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Abstract. In the first part (without proofs) an orthogonality measure with partly discrete
and partly continuous support will be introduced for the five parameter family of multivariable
BC type Askey—Wilson polynomials. In the second part, the limit transitions from BC type
Askey—Wilson polynomials to BC type big and little g-Jacobi polynomials will be described in
detail.

1. Introduction. Recently, part of the Askey—Wilson scheme for one variable basic
hypergeometric orthogonal polynomials has been generalized to a multivariable BC type
Askey—Wilson scheme. The starting point was the introduction of families of orthogonal
polynomials for general root systems by Macdonald in [M]. For BC, this yielded a three
parameter family of orthogonal polynomials, generalizing part of the four parameter
family of one variable Askey—Wilson polynomials. Koornwinder in [K1] extended this
family to a five parameter family of multivariable BC type orthogonal polynomials. Four
parameters a, b, ¢, d play the same role as in the one variable case, and the fifth parameter
t is an extra deformation parameter. Furthermore, multivariable BC type big and little
g-Jacobi polynomials were introduced in [S], and limit transitions between these three
families have been studied in [SK].

In the one variable case, the limit transition from Askey—Wilson polynomials to big
resp. little g-Jacobi polynomials has a very special feature: the Askey—Wilson polynomials
which are involved in the limit transition are orthogonal with respect to a measure with
support consisting of a continuous and a discrete part. In the limit, the continuous part of
the orthogonality measure shrinks to {0} (with weight tending to zero), while the discrete
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part tends to the infinite set of discrete mass points corresponding to the big resp. little
g-Jacobi polynomials (cf. [K2]).

The orthogonality measure for the multivariable BC type Askey—Wilson polynomials
has been introduced in [K1] for parameters a, b, ¢, d such that the measure consists only
of a continuous part. Consequently, the limit transition from the multivariable Askey—
Wilson polynomials to the multivariable big resp. little g-Jacobi polynomials which was
proved in [SK], uses a definition of the multivariable Askey—Wilson polynomials for more
general parameter values by rational extension in the parameters, without knowing the
orthogonality measure for the general parameter values. In particular, an interpretation
of the limit transitions in terms of the supports of the orthogonality measures could not
be given in the multivariable case.

In the second section, the orthogonality measure for the multivariable BC type Askey—
Wilson polynomials will be given for more general parameter values. This gives rise to
extra discrete parts in the orthogonality measure. Proofs are omitted at this stage, they
will be given in [S1].

Knowing the orthogonality measure for the larger parameter domain allows us to give
an interpretation of the limit transition from multivariable Askey—Wilson polynomials
to multivariable big resp. little g-Jacobi polynomials in terms of the supports of the
orthogonality measures. This will be discussed in detail in section 3.

We will restrict to the case that the deformation parameter ¢ is ¢* for k a natural
number.

Notations: N = {1,2,...} will be the natural numbers and Ny the natural numbers
together with 0. Empty sums are equal to 0, empty products are equal to 1.

Acknowledgement: The author thanks Prof. T.H. Koornwinder for useful comments
on an earlier version of the paper.

2. The orthogonality measure for BC type Askey—Wilson polynomials. In
this section we fix ¢q € (0, 1).
We first introduce some notations. The g-shifted factorial is given by

i—1
(@;9); == [[ (1 =d/a) (i€No), (a;q) H 1-¢'a),
7=0 7=0
and we denote
m m
(ah-- y Am; q H aj; q ZGNO), (ala"'7ama aj7
=0 =0

We write

[eS) k
A1y ey Qryq (aly---aar+1§q)kx

110y 1q, | =
Tt 7|: bi,..., b, :| ,I;J (q7b17~~~7br;Q)k

for the g-hypergeometric series. Let N € Z. Define for a function f : C — C and
a, B € C the Jackson g-integral of f, truncated at IV, by

B B «
/a F(@)dg na = / f(@)dg na / F(@)dg n,
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B N
| s@ana = 3 160" (3 = 5) i N =0,

B
/ f(x)dg Nz :=01if N <0.

The Jackson g-integral for (continuous) functions f is defined by

/ fle)dyr = Jim_ / F(@)dg -

Let S,, be the symmetric group (group of permutations of the set {1,...,n}). Let
W be the semidirect product of {£1}" and S,,. Let z1,..., 2, be independent variables,
then W acts on the algebra A := C[zif!, ... 2]
variables. Denote AW for the subalgebra of W-invariant functions in A. A basis for AW
is given by the monomials {m) /X € P*}, where Pt :={ € N{} /1 > ... > p,}, and

my(z) := z zH,
HEWA

with z# = 2} ... zkn. The W-orbit of A € PT C Z" is with respect to the natural action
of W on Z".

