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Abstract. An extension of the category of local manifolds is considered. Instead of smooth
mappings of neighbourhoods of linear spaces as morphisms we deal with formal operator power
series (or formal maps). Analogues of the objects appearing on smooth manifolds and vector
bundles (vector fields, sections of a bundle, exterior forms, the de Rham complex, connection,
etc.) are considered in this way. All the examinations are carried out in algebraic language, for
we do not care about the convergence of formal maps. It may be useful for the investigation of
some nonlinear differential equations.

1◦. Principal objects of differential geometry are smooth manifolds, bundles, sec-

tions of bundles, and connections. Their local definitions, properties, and relations are

formulated in terms of the category whose objects are linear spaces (more exactly, neigh-

bourhoods in linear spaces) and whose morphisms are smooth maps of these neighbour-

hoods. One can try to extend the category by replacing the morphisms with others. It

leads to some reformulation of the theory.

We do such a reformulation in the case when formal functional and operator power

series play the role of morphisms ([1], [4]). All the operations are performed not over

maps, but over the sets of their Tailor coefficients. The operations prove to be correct

because substituting a series without zero term for the arguments of another series one

gets that the coefficients of the resulting series are some finite sums. But now one need not

make any assumptions about the convergence of the series. Therefore the reformulation is

substantial: we turn in fact from analysis to algebra. Particularly, it turns out to be useful

for some procedures of calculation of solutions of nonlinear differential equations ([3], [5]).

We call the morphisms described by the sets of coefficients the formal mappings. An

associative operation ◦ of composition of formal mappings corresponding to the substi-
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tution a series for the arguments of another one, and an operation # corresponding to

the differentiation along a direction are defined.

The latter operation is not associative. However the commutator built on it defines a

bracket subjected to the Jacobi identity. The bracket is analogous to the Gerstenhaber

bracket ([6]). With the help of the above mentioned operations we define local manifolds,

bundles over them, algebras of differential forms, connections.

Notice that constructions connected with the exponential map of the Lie algebra under

consideration: a composite exponential and its inversion—a composite logarithm—are

described in [1] in this way.

Another aspect of the work is its connections with formal differential geometry which

is considered from the point of view of the modern analysis, where instead of a geometrical

object one considers a set of functions on it. There (see [5]) instead of a smooth manifold

its formal generalization is considered: a module (of formal mappings) over a Lie algebra

(of formal vector fields).

The results described in this publication were announced in [2].

2◦. Now we introduce the main objects and operations on them.

Let X, Y be linear topological spaces (l.t.s.’s) over a field K (when it is not important

that spaces are topological, we will write simply l.s.). Let Lk(X,Y ) be l.t.s. of k-linear

mappings from X to Y , and let Lk,s(X,Y ) be its subspace consisting of symmetrical

mappings, L0,s(X,Y ) = Y .

Consider the l.s.’s

L(X,Y ) =

∞∏
k=1

Lk(X,Y ), Ls(X,Y ) =

∞∏
k=0

Lk,s(X,Y ),

whose elements are infinite sets of the form

a = (a1, a2, . . . , ak, . . .) ∈ L(X,Y ), f = (f0, f1, . . . , fk, . . .) ∈ Ls(X,Y ).

They are called formal mappings (f.m.’s).

Denote the projection of Ls(X,Y ) onto Ls(X,Y ) ∩ L(X,Y ) by the sign ˘:

f = (f0, f1, . . . , fk, . . .) ∈ Ls(X,Y )⇒ f̆ = (f1, . . . , fk, . . .).

Introduce a composition

◦ : L(Y, Z)× L(X,Y )→ L(X,Z),

(a ◦ b)k =

k∑
j=1

∑
k1+...+kj=k

aj ◦
( j⊗
m=1

bkm

)
.

Proposition 1. The operation ◦ is associative.

