
QUANTUM GROUPS AND QUANTUM SPACES
BANACH CENTER PUBLICATIONS, VOLUME 40

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES

WARSZAWA 1997

GENERALIZED HERMITE POLYNOMIALS OBTAINED
BY EMBEDDINGS OF THE q-HEISENBERG ALGEBRA

JOACHIM SEIFERT

Sektion Physik, Universität München, LS Prof. Wess
Theresienstr. 37, D-80333 München, Germany

E-mail: Joachim.Seifert@physik.uni-muenchen.de
WWW: www.ls-wess.physik.uni-muenchen.de/∼seifert

Abstract. Several ways to embed q-deformed versions of the Heisenberg algebra into the
classical algebra itself are presented. By combination of those embeddings it becomes possible to
transform between q-phase-space and q-oscillator realizations of the q-Heisenberg algebra. Using
these embeddings the corresponding Schrödinger equation can be expressed by various difference
equations. The solutions for two physically relevant cases are found and expressed as Stieltjes
Wigert polynomials.

1. Introduction

1.1. The q-Heisenberg algebra in phase space variables. In a classical paper [1] J. Wess

and J. Schwenk introduced a deformed version of the Heisenberg algebra, where both the

deformed momentum and position operators can be represented by self-adjoint operators

on a Hilbert-Space. The so called toy model-algebra [1] reads:

√
q ξp− 1

√
q
pξ = iu (1)

1
√
q
ξp−√q pξ = iu∗ (2)

up = q pu uξ = q−1 ξu uu∗ = u∗u = 1,

where q > 1, q ∈ R is the deformation parameter. In [2] the following quantum-mechanical

representation is obtained:

p | ± Pn>= ±π0q
n | ± Pn> x | ±Xk>= ± 1

π0
√
q(q − q−1)

qk | ±Xk> (3)

Here either | ± Pn> or | ± Xn> ( for one value of + or −) form an abstract basis for
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an irreducible representation of the q-Heisenberg algebra. This representation is physical

in the sense that all real elements of the ∗ algebra (1) are represented by essentially

self-adjoint operators. Therefore it is necessary to consider two copies (| ± Pn> for +

or −) of irreducible representations [2] of p to have ξ act as an essentially self-adjoint

operator (2). The dual argument is valid for x and | ± Xk>. As in the classical case

a transformation between | ± Pn> and | ± Xn> exists, and is given by the q-Fourier

transformation.

1.2. The q-Heisenberg algebra in oscillator variables. In the classical case a very useful

parameterization of the Heisenberg algebra can be given by annihilation and creation

operators. Recently q-deformations of this oscillator representation have been discussed

by many authors [7,8,10]. Macfarlane in an early paper [7] proposed the following q-

oscillator :

aqa
∗
q − q−2a∗qaq = 1 (4)

This particular parameterization is very convenient, as the number-operator N does not

explicitly appear in the commutation relations.The Casimir operator that is present in

more general q-oscillator algebras [8] is here already fixed to the particular value of 0 .

As a result only Fock type Hilbert space representations exist. Those have the general

form:

aqa
∗
q |n>q= (n)q−2 |n>q (n)q−2 :=

1− q−2n

1− q−2
=: {n}q (5)

Contrarily to the classical case a transformation between the two sets of operators (p, ξ

versus aq, a
∗
q) is far from trivial. A possible solution is to embed the q-deformed alge-

bras into the classical ones, perform the transformation there and go back to the q-case

afterwards .

2. Embeddings of the algebras

2.1. In oscillator variables. By a general theorem it is possible to embed the q-

algebras into the universal-enveloping algebras of the classical Lie algebras (3)

Curtwright and Zachos considered these matters thoroughly in [9] and found the

following map relating the classical and the q-oscillator:

a∗q =

√
[N ]

N
a∗ aq = a

√
[N ]

N
(6)

It is obvious that this is a valid embedding: The deformed creator creates the classical

state, takes out the undeformed occupation number content and multiplies with the q-

deformed boson number. Therefore the states coincide, and the Hilbert space of the

q-oscillator is identical to the one of the undeformed oscillator.