In this section, we will define a scalar product on A" depending on parameters
a,b,c,d,t satisfying t = ¢*, k € N, and (a,b,¢c,d) € Vaw with Vap given by

by inversions and permutations of the

DEFINITION 2.1 (Parameter domain for the Askey—Wilson polynomials). Let Vaw be
the set of parameters (a, b, ¢, d) which satisfy the following conditions:
(1) a,b, ¢, d are real, or if complex, then they appear in conjugate pairs.
(2) ab,ac,ad,be,bd,cd ¢ R>1 :=={r e R/r > 1}.

Note that if (a,b,¢,d) € Vaw and e € {a,b,c,d} with |e|] > 1, then e € R. Further-
more, at most two of the four parameters a, b, ¢,d have modulus > 1; If there are two,
then one is > 1, and the other is < —1.

Let (a,b,c,d) € Vaw. For e € {a,b,c,d} with |e] > 1, let N. € Z be the largest
integer such that |eqV¢| > 1. Take N, := —1 for e € {a,b,c,d} with |e|] < 1. Let T be
the k-torus, given as the k-fold direct product of the unit circle C in CF:

T i= {(w1,...,wp) €CF [ |w;| =1(i=1,...,k)}.

Give Ty, the orientation induced from the counterclockwise orientation on each unit circle

{w; / |w;| = 1}. Define for m € {0,...,n} a hermitian form (., '>?ﬁ?&?£d AW x AW = C
by:
2m €m
(p1:P2)m = / / //
(27TZ 21=0 Jz,=0 (Fmt1ses2n) €Tn—m
- dg N 21 dg N, Zm demi1  dz
A - q;Neq 4 Nem, m+t 7” 2.1
P1(2)p2(2) A aw,m (2) (I-gz (1—q)zm 2ms n .
for p1,ps € AW. The sum is taken over e; € {a,b,c,d} for all j = 1,...,m, so a sum

with at least one |e;| < 1 gives zero contribution. For m = 0 we can skip the summation
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sign and integrate over (z1,...,2,) € T),. The weight function A sw . (2;a,b, ¢, d;q, qk) is
defined by

Aaw,m (2 (HwAWd 2 > ( ﬁ WAW,c (%)) 6 (2), (2:2)

r=m-+1
with
ok(z) == H (zizj,zizj_l,zi_lzj,zi_lz;l;q)k, (2.3)
1<i<j<n
and waw.(x;a,b, c,d; q), resp. waw,q(z;a,b,c,d; q) given by

(=%, 27%4q)

(ax,ax=1 bx,br=t cx,cx=t, dx,dz1;q)
and for e € {a,b,c,d} and i € {0,..., N},

wAW,C(x; a, ba c, da q) =

(e7%4a).
(q76f’f/e,eg,g/e’eh,h/e'q)

(ez,ef,eg,eh;q)i (1_62 21) ( q )l (2.5)
(¢,eq/f.eq/g,eq/h;q); (1—€?) \efgh '
with f,g,h € C such that e, f, g, h is a permutation of a, b, ¢, d. Then the hermitian form
{, )stcht is defined by

waw,aleq'se; f, g, h;q) ==

n

(p1,p2)aw = _ (p1,p2)m  (p1,p2 € AV). (2.6)
m=0
Note that the measure ?1‘1’_1;‘32 on [0,e] with |e| > 1 is just the counting measure for the
set {e,...,eqM}, ie.
| s Zf eq")
=0 1 - q

Denote Waw,m(a,b, ¢, d; g, q*) for the integration domain of (., .),,. So we have Wawo =
T, , and for m > 0 we have

WAW’m—{(zl,...,zn)GC"/zie U {e,...,eqN} (i=1,...,m)

e:le|>1

and (Zmi1y-.-,2n) € Tnm} (2.7)

if there exists an e € {a,b,c,d} with |e| > 1, and Waw,,, = 0 otherwise.
The hermitian form (.,.) g4w is positive definite due to following lemma.