Denote an identity mapping of a space X by IX ∈ L1(X,X) = L1(X). Obviously, the

f.m. idX = (IX , 0, . . . , 0, . . .) ∈ L(X) = L(X,X) is an identity element with respect to

the composition. Thus we obtain the category of formal mappings X , whose objects are

l.s.’s and Hom(X,Y ) = L(X,Y ).
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Obviously, it is necessary for a ∈ L(X,Y ) to be invertible that a1 is invertible. It is

proved to be sufficient too. So, the elements of the set

G(X,Y ) = { a ∈ L(X,Y ) | ∃a−1
1 ∈ L1(Y,X) }

(and only they) are invertible with respect to the composition. Notice the set G(X) =

G(X,X) is a group with respect to the composition.

An element ϕ ∈ L(X,Y ) generates a morphism of objects on X into objects on Y

being a homomorphism of Ls(Y, Z) into Ls(X,Z):
s◦ : Ls(Y,Z)× L(X,Y )→ Ls(X,Z),

f
s◦ ϕ = f0 × S(f̆ ◦ ϕ),

where S is the operation of symmetrization of the set of polylinear mappings.

Proposition 2. If ϕ ∈ L(Y, Z), ψ ∈ L(X,Y ), f ∈ Ls(Z,Z ′), then

f
s◦ (ϕ ◦ ψ) = (f

s◦ ϕ)
s◦ ψ = S(f0 × (f̆ ◦ ϕ ◦ ψ)),

so we can say the symmetrical composition is associative too.

Let us consider, for each element of the group G(X), the morphism generated by

the inverted element. Such a morphism is called a change of variables (or a coordinate

transformation). All the changes of variables in Ls(X,Y ) form a representation of the

group G(X) in the l.s. Ls(X,Y ).

Suppose that, for elements of spaces Y , Z, V , a bilinear operation of multiplication

· : Y × Z → V is defined. We extend it to the elements of the l.s.’s Ls(X,Y ), Ls(X,Z)

by

· : Ls(X,Y )× Ls(X,Z)→ Ls(X,V ), (f · g)k = S
( ∑
j+l=k

fj · gl
)
. (1)

The new operation is also bilinear. It is associative (commutative) if so is the initial

operation.

The symmetrical composition is right distributive with respect to the multiplication,

i.e., if ϕ ∈ L(X ′, X), then

(f · g)
s◦ ϕ = (f

s◦ ϕ) · (g s◦ ϕ).

Consider the multiplication of linear operators on a l.s. E. It can be extended to the

space Ls(X,L1(E)) by the formula (1). The elements of the subset

L0
s(X,L1(E)) = {Φ = (Φ0,Φ1, . . .) | ∃Φ−1

0 }

form a group of invertible elements with respect to the multiplication.

If Φ ∈ L0
s(X,L1(E)), we will denote the inverse of Φ with respect to this operation

by Φ−1 ∈ L0
s(X,L1(E)).

Now we define in Ls(X,Y ) an operation Db : Ls(X,Y )→ Ls(X,Y ) of differentiation

along an element b ∈ Ls(X), setting

(Dba)k = S
( ∑
j+l=k+1
j 6=0

j∑
n=1

aj ◦
(( n−1⊗

1

IX

)
⊗ bl ⊗

( j⊗
n+1

IX

)))
.
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If the spaces under consideration are topological, and b0 = 0, then

Dba = S

(
d

d ε

∣∣∣∣
ε=0

a ◦ (idX + εb)

)
.

Let us denote a#b := Dba. Notice that idX#b = b, (a#idX)k = kak (the Euler

identity for homogeneous functions).

The operation # is bilinear. It is not associative, but the associator

a#(b, c) := (a#b)#c− a#(b#c)

is symmetric under the permutation of b and c:

a#(b, c) = a#(c, b).

It is proved to be sufficient so that the following theorem should hold.

Theorem 1. The space Ls(X) possesses a Lie algebra AX structure with bracket

[b, c] = b#c− c#b.
The space Ls(X,Y ) is an AX-module with action b 7→ Db:

[Db, Dc]a := (DcDb −DbDc)a = D[b,c]a.

Notice we can define # by setting a#b = a′ ◦ b, where

′ : Ls(X,Y )→ Ls(X,L1(X,Y )),

(a′)kh =

k+1∑
n=1

ak+1 ◦
(( n−1⊗

1

IX

)
⊗ h⊗

( k+1⊗
n+1

IX

))
.