(1) i.e. the observables!
(2) By extending the domain of ξ one shrinks the domain of ξ†.
(3) Such transformations always exist as long as one is only concerned with the algebra part

of it. For Bi- or Hopf-algebras the existence of such transformations is far from trivial.
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Another algebraically simpler embedding was found by the author [11] :

aq =
eiΦ√
q2 − 1

e
√

2ha∗
{
qs − e−

√
2ha
}

(7)

a∗q =
eiΦ√
q2 − 1

{
qs̄ − e−

√
2ha∗

}
e
√

2ha (8)

Both embeddings lead to the q-oscillator relations [7]:

aqa
∗
q − q−2 a∗qaq = 1 (4)

if q = eh
2

. In the second case the q-oscillator states explicitly differ from the classical ones

(although they still lie in the same Hilbert-space). An arbitrary complex constant has

been introduced in the equations (7,8 ), together with an arbitrary phase factor - both

label a certain arbitrariness in the definition of the embedding (4). From the algebraic

form of the embedding, it is obvious that aq will tend to the classical a for q ⇀ 1. In fact

the following expansion in h =
√

log(q) exists:

aq = γ(h)

∞∑
n=0

(
√

2h)n

n!
·
{ n∑
j=0

n!

(n+ 1− j)!j!
(−)n+1−j a∗jan−j

}
· a (9)

In (9) the regular part of the normalization constant has been separated:

1√
q2 − 1

=

√
2h

(e2h2 − 1)
1
2︸ ︷︷ ︸

=:γ(h)

· 1√
2h

(10)

An expansion of γ(h) can be calculated involving a generalization of the Bernoulli num-

bers.

2.2. In phase space variables. The model of Wess and Schwenk can also easily be

embedded by the following relations, that are motivated by the form of the spectrum of

ξ and p:

ξ = ehX̂ u = e−ihP̂ (11)

p = ie−hX̂
q

1
2 e−ihP̂ − q− 1

2 eihP̂

q − q−1

Here X̂ and P̂ denote the generators of the classical Heisenberg algebra, with [X̂, P̂ ] = i

A whole set of such transformations can be constructed because of the relation:

eh1X̂e−ih2P̂ = eh1h2 e−ih2P̂ eh1X̂ which can be mapped to up = q pu or uξ = q−1 ξu in

several ways. Basically any hermitian operator and any unitary operator, that permute

up to a factor can be used for a realization of the toy model algebra.

As for the spectrum it might not be obvious that the embedding (11) has the right

classical limit. One has to keep in mind that the classical operators can arbitrarily be

(4) As one easily sees this freedom is related to the translational symmetry of the classical
X̂ and P̂ , that results in a complex translational invariance of a.
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shifted, and rescaled without changing the commutation relations (5). For the further

considerations this problem will not be relevant, as only differences of those operators

will appear, so that the diverging constants cancel, and will not appear in the limit.

Recently Julius Wess and Moritz Fichtmueller found another possible embedding [3]

by studying the Casimir operator of the Curtwright Zachos map for SUq(1, 1). This

embedding has a sane behavior for q ⇀ 1, in fact the classical momentum operator P̂

remains undeformed. The explicit form of the embedding is:

p = P̂ ξ =
[z + 1

2 ]

z + 1
2

X̂ (12)

u = qz

Here the virial operator z has been introduced by:

z = − i
2

(X̂P̂ + X̂P̂ ) (13)

The implications of this alternative embedding for the scheme presented here are under

investigation now [11].

2.3. The scheme to find a transformation. Performing the following steps:

(aq, a
∗
q)⇐⇒ (a, a∗)

trivially︷︸︸︷⇐⇒ (X̂, P̂ )⇐⇒ (ξ, p) (14)

one can find a whole set of q-oscillator relations, i.e. functions a(ξ, p, u) and a∗(ξ, p, u),

adapted to the geometry of the exponential lattice on the q-deformed real line. A partic-

ular simple one is found to be:

aq =
1√

1− q−2
u
{
u− ξqs− 1

2

}
(15)

a∗q =
1√

1− q−2

{
u∗ − ξqs̄− 1

2

}
u∗

One difference with the classical case is immediately seen. In the classical case a is

invariant under the classical Fourier transformation, in the quantum-case the q-Fourier-

transform will get us to another realization of the aq. A repeated application of the

Fourier transform brings us back again to aq. In fact by using the Fourier transformed

annihilator for (15) bq = 1√
1−q−2

u∗
{
u∗ − pqs− 1

2

}
one can explicitly calculate a nontrivial

example of a q- Fourier transform.

