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1. Introduction. In this paper we consider a formal algebraic construction such that

an algebraic apparatus of differential geometry could be interpreted as its realization:

construction of (A,D)-systems. This construction was offered by I. M. Gelfand and one

of the authors (see [1,2]) as a basis of non-commutative differential geometry in the

following sense: we replace an algebra of functions on some manifold by a module over a

Lie algebra.

Thus, we take a pair (M,A) consisting of Lie algebra A and A-module M as an

abstract non-commutative analog of a smooth manifold (see [3,4]).

This approach allows us to extend a stock of realizations of our theory. Among them

there are a formal calculus of variations (see [3,4]) and also a construction with a matrix al-

gebra asM close to [5]. In [2,6,7] an application of formal apparatus mentioned to the situ-

ation, when a Lie algebra of Hochschild cohomology acts in a complex (Ω, d) of Hochschild

homology with cyclic differential is considered. The results of [8] about Poisson brackets

on differential forms and multivector fields on a smooth manifold are also described and

generalized in the frameworks of the formal construction mentioned (see also our preprint

[9]). Construction of a many-linear analog of Lie algebra introduced by Y. Nambu and

developed by L. Takhtajan (see [10,11,12]) also is connected with our approach.

1991 Mathematics Subject Classification: 17B70, 17A42.
The research described in this publication was made possible in part by Grant No U44200

from the International Science Foundation.
This work was supported by the Fundamental Research Foundation of the State Committee

on Science and Technology of Ukraine.
The paper is in final form and no version of it will be published elsewhere.

[293]



294 YU. L. DALETSKII AND V. A. KUSHNIREVITCH

Following [1,2] this paper is written in terms of superalgebra, which is necessary

in essence. Besides that it leads to the further extension of applications including, for

instance, an apparatus of differential geometry of supermanifolds and also graded formal

calculus of variations (see [13,14]).

Note that different aspects of non-commutative differential geometry in wide sense

are elaborated by A. Connes, D. Kastler, S. Woronowicz and their followers (see [15,16]

and references there).

2. Main notation. A linear space (L, p) is a graded linear space with a parity function

p. Values of p are integer numbers or integer vectors. In the last case we understand

p · p′ =
∑m
k=1 λkλ

′
k as a product of p = (λ1, . . . , λm) and p′ = (λ′1, . . . , λ

′
m). An element

x ∈ L is said to be even or odd, if the number p2 is relatively even or odd. A parity of

a map of linear spaces is consistent with elements of these spaces in an ordinary way:

p(f(x)) = p(f) + p(x).

A Lie algebra (A, [·, ·], p) is a linear space (A, p) with a bilinear operation [·, ·] : A×A→
A, which satisfies a condition of skew symmetry

[a, b] = −(−1)p(a)p(b)[b, a]

and Jacobi identity, which one can write in the form

ada[b, c] = [ada b, c] + (−1)p(a)p(b)[b, ada c],

where ada b = [a, b] is an adjoint action of bracket.

A module (M,p) over a Lie algebra (A, [·, ·], p) is a linear space, on which left action

a×m 7→ Lam (a ∈ A, m ∈M) is defined and the following condition

[La, Lb]
∨m = L[a,b]m (2.1)

holds. Here and below we use the following notation: [A,B]∨ = AB − (−1)p(A)p(B)BA

for A and B being operators.

A complex (Ω =
⊕∞

k=0 Ωk, d, p) is described as a linear space (L, ~p) with new grad-

uation ~p(ω) = (p(ω), k) (ω ∈ Ωk). It is called a complex over Lie algebra (A, [·, ·], p)
(A-complex), if the actions ia and La with changed parities ~p(ia) = (p(a),−1) and

~p(La) = (p(a), 0) are defined on Ω and the following relations

[d, d]∨ = 0, [ia, ib]
∨ = 0, La = [ia, d]∨, [La, ib]

∨ = i[a,b] (2.2)

are taken place. Then any Ωk is A-module with the action La and [La, Lb]
∨ = L[a,b]

(a, b ∈ A).