3◦. We call a pair (A,M), where A is a Lie algebra and M is A-module, a formal

manifold. By Theorem 1 the pair MX = (AX ,Ls(X,K)) forms a formal manifold. In

the case under consideration, M = Ls(X,K) is a commutative algebra with operation of

symmetric tensor multiplication · given before by formula (1). The elements of the Lie

algebra AX act in it as differentiations.

The totality of these formal manifolds form a category M with morphisms

Hom(MX ,MY ) = L(X,Y ),

L(X,Y ) 3 ϕ : Ls(Y,K)→ Ls(X,K),

f 7→ f
s◦ ϕ.

Theorem 2. Elements g ∈ G(X,Y ) are isomorphisms of this category with action

Sg : (AY ,Ls(Y,K))→ (AX ,Ls(X,K)),

Sg : (A, f) 7→ ((g#A)
s◦ g−1 =: Ag, f

s◦ g−1 =: fg).

The following relation holds:

fg#Ag = (f#A)
s◦ g−1.

We will call the group G(X) the group of coordinate transformations of a formal

manifold MX .

Now we define a formal analogue of a vector bundle with MX as a base and a l.s. E

as a typical fiber.
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Theorem 3. Endow the l.s. AX,E = AX+̇Ls(X,L1(E)) with the Lie algebra structure

by setting the bracket

[(a, α), (b, β)] = ([a, b], α#b− β#a+ [α, β]),

where [α, β] = α · β − β · α. Then, Ls(X,E∗) is an AX,E-module with action

(a, α)ω = ω#a+ α∗ · ω.

We will call the formal manifold V (X,E) = (AX,E ,Ls(X,E∗)) a total space of vector

bundle with base X and fiber E.

Every section ξ determines a mapping

ξ̃ : Ls(X,E∗)→ Ls(X,K),

ξ̃ : ω 7→ ω · ξ,

so we obtain a pairing between sections of the bundle and those of the cofibration.

Coordinate transformations of the vector bundle V (X,E) are defined by the pairs

(g,Φ) ∈ G(X)+̇L0
s(X,L1(E)) =: G(X,E). G(X,E) forms a group with multiplication

(g1,Φ1) · (g2,Φ2) = (g1 ◦ g2, (Φ1
s◦ g2) · Φ2).

Its identity element is the pair (idX , IX,E), and

(g,Φ)
−1

= (g−1, (Φ
s◦ g−1)

−1
).

The action of elements (g,Φ) ∈ G(X,E) is defined as follows:

S(g,Φ)((a, α), ω) = (S(g,Φ)(a, α), S(g,Φ)ω),

where

S1
(g,Φ)(a, α) = Sga

and

S2
(g,Φ)(a, α) =

[
(Φ#a+ α∗ · Φ) · Φ−1

] s◦ g−1 (2)

are the components of the vector field S(g,Φ)(A,α), and

S(g,Φ)ω = (ω · Φ−1)
s◦ g−1.

Theorem 4. S(g,Φ) is a representation of G(X,E) concordant with Sg, i.e., the action

(g,Φ) 7→ S(g,Φ) is a homomorphism and

S(g,Φ)(f · ω) = Sgf · S(g,Φ)ω,

S(g,Φ)(f · (a, α)) = Sgf · S(g,Φ)(a, α),

where f ∈ Ls(X,K).

We will say that an atlas of changes of variables in a vector bundle V (X,E) is intro-

duced if a subgroup of the group G(X,E) is defined.

Coordinate transformations in the Ls(X,K)-module Ls(X,E) of sections of the bundle

V (X,E) can be defined too, and this way we obtain a representation concordant with all

the structures introduced.
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In particular, when E = X we have a formal analogue of a tangent bundle on MX ,

where the group of changes of variables is the subgroup of the group G(X,X) consisting

of elements of the form (g, g′).

4◦. Let A(E) =

∞⊕
r=0

Ar(E) be the external forms algebra on a l.s. E. For v ∈ E let

iv be an inner product mapping:

iv : Ar(E)→ Ar−1(E), iv : ω 7→ ω(v, ·, . . . , ·).

