a Lie bialgebra (g, η) that turns out to characterize

the initial PL structure

η(Xn) = f lmn Xl ⊗Xm. (3.3)

Let φε be a contraction mapping defined on the generators Xi of a given Lie algebra

g and let xj be the dual (and local) coordinates of G fulfilling

〈xi, Xj〉 = δij . (3.4)

If (Φ(ε))ji is the matrix that realizes φε, on a given matrix realization of g we shall have

that the “contracted generators” will be

X̃i := φε(Xi) = (Φ(ε))ji Xj . (3.5)

Let us denote as ψε the contraction mapping that will act on the group coordinates in a

form similar to (3.5):

x̃i := ψε(x
i) = (Ψ(ε))ji x

j . (3.6)

If we impose duality (3.4) to be preserved by the contraction process, i.e., that 〈x̃i, X̃j〉 =

δij , it is straightforward to check that the following relation must hold:

Ψ(ε) = (Φ(ε)−1)T . (3.7)

The contractions φε1 and φε2 are represented by diagonal Φ matrices and, in both cases,

Ψ(ε) = (Φ(ε)−1).

With all these prerrequisites, it is easy to translate the results on contractions of η

before obtained into the corresponding ones of the Lie bracket η∗. By dualizing (2.13)

and substituting Φ(ε) we obtain (in the “diagonal” case) and for the fundamental bicon-

traction linked to a given g and φε:

η∗′ := lim
ε→0

εf0Ψ−1ε ◦ η∗ ◦ (Ψε ⊗Ψε). (3.8)

It is important to emphasize that, for a given PL group and a contraction mapping φε,

all the elements in the expression (3.8) are uniquely defined as a consequence of Theorem

4: the constant f0 is unique (in order to obtain a non trivial result) and the contraction

Ψε of the coordinates is determined by φε. Therefore, the analysis of the linearized (3.2)

PL bivector provided by the bicontraction suffices to obtain all the information relevant

in order to contract the whole PL structure. This result can be stated as follows.

Proposition 11. Let (G,Λ) be a PL group and let φε be a contraction mapping

defining a contraction from g to g′. If we assume that the contracted PL group (G′,Λ′)

exists, the contracted PL bracket is obtained , in local coordinates, through the formula

Λ′ := lim
ε→0

εf0 ψ−1ε ◦ Λ ◦ (ψε ⊗ ψε), (3.9)

where ψε is given by (3.6 ) and (φε, f0) is the fundamental bicontraction of the Lie bial-

gebra (g, η) associated to (G,Λ).
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A relevant consequence of this Proposition arises when we consider, given a Lie bial-

gebra (g, η), the problem of finding the PL bivector Λ linked to it. There exists an answer

to this question provided that (g, η) is a coboundary bialgebra with classical r–matrix

ρ = ραβ Xα ⊗Xβ . In that case, Λ is given by the so called Sklyanin bracket

Λ = ραβ (XL
α ⊗XL

β −XR
α ⊗XR

β ), (3.10)

where XL
i (XR

i ) are left (right) invariant vector fields on G. The problem is that, if (g, η)

is a non–coboundary Lie bialgebra, no general expression playing the role of (3.10) has

been found. However, from Proposition 11, we can give a contraction method to obtain

non–coboundary bivectors by using the following corollary.

Corollary 12. Let (g′, η′) be a non–coboundary Lie bialgebra. If there exists another

coboundary Lie bialgebra (g, η(ρ)) such that (g′, η′) can be obtained as a (fundamental)

bicontraction (φε, f0) of (g, η), the PL group (G′,Λ′) associated to (g′, η′) can be obtained

by applying (3.9 ) to (G,Λ).

Of course, Λ can be always explicitly given by using (3.10). We recall that non–

coboundary Lie bialgebras arise naturally within non–semisimple Lie algebras, like Poin-

caré, Galilei or Heisenberg ones [2]. We illustrate these results by using the Poisson

counterparts of the Lie bialgebra contractions explained in previous examples.

Example 13. To study this construction in the sl(2, R) case, it is necessary to recall

that the fundamental representation of its Lie algebra is given by

D(J3) =

(
1 0
0 −1

)
, D(J+) =

(
0 1
0 0

)
, D(J−) =

(
0 0
1 0

)
. (3.11)

An arbitrary element of SL(2, R) will be g = ea−J−ea+J+eχJ3 where (a+, a−, χ) are local

coordinates. In the representation (3.11) we shall have that g will be written as

D(g) =

(
a b
c d

)
=

(
eχ a+ e

−χ

a− e
χ (1 + a− a+)e−χ

)
. (3.12)

Now, left and right invariant vector fields can be obtained an read

XL
J+ = e2χ ∂a+ ,

XL
J− = a2+ e

−2χ ∂a+ + e−2χ ∂a− + a+ e
−2χ ∂χ,

XL
J3 = ∂χ;

(3.13)

XR
J+ = (1 + 2a−a+) ∂a+ − a2− ∂a− + a− ∂χ,

XR
J− = ∂a− ,

XR
J3 = −2 a− ∂a− + 2a+ ∂a+ + ∂χ.