Below, where it does not lead to misunderstandings, the sign p will be omitted.

If M is A-module, then A-complex Ω(M,A) (de Rham complex of a pair (M,A)) is

defined canonically:

Ω0 = M, Ωk = {ω|ω : A× . . .× A︸ ︷︷ ︸
k

→M is k−linear skew symmetric map}

(dω)(a1, . . . , an+1) =

n+1∑
k=1

(−1)k+1+pkp(ω)+pk Σr<k prLak(ω(a1, . . . , âk, . . . , an+1))+

+
∑
j<k

(−1)j+k+pj Σr<j pr+pk Σr<k pr+pjpkω([aj , ak], a1, . . . , âj , . . . , âk, . . . , an+1), (2.3)
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(iaω)(b1, . . . , bk) = (−1)p(ω)p(a)ω(a, b1, . . . , bk) (2.4)

(Sign â means that a is omitted.)

We consider the following generalization of A-module and A-complex. Suppose Lie

algebra structures [·, ·]ξ and actions Lξa linearly depend on parameter ξ valued in some

linear space L; and (2.1) is valid for any ξ ∈ L. Then we say that M is multimodule over

A. In this case brackets are bound by the following relation

[[a1, a2]ξ1 , a3]ξ2 + [[a1, a2]ξ2 , a3]ξ1 + (−1)p1p2 [a2, [a1, a3]ξ1 ]ξ2 +

+ (−1)p1p2 [a2, [a1, a3]ξ2 ]ξ1 = [a1, [a2, a3]ξ1 ]ξ2 + [a1, [a2, a3]ξ2 ]ξ1 .

Proposition 2.1. Let M be a multimodule over Aξ = (A, [·, ·]ξ) and for any ξ ∈
L (Ω(M,Aξ), dξ) be the set of corresponding de Rham complexes. Then the following

relations: dξ1+ξ2 = dξ1 + dξ2 and [dξ1 , dξ2 ] = 0 hold.

We say that (Ω, dξ) is a multicomplex.

3. Brackets generated by differentials. Let G = (G, [·, ·], p) be a Lie algebra.

Any odd element d ∈ G is called a differential in G, if the following property

[d, d] = 0

holds.

With any differential we associate a Lie map

Ld : g 7→ [g, d]

and a d-bracket: bilinear operation

[g1, g2]d = [Ldg1, g2] = [[g1, d], g2].

It easily follows from the Jacobi identity that

Ld[g1, g2]d = [Ldg1, L
dg2] (g1, g2 ∈ G) (3.1)

Let π = p(d), p̃(g) = p(g) + π.

Proposition 3.1. For any gj ∈ G (pj = p(gj), p̃j = pj + π) the following relations

hold

[g1, g2]d + (−1)p̃1p̃2 [g2, g1]d = Ld ((−1)πp2 [g1, g2]) (3.2)

(−1)p̃1p̃3 [[g1, g2]d, g3]d + y =
1

3
Ld
{

(−1)p1p̃3 ([g1, [g2, g3]]d − 2[[g1, g2]d, g3]) + y
}
, (3.3)

(by the sign y we denote terms which are obtained from the latter one by the cyclic

permutation of indexes).

Consider now an even element Θ. Let dΘ = [Θ, d]. We have

[dΘ, d] = 0, [dΘ, dΘ] = [[Θ,Θ]d, d] (3.4)

Then Θ is called a conditional differential, if dΘ is a differential: [dΘ, dΘ] = 0. The

sufficient condition of Θ being conditional differential is

[Θ,Θ]d = 0. (3.5)



296 YU. L. DALETSKII AND V. A. KUSHNIREVITCH

4. Structures on commutative Lie subalgebras

Definition. A commutative subalgebra L, which is invariant with respect to d-

bracket is called a d-space in G:

[L,L] = 0, [L,L]d ⊂ L.

We get from from (3.1)–(3.3) the following theorem.