Denote the l.s. of formal r-forms on V (X,E) by Ωr(X,E) := Ls(X,Ar(E)). The

multiplication ∧ : Ar(E) ×As(E) → Ar+s(E) is extended to the spaces Ωr(X,E) and

Ωs(X,E) by the formula (1). Put Ω(X,E) :=

∞⊕
r=0

Ωr(X,E) and extend ∧ by linearity

to the whole Ω(X,E). The l.s. Ω(X,E) with the multiplication ∧ is called an algebra of

external forms on the vector bundle V (X,E) .

The space of formal r-forms is canonically identified with the space of sets of linear

mappings from X⊗k ⊗ E⊗r into K that are symmetrical in the arguments from X and

skew-symmetrical in the arguments from E:

Ωr(X,E) =

∞∏
k=0

L(k,s)(r,a)(X,E;K).

We will separate the symmetrical and skew-symmetrical arguments with a vertical

line: if ω ∈ Ωr(X,E), then

ωk(x1, . . . , xk)(h1, . . . , hr) = ω(x1, . . . , xk|h1, . . . , hr).

Thus, if ω ∈ Ωr(X,E), θ ∈ Ωr(X,E), then

(ω ∧ θ)k(x1, . . . , xk|h1, . . . , hr+s) =

=
∑
j+l=k

(ωj ⊗ θl) ◦ (
︷ ︸︸ ︷
x1, . . . , xj |h1, . . . , hr︸ ︷︷ ︸)⊗ (

︷ ︸︸ ︷
xj+1, . . . , xk |hr+1, . . . , hr+s︸ ︷︷ ︸),

where the top braces denote symmetrization in the corresponding elements and the bot-

tom braces alternation.

The inner product is extended to the sections of the bundle and external forms by

the formula (1):

(iξω)k = S
( ∑
j+l=k

ωj ◦
(( j⊗

1

IX

)∣∣∣ξl ⊗ ( r⊗
2

IE

)))
,

where ξ ∈ Ls(X,E), ω ∈ Ωr(X,E), with

iξ(ω ∧ θ) = (iξω) ∧ θ + (−1)
r
ω ∧ (iξθ),

where r is the power of the form ω.

Denote the change of variables in Ω(X,E) by the same symbol S(g,Φ):

S(g,Φ)ω = (ω · (Φ−1)
⊗r

)
s◦ g−1,
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where r is the power of the form ω. The change of variables is proved to be concordant

with all the operations.

Let us introduce the de Rham complex. Consider the algebra of external forms on the

manifold MX , Ω(X) := Ω(X,X). Define a mapping d : Ωr(X)→ Ωr+1(X) by

(dω)k(x1, . . . , xk|h1, . . . , hr+1) = (k + 1)ωk+1(x1, . . . , xk, h1|h2, . . . , hr+1︸ ︷︷ ︸).
Extend d to the whole Ω(X) by linearity. It satisfies to all the usual properties of

external differential, and, in particular,

(dω)(A1, . . . , Ar+1) =

r+1∑
i=1

(−1)
i−1

Aiω(A1, . . . , Âi, . . . , Ar+1)+∑
i<j

(−1)
i+1

ω([Ai, Aj ], A1, . . . , Âi, . . . , Âj , . . . , Ar+1),

where ω ∈ Ωr(X), Aj ∈ AX , j = 1, . . . , r + 1, and the hat denotes the absence of a

symbol.

The exact and closed forms are defined in the usual way. In particular, the exact 1-

forms are distinguished among all the 1-forms by the property that they are symmetrical

in all the arguments.

Define a linear mapping δ : Ωr+1(X)→ Ωr(X) by

(δω)k(x1, . . . , xk|h1, . . . , hr) =
1

k
ωk−1(

︷ ︸︸ ︷
x1, . . . , xk−1|xk, h1, . . . , hr),

and extend it to ΩX by linearity. The properties of d hold for δ. The {δ, d} = δd+ dδ is

differentiation of power 0 of the algebra Ω(X) (see [7, Ch. IV]).

Proposition 3. If ω ∈ Ωr(X), then

({δ, d}ω)k = (r + k)ωk.

A Lie differentiation of the external form ω along the vector field A can be defined

by the formula LAω = {iA, d}ω.