LEMMA 2.2. Let q € (0,1), (a,b,¢,d) € Vaw and t = ¢* with k € N.
(@) Aaw,m (2) >0 for z € Waw,m and m € {0,...,n}.
(b) Let 0 <m < n. Let z; € Ue:|e|>1{e,...,eqNﬁ} fori=1...,m
Then Aawm (21, -y Zm, Wmt1, - -, Wy) = 0 for all (Wpm1,...,wy) € Ty if and only
if zi = q'zj for certain 1 € {0,...,k — 1} and certain i,j € {1,...,m},i # j.
(c) Let 2 € Waw,n, then Aaw.n(2) = 0 if and only if z; = ¢'z; for certainl € {0,...,k—1}
and certain i,j € {1,...,n},i # j.
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Define a partial order on P+ by

u<,\@zm<ZAl Vi=1,. (2.8)

for A\, u € P+.

DEFINITION 2.3. Let (a,b,c,d) € Vaw and t = ¢¥, k € N.

The Askey—Wilson polynomials {P{*V (z;a,b,c,d;q,t) /A € Pt} are defined by the
following two conditions:
(1) PAY =my + 2 < Oty for certain ¢y, € C,
(2) (P, my)aw = 0 for p < X

Conditions (1) and (2) uniquely determine P{*" and {P{AW /A € P} is a basis of
AW Full orthogonality of the Askey—Wilson polynomials with respect to (.,.) 41 is not
obvious since the order (<) on P* is a partial order. It is clear that (PAW wa>
if w<Xorif p> A

In the one variable case, the Askey—Wilson polynomials defined by definition 2.3 are

Aaw =0

independent of ¢t and correspond with the monic one variable Askey—Wilson polynomials

qfl -1

-1
,q' " abed, ax, ax
;q,q| (1€ No)

(ab, ac, ad; q),

ol (¢ abed; g), * %

P (z7a,b,¢,d; q) = ab. ac. ad

(cf. [AW], theorem 2.4. The term (1(—1a oy~ in [AW] formula (2.10) should be replaced

by %, so the discrete weights waw 4 coincide with the weights given by (2.10) in
[AW]). Note that PAW (I € Np) is a monic polynomial of degree [ in the variable z 4z~
Usely, the one variable Askey—Wilson polynomials are normalized differently (see [AW]).

Next we introduce a second order g-difference operator for which the Askey—Wilson

bed -
polynomials are joint eigenfunctions. The second order g-difference operator DaAWth is

defined by (cf. [K1]):

n

Daw =Y (gz)jlw,j(z)(Tq,j — 1d) + Sy, () Ty s — Id)) , (2.9)

j=1
with 7,41 ; the ¢ !-shift in the j'"-coordinate:

(Tqil,jf) (Z) = f(zla teey Zj—17q:tlzj7 i1y Zn)
and QSZWJ (z;a,b,¢,d;q,t) and qﬁ;w’j(z; a,b,c,d;q,t) are given by

+ ) = (1 —az;)(1—bz;)(1 CZ])( — dz;) (1 —taz)) ( ZJ)
¢AW,J’( ) = (1— 22 )( ) g (1 zlzj) (1 -z ZJ) ’
— ) (a—z;)(b—z;)(c—2;)(d— z;) (t = 212;) (t — 2 ')
Paws(2) = N L m (=)

Define for A € P,

EMW(a,b,¢,d; q,t) = Z (g tabedt® 77 (g% — 1)+t (g™ —1)). (2.10)

Jj=1
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We have the following theorem.

THEOREM 2.4. Let q € (0,1), (a,b,c,d) € Vaw and t = ¢, with k € N.
(a) For all A € PT we have

Daw P = E{W pAW, (2.11)
(b) Let A\, p € PT with A\ # p. We have
(P, PAY) 4w = 0. (2.12)

If (a,b,e,d) € Vaw with |e|] < 1 for all e € {a,b,c,d} then the Askey—Wilson poly-
nomials given by definition 2.3 are exactly the multivariable Askey—Wilson polynomials
with ¢t = ¢*(k € Ng) defined by Koornwinder in [K1], since the orthogonality measure
in this case (scalar product given by integration over the torus T, with weight function
A qw,0(%)) coincides with the orthogonality measure defined in [K1]. Koornwinder proved
theorem 2.4 for (a,b,c,d) € Vaw with |e] < 1 for all e € {a,b,c,d} with continuous pa-
rameter t € (—1, 1), for suitable scalar product (.,.) aw, (cf. [K1]).