Theorem 4.1. d-bracket induces a Lie algebra structure Ld = (L, [·, ·]d, p̃) in a d-space

L. The Lie map L : (L, [·, ·]d, p̃)→ (L, [·, ·], p) is a homomorphism of Lie algebras.

Let G be a Lie algebra and let Ω be a commutative Lie subalgebra, which is invariant

with respect to Lie map:

[Ω,Ω] = 0, [Ω, d] ⊂ Ω. (4.1)

Then it is evident that Ω is a d-comutative d-space (i. e. [Ω,Ω]d = 0).

Theorem 4.2. Let Ω obey the condition (4.1 ), and Θ be a conditional differential ,

and the following condition holds

ω1, ω2 ∈ Ω⇒ [[ω1,Θ], ω2] = 0. (4.2)

Then Ω is a dΘ-space possessing Lie algebra structure ΩdΘ = (Ω, [·, ·]dΘ , p̃) and

LdΘ : [ω1, ω2]dΘ
7→ [[ω1, dΘ], [ω2, dΘ]]

is a homomorphism of Lie algebras ΩdΘ
→ G.

5. Structures on quotient space. Consider a kernel and an image of Lie map Ld:

Zd = {z ∈ G | [z, d] = 0}

Jd = {h = [g, d] | g ∈ G} ⊂ Zd
Theorem 5.1. The linear space Zd ⊂ G is an ideal with respect to [·, ·]d. A quotient

space Kd = G/Zd possesses a Lie algebra structure (Kd, [·, ·]d, p̃), and the Lie map

Ld : (Kd, [·, ·]d, p̃)→ (Jd, [·, ·], p)

is an isomorphism of Lie algebras.

Let now Θ be a conditional differential. Then due to (3.4) Θ is a differential in Kd.
Introduce the bracket

[[g1, g2]]Θ = [[g1,Θ]d, g2]d. (5.1)

Theorem 5.2. A space Ω/Zd is a Θ-space in Kd. Therefore (Ω/Zd, [[·, ·]]Θ, p) is a Lie

algebra, and a Lie map

LΘ : ω 7→ [ω,Θ]d = [[ω, d],Θ]

is a homomorphism of Lie algebras Ω/Zd → Kd.

6. (A,D)-structures and modules. An (A,D)-structure is a Lie algebra G =

G(A,D) generated by commutative Lie subalgebras A and D, and the following con-

ditions hold:
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(i) D consists of differentials;

(ii) A is a D-space (i. e. ∀ d ∈ D A is a d-space):

[[A,D],A] ⊂ A

Under these conditions a G-module is called (A,D)-module.

Let (Ω,D) be a multicomplex over A. Then Ω is an (A,D)-module. In particular, mul-

timodule (M,A) generates the multicomplex Ω(M,A) and therefore the (A,D)-module.

On the contrary

Proposition 6.1. If Ω is a (A,D)-module, then any differential d ∈ D generates a

Lie algebra structure (A, [·, ·]d, p+ π) in A. Moreover , Ω becomes a multimodule with an

action Ldaω = [a, d]ω.

R e m a r k. If Ω = Ω(M,A) is the de Rham complex of a pair (M,A), then Lie algebra

structure obtained in A coincides with initial one.

Consider (A,D)-module Ω. Denote by ˜(Ω,A,D) a corresponding Lie algebra and by

UEA(Ω,A,D) its universal enveloping algebra. Generating by UEA(Ω,A,D) Lie algebra

with the bracket [·, ·], which is uniquely defined by Leibnitz rule

[ab, c] = a[b, c] + (−1)p(b)p(c)[a, c]b

is said to be an extended (Ω,A,D)-structure. It contains the commutative Lie subalgebras

Ω, A, D and together with them the commutative Lie subalgebras Ã, Ω̃, which are

obtained from the corresponding symmetric algebras by the bracket [·, ·].
Note that a symmetric algebra with a parity (p, 1) is an antisymmetric one with a

parity p.

In such a situation elements of Ω̃ are said to be differential forms, elements of A

– vector fields, elements of Ã – multivector fields, elements of Ω̃ ⊗ A – vectorvalued

differential forms.

Below we consider a different structures of Lie algebras arising on these spaces in view

of sections 4 and 5.