5◦. We consider in this item linear topological spaces.

Consider a 1-parameter family a(t) ∈ L(X) of vector fields. If there exists a 2-

parameter family u(t, τ) ∈ Ls(X) such that

du(t, τ)

dt
= a(t)

s◦ u(t, τ), u(τ, τ) = id, (3)

than a(t) is called to be integrable. In this case u(t, τ) is evolutionary family, i.e.,

u(t, τ) = u(t, s)
s◦ u(s, τ).

u(t, τ) is called the evolutionary family of shifts along the trajectories of a(t), a(t) is called

the generator of the family u(t, τ). The generator can be found by the usual formula

a(t) =
d

ds
u(s, t)

∣∣∣∣
s=t

.

It is proved that a(t) is integrable if and only if its linear part a1(t) is integrable, with

u2(t, τ), . . . calculated by the explicit formulae (see [3]).
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Consider the evolutionary family generated by a constant formal vector field a. In this

case equation (3) is invariant with respect to the shifts t 7→ t−s. It means u(t, τ) = u(t−τ)

depends only on the difference of the arguments. Further, the family u(t) (t ≥ 0) forms

a semigroup because (3) has the form

u(t1 + t2) = u(t1) ◦ u(t2) (t1, t2 ≥ 0), u(0) = idX .

We call the family u(t) a composite exponential and denote it by

◦
exp at = u(t).

Proposition 4. The composite exponential satisfies the following relation (see [1]):

f
s◦ ◦

exp at = etDaf,

where f ∈ Ls(X,Y ) is an object on X, and etDa is the semigroup of linear operators on

Ls(X,Y ) with the generator Da

So, it is sufficient to calculate the linear exponential etDa for calculation the composite

one (see [3]).

6◦. Define a connection on the v.b. V (X,E) with the help of the formal mapping

Γ ∈ Ls(X,L1(X,L1(E))) called a coefficient of connection or the Christoffel symbol.

A coefficient of connection defines a covariant derivative of the section ξ of the bundle

V (X,E) along the vector field η:

∇Γ : AX+̇Ls(X,E)→ Ls(X,E),

∇Γη ξ = ξ#η + (Γ · η) · ξ.

The transformation

S(g,Φ) : Γ 7→ Γ(g,Φ) = [((Φ · Γ − Φ′) · (g−1)
′
) · Φ−1]

s◦ g−1

of the connection coefficient corresponds to the coordinate transformation (g,Φ) of the

bundle.

Proposition 5. The following relations hold

∇Γf ·ηξ = f · ∇Γη ξ,(a)

∇Γη f · ξ = f#η + f · ∇Γη ξ,(b)

S∗(g,Φ)∇
Γ
η ξ = ∇Γ(g,Φ)

ηg ξ(g,Φ),(c)

−Γ(g,Φ) · ηg = S2
(g,Φ)(η,−Γ · η),(d)

where S2
(g,Φ) acts by formula (2).

We say a section ξ of the v.b. V (X,E) is parallel along the trajectories of a vector

field η if the following relation holds:

∇Γη ξ = 0.

We further consider linear topological spaces.
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Suppose that vector field η without zero term generates an evolutionary family u(t, τ)

∈ Ls(X) of shifts along the trajectories of η:

du(t, τ)

dt
= η

s◦ u(t, τ), u(τ, τ) = id. (4)

Proposition 6. The linear differential equation

dU(t, τ)

dt
= −[(Γ · η)

s◦ u(t, τ)] · U(t, τ), U(τ, τ) = IX,E

together with (4 ) defines the evolutionary pair (u, U) ∈ Ls(X)×Ls(X,L1(E)) of parallel

translation along the trajectories of the η possessing the property

(U(t, s)
s◦ u(s, τ)) · U(s, τ) = U(t, τ), t ≥ s ≥ τ.

The evolutionary pair is invariant with respect to the changes of variables, i.e., the

pair (ug, U(g,Φ)) specifies the parallel translation along ηg in the connection Γ(g,Φ).

Theorem 5. The section ξ ∈ Ls(X,E) possessing the property

ξ
s◦ u(t, τ) = U(t, τ) · ξ

is parallel along the η.
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