3. Limit transitions to BC type big and little g-Jacobi polynomials. We first
recapitulate the definition of multivariable big and little g-Jacobi polynomials for the
special case that t = ¢*, k € N (cf. [S]). Let ¢,d > 0, and

—c 1 —d 1
clypezdl

ac(—5-,~) € ( ) )

(dq q) cq q)
or a = ¢z,b = —dz with z € C\ R. Denote V} for the set of parameters (a,b,c,d)
which satisfy these conditions. Let A% := Clz,...,2,]°" be the algebra of symmetric

polynomials, and {my(z) /A € P*} the basis of monomials for A%:
ma(z) := Z zH.
HESH A

Define for ¢ € (0,1), (a,b,c,d) € VZ and t = ¢* with k € N a hermitian form (., .>‘}3’i}ft’d
on A® by

Fain = | f_d / :_d - :_d F AR (g2 .. - dgin (3.1)

for f,g € AS with weight function Ap(z;a,b,c,d;q,q") given by

Ap(z) = (Hw3(2¢)> A(z) H 22k (ql_k?;q) 7
i=1 ? 2k—1

1<i<j<n
with A(2) := [[; <, j<, (2 —2;) the Vandermonde determinant and wp(z;a,b, ¢, d; q) the
weight function involved in the orthogonality measure for the one variable big g-Jacobi
polynomials:
(gz/c, —qu/d; q)
(qax/c,—qbx/d;q) .,
The integration domain Wg(a, b, c, d;q,q") of (.,.)p is given by

’lUB(Qj7 a, b7 c, da q) =

Wpg = {Z €R"/z € {—dq"}ren, U{cd hien, (i=1,... ,n)} (3.2)
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We have
LEMMA 3.1. Let q € (0,1), (a,b,c,d) € V2 and t = ¢*, k € N.
(a) Ag(z) >0 for all z € Wg.
(b) Ap(z) = 0 for z € Wg if and only if z; = ¢'z; for certain | € {0,...,k — 1} and
certain i, € {1,...,n}i # j.
In particular, (.,.)p is positive definite.
DEFINITION 3.2. Let ¢ € (0,1), (a,b,c,d) € V4 and t = ¢* with k € N.
The big g-Jacobi polynomials {PE(.;a,b,c,d;q,t) /X € P*} are defined by the fol-
lowing two conditions:
(1) P =my + > Oty for certain ¢y, € C,
(2) (PE,mu)p =0 for p < A

For the little g-Jacobi polynomials, assume a € (0,1/¢) and b € (—o0, 1/¢), and denote
V! for the set of parameters (a,b) which satisfy these conditions. Define for ¢ € (0, 1),
(a,b) € V{ and t = ¢* with k € N a hermitian form (., '>i7,?1,t on A by

<f,g>L=/:O.../ zof(z)@AL(z)dqzl...dqzn, (3.3)

for f,g € A% with weight function Af(z;a,b;q,q"):
Ap(z) = (HwL(zi)> Aiz) ] =% <q1 U;q> :
i=1 1<i<j<n Zi /) ok—1

and wr,(z; a,b; q) the weight function involved in the orthogonality measure for the one
variable little g-Jacobi polynomials:

(070w o
~T 0 g a=q%).
(gbw; q) o ( )
The integration domain Wi (a, b; ¢, ¢") of (.,.)r, is given by

Wy = {zER”/zi € {¢" hen, (i= 1,...,n)}. (3.4)

wr(z;a,b;q) ==

We have

LEMMA 3.3. Let g € (0,1), (a,b) € V{ and t = ¢*, k € N.
(a) AL(z) >0 for all z € Wy,
(b) AL(z) = 0 for z € Wy, if and only if z; = ¢'z; for certain | € {0,...,k — 1} and
certain i,j € {1,...,n},i # j.

In particular, (.,.);, is positive definite.

DEFINITION 3.4. Let g € (0,1), (a,b) € V! and t = ¢*, k € N.

The little g-Jacobi polynomials { P¥(.;a,b;q,t) / X € Pt} are defined by the following
two conditions:
(1) P{j =1y + Z;K/\ ex,umy, for certain ¢y, € C,
(2) (PE,my) =0for p< A
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The second order g-diference operator which has the big resp. little g-Jacobi polyno-
mials as mutual eigenfunctions is given by

D =3 (65,0 (Ty — 1)+ 65,,(2) (T, 1))

j=1
D1 =3 (61, Ty = 1) + 07, () Ty = 10))
j=1
with ¢ ;(2;a,b, ¢, d; ,t) given by
_ c d 2z — tz;
i ) () S
B,J( ) qz; qz; ll;! 2l — Zj
and ¢ ;(z3a,b,¢,d; q,t) given by
_ & d 2 — tzl
o, = (1- ) (14 ) [T 222
Zj 15 Zj — 2l
respectively
Qi,j('z? a,b;q,t) = ¢E,j(2; b,a,1,0;q,t),
o1 (z10,0;4,1) := ¢ ;(2;b,a,1,0; ¢, 1).