(3.14)

To perform contractions on the local coordinates, we have to define the ψε mappings. In

particular, the one associated to φε1 (2.8) is just its inverse, namely:

ψε1(a+) = ε1
−1 a+, ψε1(a−) = ε1

−1 a−, ψε1(χ) = χ. (3.15)

Let us now recall the standard Lie bialgebra (sl(2, R), η(ρ)) given by (2.15). Since ρ =

J+ ∧ J− and taking into account (3.13) and (3.14), the Sklyanin bracket (3.10) reads:

Λ = −a+ ∂χ ∧ ∂a+ − a− ∂χ ∧ ∂a− − 2 a− a+ ∂a+ ∧ ∂a− . (3.16)
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In terms of the fundamental Poisson brackets (to which we shall refer from now on), we

shall have

{χ, a+} = −a+, {χ, a−} = −a−, {a+, a−} = −2 a− a+. (3.17)

As explained in Example 8., the bicontraction (φε1 , f0 = 0) was the fundamental one

associated to the sl(2, R)→ (1 + 1) Poincaré contraction. If we apply (3.9) to (3.17) and

consider the mapping (3.15) we obtain that there is no ε1 appearing in the transformed

brackets ε1
f0 ψ−1ε1 (

{
ψε1(xi), ψε1(xj)

}
), and the limit ε1 → 0 leads to the same funda-

mental Poisson brackets (3.17). Hence, when (a+, a−, χ) are considered as the light cone

coordinates on the Poincaré group, (3.17) is the PL bracket linked to a non–coboundary

bialgebra with cocommutator η′ = η given by (2.15). Such fundamental brackets could

not be obtained through (3.10), since for this bialgebra there exists no r–matrix ρ.

Example 14. Let us now consider the sl(2, R)→ Heisenberg contraction defined by

the mapping φε2 (2.10) where the contracted coordinates will be given by the mapping

ψε2(a+) = ε2
−1 a+, ψε2(a−) = ε2

−1 a−, ψε2(χ) = ε2
−2 χ. (3.18)

The fundamental bicontraction was now (φε2 , f0 = 2). Therefore, we compute

ε2
f0 ψ−1ε2 ({ψε(χ), ψε(a±)}) = −a±,

ε2
f0 ψ−1ε2 ({ψε(a+), ψε(a−)}) = −2 ε2

2 a− a+.
(3.19)

In the limit ε2 → 0, (3.19) defines the bracket Λ′; namely,

{χ, a±}′ = −a±, {a+, a−}′ = 0, (3.20)

that correspond to the coboundary Heisenberg bialgebra obtained in Example 9.

Example 15. The same procedure can be straightforwardly applied to the non–

standard bialgebras (g, η+) described in Example 10. The Sklyanin bracket on SL(2, R)

generated by the triangular r–matrix ρ+ = J3 ∧ J+ has the following brackets

{χ, a+} = (e2χ − 1), {χ, a−} = − a2−, {a+, a−} = −2 a− (1 + a− a+). (3.21)

The bicontraction (φε1 , f0 = 1) is the fundamental one and leads to the transformed

brackets

ε1
f0 ψ−1ε1 ({ψε1(χ), ψε1(a+)}) = (e2χ − 1),

ε1
f0 ψ−1ε1 ({ψε1(χ), ψε1(a−)}) = −ε12 a2−,

ε1
f0 ψ−1ε1 ({ψε1(a+), ψε1(a−)}) = −2 a− (1 + ε1

2 a− a+),

(3.22)

whose limit ε1 → 0 is the (coboundary, since c0 = 1) non–standard (1+1) Poincaré PL

structure [3] given by

{χ, a+} = (e2χ − 1), {χ, a−} = 0, {a+, a−} = −2 a−. (3.23)

On the other hand, the contraction φε2 can be performed on (3.21) by taking into account
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that f0 = 1 and by using ψε2 (3.18). In this case we have that

ε2
f0 ψ−1ε2 ({ψε2(χ), ψε2(a+)}) =

(e2 ε2
2 χ − 1)

ε22
,

ε2
f0 ψ−1ε2 ({ψε2(χ), ψε2(a−)}) = − a2−,

ε2
f0 ψ−1ε2 ({ψε2(a+), ψε2(a−)}) = −2 a− (1 + ε2

2 a− a+).

(3.24)

And the limit ε2 → 0 originates the Poisson brackets

{χ, a+} = 2χ, {χ, a−} = − a2−, {a+, a−} = −2 a−, (3.25)

that correspond to a non–coboundary (recall that c0 = 3) Heisenberg Lie bialgebra

already characterized in Example 10.