7. Structures on vector fields and on vectorvalued differential forms. Let

(Ω,A,D) be an extended (A,D)-structure. By definition A (and therefore Ã)is a d-space

for all d ∈ D. Hence, the following result is taken place.

Theorem 7.1. Bracket

[A,B]d = [[A, d], B]

equips Ã with a Lie algebra structure (Ã, [·, ·]d, p + π). Restriction (Ã, [·, ·]d, p + π)|A
coincides with the structure from Proposition 6.1. The following relation holds

[A1A2, B]d = A1[A2, B]d + (−1)p(A2)p(B)[A1, B]A2.

Consider now vectorvalued forms.
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Theorem 7.2. A space Ω̃ ⊗ A possesses a Lie algebra structure (Ω̃ ⊗ A, [·, ·]′d, p + π)

with the bracket

[ω1a1, ω2a2]′d = (−1)p
′(a1)p(ω2)ω1ω2[a1, a2]d + [ω1a1, ω2]da2 −

− (−1)p
′(ω1a1)p′(ω2a2)[ω2a2, ω1]da1,

where p′(ωa) = p(ω) + p′(a), p′(a) = (p̃(a), 0).

This fact follows from the general assertion (see [1]).

Theorem 7.3. Let a commutative algebra M be an A-module and elements of A be

differentials in M . Then AM = M ⊗ A possesses Lie algebra structure with the bracket

[m1 ⊗ a1,m2 ⊗ a2] = (−1)p(a1)p(m2)m1,m2 ⊗ [a1, a2] +

+m1(a1m2)⊗ a2 − (−1)p(m1⊗a1)p(m2⊗a2)m2(a2m1)⊗ a1.

In addition, M is AM -module:

(m⊗ a)m′ = m(am′).

8. Structures on differential forms generating by bivector fields. Let an

extended (Ω,A,D)-structure be generated by a de Rham complex of a pair (M,A) with

parity ~p defined by the following relations

~p(a) = (p(a),−1), π = ~p(d) = (0, 1), ~p(ω) = (p(ω), k) as ω ∈ Ωk.

A parity for tensor products is defined by ordinary way (by summation).

Consider bivector field Θ =
∑
k akbk (ak, bk ∈ A). For the sake of simplicity we put

~p(ak) = ~p(bk) = (0, 1). We associate with Θ a bilinear map H : Ω̃→ Ω̃⊗ A

Hω = (−1)m{[ω, bk]ak − [ω, ak]bk} (ω ∈ Ωm)

Note that

[[ω1,Θ], ω2] =
∑
k

{[ω1, ak][bk, ω2]− [ω1, bk][ak, ω2]} ∈ Ω̃,

[Hω, ω1] = −(−1)πp(ω)[[ω,Θ], ω1]

and

dΘ =
∑
k

{akLbk − bkLak + [ak, bk]d}

The Poisson brackets [·, ·]dΘ
and [[·, ·]]Θ are defined on Ω̃. They obey Leibnitz rule

[ω, ω1ω2]dΘ = [ω, ω1]dΘω2 + (−1)p(ω1)(p(ω)+p(dΘ)ω1[ω, ω2]dΘ ,

[[ω, ω1ω2]]Θ = [[ω, ω1]]Θω2 + (−1)p(ω1)(p(ω)+p(Θ))ω1[[ω, ω2]]Θ.

Also they are bound by the relation

(d[[ω1, ω2]]Θ) = [(dω1), (dω2]dΘ .

Moreover, as ω1 ∈ Ω̃m1 , ω2 ∈ Ω̃m2

[ω1, ω2]dΘ = −(d[Hω1, ω2])− (−1)m1 [Hω1, (dω2)]− (−1)m1+m2 [(dω1),Hω2].