3. Discussion of the model. In a first step the eigenvectors of the q-oscillator will

be explicitly constructed in terms of the non-deformed eigenstates. In the next section

those general relations will be applied to two different Hilbert space representations of

the problem. The condition that fixes the groundstate reads:

aq|0>q= 0 ⇀ e−
√

2ha|0>q= qs|0>q (16)

(5) The translation symmetry is lost in the q-case. In fact shift and scale symmetry change
to scale and exponential symmetry in q-quantum mechanics. That’s basically why multi-particle
systems are hard to define.
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The q-deformed groundstate is thus an ordinary coherent-state |z > with z = − h√
2
s .

Explicitly we have:

|0>q= q−
|s|2
4 · e−

hs√
2
a∗ |0> ⇔ a|0 >q= −

hs√
2
|0 >q (17)

For the excited states we find the following expression:

|n >q=
q−n√

(q−2; q−2)n

(
q−s̄e−

√
2ha∗ ; q−2

)
n
|0>q (18)

where (a; q)n := (1−a)(1−aq)...(1−aqn−1) denotes the q-shifted factorial. As the factor
q−n√

(q−2;q−2)n
has a pole of the order h−n it might seem that this expression is not regular,

but as the second term has by construction an n-fold zero with hn the singularities cancel

and the expression is well behaved. An explicit formula can be obtained by expanding

the q-factorial:

|n >q=
q−n√

(q−2; q−2)n

n∑
k=0

(−)kq−k(k−1)

(
n

k

)
q−2

q−ks̄e−
√

2hka∗ |0>q (19)

It can be shown that the case of s 6= 0 can be derived from the case with s = 0 by a

unitary transformation. (These are the remnants of the classical translational invariance,

as can be seen by using the embedding (11) of the Heisenberg-algebra).

|n; s >q = e
h√
2

(as̄−a∗s) · q−n√
(q−2; q−2)n

(e−
√

2ha∗ ; q−2)n|0 > (20)

|n; s >q := D̂(s)|n; s = 0 >q (21)

Here the right hand side is relative to the undeformed groundstate, i. e. a coherent-

state with a-eigenvalue 0. We are therefore able by (21) to generated a whole family

(indexed by a complex-parameter s) of solutions to the q-oscillator problem. Because of

the transformation D̂(s) we will restrict ourselves to the case of s = 0 from now on:

4. Construction of the eigenstates. From (19) one sees that the eigenstates of the

q-oscillator can be written as superpositions of ordinary coherent states:

|n; s = 0 >q=
q−n√

(q−2; q−2)n

n∑
k=0

(−)kCnk (q−2)e−
√

2hka∗ |0> (22)

=
q−n√

(q−2; q−2)n

n∑
k=0

(−)kqk
(
n

k

)
q−2

| −
√

2hk>

Here the Cnk (q−2) := q−k(k−1)
(
n
k

)
q−2 are a special deformation of the binomial-coefficients,

satisfying : Cn+1
k (q) = Cnk (q) + qnCnk−1(q).

4.1. Classical position representation. It is instructive to investigate the q-deformed

states in the usual (undeformed) position representation. We will see that contrarily to the

undeformed case the solution does not factor into a polynomial and the ground-state, but

we find a set of functions in q (and s), orthogonal with respect to the classical measure,

that tend to the Hermite-polynomials as h ⇀ 0.



408 J. SEIFERT

The groundstate is given by:

<x|0>= π−
1
4 e−

1
2x

2

(23)

and satisfies:

<x| −
√

2hk> = <x|ei2hkP |0> = <x+ 2hk|0> (24)

putting this into (22) and using the generating function for the Hermite polynomials:∑
n

sn

n!
Hn(z) = e−s

2+2sz (25)

The following equation is obtained:

< x|n >q=
q−n√

(q−2; q−2)n

n∑
k=0

(−)kqk
(
n

k

)
q−2

e−2k2h2−2khx· <x|0> (26)

=
q−nn!√

(q−2; q−2)n

∑
j=0

S
(n)
j (q−2)

(−h)j

j!
Hj(x)· <x|0> (27)

Here the notion of a q-deformed Stirling number has been introduced:

n! · S(n)
j (q) := (−)n(

d

dx
)j(ex; q)n|x=0 (28)

= (−)n(
d

dx
)j
n−1∏
k=0

(1− qkex) =
n∑
k=0

(−)n−kCnk (q)kj

Which take the special values:

S
(n)
0 (q) = 0 S

(n)
1 (q) =

1

n!
(−)n−1(q; q)n−1 S(n)

n (q) = q
n(n−1)

2 (29)

To get the correct classical limit one has to cancel out the zeros and poles of the two

factors. First one isolates the regular part of the normalization factor γ(q). Using q = eh
2

one obtains:

γ(q) :=
q−n√

(q−2; q−2)n
=

1√
(n)q−2 !