Two remarks can be made. Firstly, it is easy to check that the cocommutators of

the Lie bialgebras involved here can be recovered from the obtained Poisson bivectors

by applying (3.2). Secondly, note that, if we consider a PL group as a Poisson–Hopf

algebra generated by the entries of a given matrix representation of G, the Sklyanin

bracket defines a quadratic Poisson algebra. These new generators (a, b, c, d in the case of

SL(2, R)) are functions of the local coordinates used in our approach. In particular, if we

consider the bivector (3.16) and the matrix representation (3.12), we obtain the following

quadratic algebra

{b, a} = a b, {c, a} = a c, {c, b} = 0,

{d, b} = b d, {d, c} = c d, {d, a} = 2 b c.
(3.26)

In general, contractions cannot be implemented on such objects, since the mappings ψ act

“internally” on the entries a, b, c, d through the local coordinates. This fact underlies the

outstanding role that (before quantization and after it) the algebras (3.17) play. Actually,

these algebras of fundamental Poisson brackets can be infinite dimensional (for instance,

see (3.21)).

4. Quantization. If we consider an arbitrary quantum algebra (Uz(g),∆z), the first

order term in z of the deformed coproduct ∆z always defines a Lie bialgebra structure on

g, and the PL group associated to it is the classical counterpart of the quantum group dual

to (Uz(g),∆z). It could be expected that the contraction scheme for Lie bialgebras and

PL groups, here introduced, should be relevant to systematize “quantum contractions”.

In order to make explicit this connection, the role of the deformation parameter will be

essential.

4.1. Contractions of uniparametric Lie bialgebras. Let us suppose that, given a deter-

mined (and perhaps coboundary) Lie bialgebra (g, η(ρ)), we introduce a uniparametric

family of Lie bialgebras (g, δ(r))t defined as

δ := t η, r := t ρ. (4.1)

Two of these bialgebras will be said to be equivalent if there exists an automorphism

of g that transforms one into the other. In general, multiplication by t can generate an

infinite family of disequivalent structures.
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Let (φε, f0) be the fundamental bicontraction on (g, η(ρ)). Obviously, this bicontrac-

tion is also the fundamental one for the family (g, δ(r))t. However, if we consider the

whole set of t–bialgebras, the definition of bicontraction can be rewritten by considering

that the parameter t is also transformed under the mapping φε as

φε(t) := ε−f0 t. (4.2)

Under this assumption, it is easy to check that the contracted cocommutator δ′ can be

defined by precluding explicitly the regularization factor εf0 (which is now included in

the transformation of t):

δ′ := lim
ε→0

(φ−1ε ⊗ φ−1ε ) ◦ δ ◦ φε. (4.3)

The same is true for the contracted r matrix:

r′ := lim
ε→0

(φ−1ε ⊗ φ−1ε )(r). (4.4)

Note that the inclusion of t is also reflected at the PL group level, so, the new Poisson

bracket is { , }t := t { , } .

4.2. Contractions of quantum algebras. In the frame of uniparametric quantum al-

gebras, the parameter t can be identified with the deformation parameter z, and the

cocommutator δ is nothing but the (coantisymmetric) part of the first order ∆(1) of the

deformed coproduct ∆z. On the other hand, to contract a deformed Hopf algebra we shall

have to define the transformation properties of the generators under φε (the “classical”

contraction) and, perhaps, some regularization that could depend of the order of a given

term in the deformation parameter. In particular, this reasoning obviously implies that

the contraction of its first order ∆(1) has to be well defined.

This (necessary) condition is equivalent (in the case of coantisymmetric ∆(1)) to

impose a non–trivial (fundamental) bicontraction on the associated family of Lie bialge-

bras (g, δ). But, as we have already demostrated, a fundamental bicontraction of any Lie

bialgebra defines uniquely the f0 constant which, in turn, induces a unique possible trans-

formation (4.2) of the t ≡ z parameter. This is the reason why the transformation of the

deformation parameter under contraction (firstly introduced in [4]) provides a systematic

and well–defined procedure to contract any quantum algebra. Thus,

Definition 16. Let (Uz(g),∆z,mz) be a quantum algebra and let (g, δ) be its associ-

ated Lie bialgebra. We shall say that (Uz(g
′),∆′z,m

′
z), with bialgebra (g′, δ′), is a quantum

contraction of (Uz(g),∆z,mz) if there exists a fundamental bicontraction (φε, f0) of (g, δ)

such that
∆′z := lim

ε→0
(φ−1ε ⊗ φ−1ε ) ◦∆z ◦ φε,

m′z := lim
ε→0

φ−1ε ◦mz ◦ (φε ⊗ φε),
(4.5)

where φε(z) = ε−f0 z.

The same reasoning applies to quantum groups, since their first order commutation

rules (in both the generators and z) will be given by the dual Lie bialgebras δ∗, whose

non trivial contraction is guaranteed by the fundamental constant f0 and, therefore, by

the transformed z. This method has been systematically used in [2] to contract quantum



CONTRACTIONS OF POISSON–LIE GROUPS 271

orthogonal algebras, and can be straightforwardly applied to the quantum deformations

linked with the sl(2, R) bialgebras here studied.
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[5] V.G. Drinfe l ’d, Hamiltonian structures on Lie groups, Lie bialgebras and the geometric
meaning of the classical Yang–Baxter equations, Sov. Math. Dokl. 27 (1983), 68.
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