The next theorem follows from the above results.
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Theorem 8.1. If Θ is a conditional differential :

[dΘ, dΘ] = 0, (8.1)

then

(i) (Ω̃, [·, ·]dΘ
, p+ π) is a Lie algebra; dΩ̃ is a Lie subalgebra and

LdΘ : [ω1, ω2]dΘ
7→ [[ω1, dΘ], [ω2, dΘ]]

is a homomorphism of Lie algebras;

(ii) (Ω̃/ ker d, [[·, ·]]Θ, p) is a Lie algebra and

LΘ : [[ω1, ω2]]Θ 7→ [[[ω1, ω2]]Θ,Θ]d = [[ω1,Θ]d, [ω2,Θ]d]

is a homomorphism of Lie algebras.

Proposition 8.2. Relation [Θ,Θ]d = 0 (which is sufficient for (8.1 )) holds, if the

system of vector fields {ak, bj | ak, bj ∈ A} is commutative in (A, [[·, ·]] = [·, ·]d, p+ π):

[[aj , ak]] = [[bj , bk]] = [[aj , bk]] = 0 (∀ j, k).

The map H is said to be Hamiltonian, if it is a homomorphism

H(d[[ω1, ω2]]Θ) = H[(dω1), (dω2)]dΘ = [H(dω1),H(dω2)]′d

(Ω̃/ ker d, [[ , ]]Θ, p)
d→ (dΩ̃, [ , ]dΘ

, p+ π)
H→ (Ω̃⊗ A, [ , ]′d, p

′)

Theorem 8.3. The map H is Hamiltonian under one of the following conditions:

(i) commutativity conditions are fulfilled

[[aj , ak]] = [[bj , bk]] = [[aj , bk]] = 0 (∀ j, k);

(ii) [Θ,Θ]d = 0 and ∀ ξ ∈ Ω̃⊗ A : [ξ, dΩ̃] = 0 or [ξ, d] = 0 implies ξ = 0;

9. Nambu–Takhtajan algebras. Nambu–Takhtajan algebra structure of order 3

is defined in a linear space N, if there is defined a 3-linear operation (Nambu bracket)

[·, ·, ·] : N×N×N→ N possessing the properties:

(i) skew symmetry

[a1, a2, a3] = −(−1)p1p2 [a2, a1, a3] =

= −(−1)p2p3 [a1, a3, a2] =

= −(−1)p1p2+p2p3+p1p3 [a3, a2, a1]

(ii) fundamental identity: an adjoint action La1,a2
a3 = [a1, a2, a3] is a differentiation

with respect to Nambu bracket:

La1,a2 [a3, a4, a5] = [La1,a2a3, a4, a5]+

+ (−1)(p1+p2)p3 [a3, La1,a2
a4, a5] + (−1)(p1+p2)(p3+p4)[a3, a4, La1,a2

a5] (9.1)

Here we consider Nambu-Takhtajan algebras only of order 3. All of results (but not always

proves) can be easily transferred to the arbitrary order structure.

One can rewrite (9.1) in the form

[La1,a2
, Lb1,b2 ]∨ = La1,a2

Lb1,b2 − (−1)(p(a1)+p(a2))(p(b1)+p(b2))Lb1,b2La1,a2
=

= L[a1,a2,b1],b2 + (−1)p(b1)(p(a1)+p(a2))Lb1,[a1,a2,b2]
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Theorem 9.1. Consider a linear space N(2) = N ⊗ N/ kerL. Each of the following

formula

[(a1, a2), (b1, b2)] = ([a1, a2, b1], b2) + (−1)p(b1)(p(a1)+p(a2))(b1, [a1, a2, b2]),

[(a1, a2), (b1, b2)] = −(−1)(p(b1)+p(b2))(p(a1)+p(a2))([b1, b2, a1], a2)−

− (−1)p(a1)(p(b1)+p(b2))(a1, [b1, b2, a2]),

induces on N(2) a Lie algebra structure (the same). In addition N becomes a N(2)-module.