·
(

2h2

e2h2 − 1

)n
2

︸ ︷︷ ︸
:=γ(h2)

· 1√
2n
· h−n (30)

Then one extracts the zeros of the q-Stirling numbers:

S(n)
k (h2) := S

(n)
k (q) · h−2(n−k)·θ(n−k) (31)

Those new numbers S(n)
k (q) do not tend versus the classical Stirling-numbers for q ⇀ 1

if k <n, but they are convenient to write down the expansion:

<x|n>q=
1√

2n(n)q−2 !
γ(h2)· (32){ n∑

j=1

(−)nS(n)
n−j(h

2)
n!Hn−j(x)

(n− j)!
(−h)j + (−)nq−n(n−1)Hn(x)

+

∞∑
j=1

(−)nS(n)
n+j(h

2)
n!Hn+j(x)

(n+ j)!
(−h)j

}
· <x|0>
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It is obvious that this expression tends versus the eigenfunctions of the classical har-

monic oscillator, as only the central term survives in the limit. The final equation can be

compactly written as:

<x|n>q=
(−)n√

2n(n)q−2 !
γ(h2) ·

∞∑
j=−n

S(n)
n+j(h

2)
n!Hn+j(x)

(n+ j)!
(−h)|j|· <x|0> (33)

4.2. q-lattice representation. We now consider a representation on the q-deformed

lattice of the toy-model algebra. As there are several possibilities to realize the q-oscillator

algebra, we choose the most convenient one for the q-position representation:

aq =
1√

1− q−2
u{u− ξqs− 1

2 } (34)

We have put the arbitrary phase angle to 0, and have chosen s such that for s = 0 we

obtain the undeformed groundstate. The groundstate is given by:

aq|0 >= 0 ⇀ (u− qs− 1
2 ξ)|0 >= 0

∑
n,±

(u− qs− 1
2 ξ)| ±Xn ><±Xn|0 > (35)

Solving for the coefficients, we obtain:

c±n =<±Xn|0 >= (±)nπn0 q
n
2 q−(n+2s)n2 .c0 (36)

= (±)nπn0 q
s2

2 q−
(n+s)2

2 .q
n
2 c0 (37)

For the norm-factor the following summability condition holds:∑
n,±
|c±n |2 = 1 = 2 ·

∑
n

π2
0(q2s)nq−(n−1)n.|c0|2 (38)

Which can be solved with the Jacobi triple product identity [5,6]:

|c0|2 =
1

2(q−2,−π2
0q

2s,−π−2
0 q−2(s+1); q−2)∞

(39)

For the special-case s = 0;π0 = 0 this expression has the compact form:

|c0|2 =
1

2(q−2,−1, q−2; q−2)∞
(40)

The excited states are obtained by the repeated action of aq on the deformed groundstate.

This action reads for an arbitrary state |F >:

a∗q |F >=
1√

1− q−2

∑
±,n
| ±Xn >

{
<±Xn+2|F > −qs̄qn−1π−1

0 <±Xn+1|F >
}

(41)

As an example the first excited state is calculated:

|1>=
∑
±,k

| ±Xk> ·
1√

1− q−2

{
π2

0q
−(2s+1)q−2k − qs−s̄q−1

}
(±)πk0q

k
2 q−

(k+2s)k
2︸ ︷︷ ︸

<±Xk|0>

(42)

For a general state we make the following Ansatz:

|n>=
∑
±,k

| ±Xk>
1√

(q−2; q−2)n
Hq
n(q−2k) <±Xk|0> (43)
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Here a generalization Hq
n of the Hermite-polynomials has been introduced. One finds the

following recursion formula for Hq
n:

Hq
n

(
q−2k

)
= Hq

n−1

(
q−2(k+2)

)
q−2kq−(2s+1)π2

0 − Hq
n−1

(
q−2(k+1)

)
qs̄−sq−1 (44)