Now we can build the de Rham complex Ω(N,N ⊗N/ kerL). Its elements are skew

symmetric polylinear maps of sets of pairs (a1, a2) (a1, a2 ∈ N). For instance,

(df)(a1, a2) = [a1, a2, f ], (f ∈ N)

(dω)((a1, a2), (b1, b2)) = (−1)p(ω)(p(a1)+p(a2))[a1, a2, ω((b1, b2))]−

− (−1)(p(a1)+p(a2)+p(ω))(p(b1)+p(b2))[b1, b2, ω((a1, a2))]−
− ω(([a1, a2, b1], b2))−

− (−1)p(b1)(p(a1)+p(a2))ω((b1, [a1, a2, b2]))

etc.

In such a way one can consider a conditions of a maps to be Hamiltonian leading to

a pair of vector fields.

Another variant to introduce a differential geometry structure connected with Nambu-

Takhtajan algebra is as follows. It is well-known that 3-placed bracket generates a para-

metrically dependent on element of algebra Lie algebra structure with a bracket [a, b]ξ =

[a, ξ, b] (ξ ∈ N).

These brackets satisfy the conditions of Proposition 2.1, and therefore generate a

multicomplex (Ω, dξ). Such a multicomplex is an example of (N,D)-structure with a

commutative space of differentials coinciding with N.

10. Generalized Jacobians. Let (L, p) be a commutative algebra and D1, D2, D3

be a commuting differentials of L: Dj(ab) = (Dja)b + (−1)qp(a)a(Djb) (for the sake of

simplisity we put p(Dj) = q).

The following expression

(D1, D2, D3)(f1, f2, f3) = (−1)qp2(D1f1)(D2f2)(D3f3)+(−1)qp2(D3f1)(D1f2)(D2f3)+

+(−1)qp2(D2f1)(D3f2)(D1f3)− (−1)q(p2+q)(D3f1)(D2f2)(D1f3)−
−(−1)q(p2+q)(D2f1)(D1f2)(D3f3)− (−1)q(p2+q)(D1f1)(D3f2)(D2f3) (10.1)

is said to be a generalized Jacobian. We also will write

(D1, D2, D3)(f1, f2, f3) =

∣∣∣∣∣∣
D1f1 D1f2 D1f3

D2f1 D2f2 D2f3

D3f1 D3f2 D3f3

∣∣∣∣∣∣ = |Dkf1 Dkf2 Dkf3 |
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Proposition 10.1. Operation (10.1 ) possesses the following properties:

(i) skew symmetry

(D1, D2, D3)(f1, f2, f3) = −(−1)p1p2(D1, D2, D3)(f2, f1, f3) =

= −(−1)(D1, D2, D3)(f1, f3, f2) =

= −(−1)p1p2+p2p3+p1p3(D1, D2, D3)(f1, f2, f3)

(ii) differentiation with respect to the multiplication in algebra (L, p):

(D1, D2, D3)(f1 · g, f2, f3) = (−1)p1qf1 · (D1, D2, D3)(g, f2, f3)+

+ (−1)p(g)(p1+q)g · (D1, D2, D3)(f1, f2, f3)

Introduce an action LD1,D2,D3

f1,f2
f3 = (D1, D2, D3)(f1, f2, f3). It is a differentiation with

respect to the multiplication in (L, p):

LD1,D2,D3

f1,f2
(f · g) =

(
LD1,D2,D3

f1,f2
f
)
· g + (−1)p(f)p(g)

(
LD1,D2,D3

f1,f2
g
)
· f.

Theorem 10.2. Expression (10.1 ) defines a Nambu-Takhtajan structure (L, [·, ·, ·], p)
in L with the bracket :

[f1, f2, f3] = (D1, D2, D3)(f1, f2, f3)

Note that it is evident for any differentiation D of algebra L that

D |Dkf1 Dkf2 Dkf3 | = |DDkf1 Dkf2 Dkf3 |+
+ |Dkf1 (−1)p(D)(p1+q)DDkf2 Dkf3 |+
+ |Dkf1 Dkf2 (−1)p(D)(p1+p2)DDkf3 |

(10.2)

This is an analog of a differentiation rule for a determinant.

It remains to check that for D = LD1,D2,D3
g1,g2

one can interchange D and Dk in this

formula, i. e.