Obviously the factor q−2k is raising the rank of the polynomial by one. Because of this

fact and the knowledge of H0(q−2k) one can make the following Ansatz:

Hn(z) =

n∑
j=0

anj z
j (45)

The recursion relation of the anj suggests yet another substitution to eliminate the

s-dependencies:

ank = (−)n−kq(n−k)(s̄−s)q−2ksπ2k
0 q4k−ncnk (46)

Those new coefficients fulfill much simpler recursion relations

cnk = q−4kcn−1
k−1 + q−2kcn−1

k (47)

which can be solved by:

cnk = (q−2)k(k+1)

(
n

k

)
q−2

(48)

Thus obtaining the final result:

ank = (−)n−kπ2k
0 q(n−k)(s̄−s)q−2k(k−1+s)q−n

(
n

k

)
q−2

(49)

We have therefore proven the following theorem of q-analysis:

∞∑
k=−∞

Hq
n(q−2k)Hq

n′(q
−2k)√

(q−2; q−2)n
√

(q−2; q−2)′n

:=
µk
2 c

2
0=π2k

0 qkq−(k+2s)kc20︷ ︸︸ ︷
| <±Xk|0> |2 = δn,n′ (50)

Having introduced the measure µk we compactly write the expression:
∞∑

k=−∞

µkH
q
n(q−2k)Hq

n′(q
−2k) = (q−2; q−2)nδn,n′ (51)

µk =
π2k

0 qkq−(k+2s)k(
q−2,−π2

0q
2s,−π−2

0 q−2(s+1); q−2
)
∞

Hq
n(z) =

n∑
j=0

anj z
j

As in the undeformed case the polynomials for s 6= 0 are obtained from those for s = 0

by the action of a unitary operator D̂(s). But on the q-lattice this fact is less useful as

the operator only formally exist for most values of s. Using the expression for D̂(s) one

immediately finds:

D̂(s) = e
h√
2

(as̄−a∗s)
= ξ−is2u−s1q−

s1s2
2 (52)

Algebraically one finds: D̂(s)aq(s=0)=aq(s)D̂(s). The action of D̂(s) on the ground-

state is also computable. The defining relation for the groundstate aq|0>q= 0 reads:

(u− ξq 1
2 )|0>s=0

q = 0 ⇀ u|0>s=0
q = q−

1
2 ξ|0>s=0

q (53)
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This allows to define the action of any power of u on the groundstate by uz|0 >s=0
q :=

q−
z
2 ξz|0>s=0

q . Using this one finally obtains:

D̂(s)|0>s=0
q = ξ−s|0>s=0

q q−
s1(s2+1)

2 ∝ |0>sq (54)

The proportionality holds because a factor q−sn is generated on the lattice, which gives

the s-dependence of the groundstate.

5. Relation to q-hypergeometric functions. The polynomials that were obtained

in the previous section from deformation theory of the Heisenberg algebra, can be ex-

pressed in the language of q-hypergeometric functions and identified with well known

generalizations of the classical Hermite polynomials. Therefore it is once more possi-

ble to make contact between the deformation theory of Lie-algebra and the theory of

q-polynomials [4]. Those generalized q-Hermite polynomials appear now as the spectrum

of the Hamiltonian of a suitable q-deformation of the Heisenberg algebra, realized as es-

sentially self-adjoint operators on a Hilbert space.

Depending on the Hilbert space representation continuous (real line) or discrete (q-lattice)

q-polynomials are found. Those can be interpreted as quantum-mechanical single-particle

wave functions in a q-deformed oscillator potential. The two relevant cases will now be

investigated:

5.1. q-hypergeometric polynomials. The general definition of a q-hypergeometric poly-

nomial is recalled: A basic hypergeometric series or q-hypergeometric series is defined by

[4,5,6] :

rΦs

(
a1, . . . , ar
b1, . . . , bs

∣∣∣∣ q, z) = rΦs (a1, . . . , ar, b1, . . . , bs; q, z)

:=

∞∑
k=0

(a1, . . . , ar; q)k
(b1, . . . , bs, q; q)k

(
(−1)kqk(k−1)/2

)1+s−r
zk, r, s ∈ Z (55)

here the q-shifted factorial is used again:

(a; q)0 := 1 and (a; q)k :=

k−1∏
n=0

(1− aqn) (56)

with the following convenient notation:

(a1, a2, . . . , ar; q)k := (a1; q)k(a2; q)k . . . (ar; q)k, k = 0, 1, 2, . . . ,∞ (57)

Those q-hypergeometric series have well known properties and have extensively been

studied in the literature [4,5,6].

5.2. Stieltjes Wigert polynomials. The Stieltjes Wigert polynomials are a well known

generalization of the classical Hermite polynomials. They are defined as:

The Stieltjes Wigert polynomial

Sn(x; q) :=
1

(q; q)n
1Φ1

(
q−n

0

∣∣∣∣ q;−xqn+1

)
(58)
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The solution on the q-lattice can be rewritten as a basic hypergeometric function:

Hq
n(z) := (−)nq′

ins′′
q′
n
2

1Φ1

(
q′−n

0

∣∣∣∣ q′;−zq′n+s′
)

(59)

One has s = s′+is′′ and for notational convenience q′ := q−2 was introduced (in books on

basic hypergeometric functions one usually has the convention 0 < q < 1). Comparison of

the two results shows that except for trivial factors and a translation of the argument the

wave functions on the q-lattice are the Stieltjes Wigert polynomial. It is well known that

those functions have the following limit behavior for q ⇀ 1 and x→ q−1x
√

2(1− q) + 1:

lim
q↑1

(q; q)nSn
(
q−1x

√
2(1− q) + 1; q

)
(

1−q
2

)n
2

= (−1)nHn(x) (60)

This behavior ensures that a suitable limit from the q-lattice to the continuous case can

be defined, such that the q-deformed wave functions will tend to the solutions of the

classical oscillator.

In the q-oscillator representation on the classical phase space, a similar result is ob-

tained (using s = 0 for convenience).

<x|n>q= (−)n
q′
n
2√

(q′; q′)n
1Φ1

(
q′−n

0

∣∣∣∣ q′; e−2hxq′
n+ 1

2

)
(61)

Here the limit was already established by the explicit expansion (33) in h =
√

log(q).

Now one sees that as q ⇀ 1 both solutions get more and more similar (6) , in fact (61)

becomes an interpolating function for (59) on the lattice points (which become more

and more densely spaced). This is what one expects a the q-lattice is supposed to be a

deformation of the classical real-line, so that both representations should become more

and more similar as q tends to 1.

The physical representation is certainly (59) as here the q-deformation of the Heisen-

berg algebra is reflected in both the Hamiltonian (in physical words the potential) and

the representation of space time (which is in this modest example the real line). The con-

tinuous example is an amusing example how the classical wave functions can be smoothly

deformed, but it is irrelevant for generalizations in a more physical setting as the SOq(3)

or Eq(3) symmetry of the Euclidean space [10].

6. Summary and outlook. The well known Stieltjes Wigert polynomials were

shown to stem from the representation theory of the q-Heisenberg algebra. They appear

as wavefunctions for one particle states in a q-oscillator potential, which is expressed in

the generators of the q-deformed phase space. The oscillator variables were constructed

by the concatenation of embeddings of the respective algebras. This process is not unique

in one dimension, and it is tempting to study several realizations of the problem, leading

to different sets of q-polynomials (and examples of q-Fourier transforms). By postulating

(6) One has to keep in mind that the factor 1√
(q−2;q−2)n

has been taken out by the definition

of Hqn.
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invariance under q-Fourier transformation (which is valid for q = 1) one might be able to

find a natural and hopefully unique solution to the problem.

It will be of interest to study the problem in higher dimensions, as the richer (i.e.

Hopf) structure of the phase space for N ≥ 3, will restrict the set of solutions significantly,

so that a unique solution might be possible.

A three dimensional generalization could be relevant to solid state physics, and provide

a basis for quantitative predictions.
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[5] Roelof Koekoek and René F. Swarttouw, The Askey-scheme of hypergeometric or-
thogonal polynomials and its q-analogue , Delft University of Technology, Reports of the
faculty of technical Mathematics and Informatics no 94-05, (1994).

[6] Gasper and Rahman, Basic Hypergeometric Series, Cambridge University Press,
(1990).

[7] A. Macfar lane, On q-analogues of the quantum harmonic oscillator and the quantum
group SUq(2), J. Phys., A 22 (1989) 4581.

[8] P. P. Kul ish, On Recent Progress in Quantum Groups an introductory review, Jahrbuch
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