D |Dkf1 Dkf2 Dkf3 | = | (−1)p(D)qDkDf1 Dkf2 Dkf3 |+
+ |Dkf1 (−1)p(D)p1DkDf2 Dkf3 |+
+ |Dkf1 Dkf2 (−1)p(D)(p1+p2+q)DkDf3 |

(10.3)

This formula means that an adjoint action of Nambu bracket is a differentiation with

respect to the operation defined by Namby bracket itself. And this fact is equivalent to

fundamental identity.

(10.3) follows from (10.2) using an auxiliary relation

(−1)(p3+q)p5 | (D1, D2, D3)(Dkf1, f2, f3) Dkf4 Dkf5 |+
3,4,5
y = 0,

(by the sign y we denote terms which are obtained from the latter one by the cyclic

permutation of indexes mentioned).

To check it we use direct laborious computation. (For Nambu–Takhtajan algebra of

order n > 3 such a direct computation becomes badly visible).

Consider an examples. In the case p ≡ 0 (10.1) is an ordinary Jacobian. We are

interesting in a common case.
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Let Ω(M,A) be a complex. For instance, let L = Ω be an exterior algebra of differ-

ential forms. To build a generalized Jacobian one need to select a system of commuting

differentials. We propose two different ways to do this:

(i) Dj = iaj (aj ∈ A, j = 1, 2, 3);

(ii) Dj = dξj (ξj ∈ A, j = 1, 2, 3) for multicomplex (i. e. the space of differentials D

acts in Ω̃).

References

[1] I. M. Gel fand and Yu. L. Daletsky, Lie Superalgebras and Hamiltonian Operators.
Rep. No. 16 Sem. Supermanifolds, Dept. Math. Univ. Stockholm, 1987, 26 p.

[2] I. M. Gel fand, Yu. L. Daletski i and B. L. Tsygan, On a Variant of Non-Commutative
Differential Geometry . Soviet Math. Dokl. 40 (1990), 2, 422–426.

[3] I. M. Gel fand and I. Ya. Dorfman, Hamiltonian operators and algebraic structures
connected with them. Funct. anal. appl. 13 (1979), 4, 13–30.

[4] I. M. Gel fand and I. Ya. Dorfman, Hamiltonian operators and infinite dimensional Lie
algebras. Funct. anal. appl. 15 (1981), 3, 23–40.

[5] M. Dubois-Violette, R. Kerner and J. Madore, Noncommutative Differential Geom-
etry of Matrix Algebras. J. Math. Phys. 31 (1990), 2, 316–322.

[6] Yu. L. Daletski i and B. L. Tsygan, Operations on Hochschild and Cyclic Complexes.
K-Theorie, (in print).

[7] Yu. L. Daletski i and B. L. Tsygan, Hamoltonian Operators and Hochschild Homology .
Funct. anal. appl. 19 (1985), 4, 82–83.

[8] A. Cabras and A. M. Vinogradov, Extension of the Poisson Bracket to Differential
Forms and Multi-Vector Fields. J. Geom. and Physics, 9 (1992), 75–100.

[9] Yu. L. Daletski i and V. A. Kushnirevitch, Poisson and Nijenhuis Brackets for Dif-
ferential Forms on Non-Commutative Manifold . SFB 237 – Preprint Nr 274, Institut für
Mathemetik, Ruhr–Universität–Bochum, September, 1995. 29 p.

[10] Y. Nambu, Generalized Hamiltonian Dynamics. Phys. Review D7 (1973), 8, 2405–2412.
[11] L. Takhtajan, On Foundation of the Generalized Nambu Mechanics. Commun. Math.

Phys. 160 (1994), 295–315.
[12] L. Takhtajan, Higher Order Analog of Chevalley–Eilenberg Complex and Deformation

theory of N-gebras. Algebra and Analysis, 6 (1994), 2, 262–272.
[13] Yu. L. Daletski i, Hamiltonian Operators in Graded Formal Calculus of Variations.

Funct. anal. appl. 20 (1986), 2, 62–64.
[14] B. A. Kupershmidt, Elements of Superintegrable Systems. Reidel, 1987.
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