Define for A € P+, EB’L(a, b; q,t) by
= (qabt> N gh = 1)+ (gN — 1)) (3.5)
j=1

In [S], the following theorem was proved:

THEOREM 3.5. Let g € (0,1).
(a) Let (a,b,c,d) € VA andt = ¢*, k € N. PP is an eigenfunction of Dp with eigenvalue
Ef’L for all x € Pt and {PP /€ P*} is an orthogonal basis with respect to (.,.)p.
(b) Let (a,b) € V{ and t = ¢*, k € N. PE is an eigenfunction of Dy, with eigenvalue
Ef’L for all X € Pt and {Pﬁf/u € PT} is an orthogonal basis with respect to (.,.) .

In fact, this theorem was proved in [S] for arbitrary ¢ € (0, 1), for suitable scalar
products (.,.)p; and (., .)r .
Denote |A| := >0 | A; for X € PT, and ¢z := (cz1,...,¢2y) for z = (21,...,2,),
c € C. Let ¢, » be Laurent polynomials in the variables 21, ..., z,, then we say that
lim ¢ = ¢
if
lim ¢c(2) = ¢(2) vz € (C\{0})"

We have the following limit transitions from Askey—Wilson polynomials to the big resp.
little g-Jacobi polynomials.
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THEOREM 3.6. Fiz A € PT.
(a) Let g € (0,1) and k € N. Suppose that (a,b,c,d) € V2, then

€l0 q2 e(ed)?

1\ A 1
d)z 2 1 1 1 1 1
lim <E(Cl)2> P < T2 eqta(dfo)t, e g (c/d)?, —e LqP (dfo)?,
feq%b(C/d)%;%q’“) = PP(za,b,¢,d;q,q"). (3.6)
(b) Fiz q € (0,1) and k € N. Suppose that (a,b) € V!, then

N 1
lim (i) P <qzz;eqéb, e lgz,—q2, —qéa;q,q’“> = P& (za,b,q.4%).  (3.7)
€ qi €

Proof. The essence of the proof can be found in [SK]. The theorem was proved in [SK]
for a dense subset of the parameter domain, making use of a definition of Askey—Wilson
polynomials for general parameter values by rational extension in the parameters. Let us
first give the idea of the proof. It follows from theorem 2.4 that

_ pAW

v = [ ] Daw = B,

A EAW _ pAW
<A A “w

mx (3.8)

for parameter values such that E;:‘W #* E;\“W for all 4 < A. Furthermore we have

Dp—E}*" 1\
pf=11]] W m (3.9)
720 Nt U

for parameter values such that E2" # EJY for all 4 < A and similarly for the big
g-Jacobi case. For these parameter values, the limit transition can be proved by taking
limits of D 4y and EfW. This gives the result for a dense subset of the parameter domain.
Since we know now the orthogonality measure for the larger parameter domain Vayy, we
can prove the limit transitions for all parameter values by a type of continuity argument
(section 6 in [SK]). We have to slightly modify the arguments of (section 6, [SK]) for the
proof of this theorem, because we work with discrete parameter t. We give the proof of
(b), the proof of (a) is similar.

(b) For arbitrary (a,b) € R?, let Vi (a,b) be the open subset of (0,1) defined by
Vi(a,b) == {q € (0,1)/(a,b) € V/}. Fix (a,b) € R? with Vi (a,b) # 0. Fix k € N.
There exists an €7, > 0, independent of ¢, such that

(ar(€),br(e),cr(e),dr(e)) := (eq%b,e_lq%,—q%,—q%a) € Vaw (3.10)

for all € € (0,e) and all ¢ € V(a,b). Hence the left hand side of formula (3.7) makes
sense. Denote m,, (z) := (¢/q2)1"Im,(q2 z/€), then we have that

Al 1

€ 2z

P;?W’L(z;e) = (1) P)‘f‘W (qe ;aL(e),bL(e)7cL(e),dL(e);q7qk>
q2

=mx.(2) + Z df}f’L (a,b;q, ¢~ €) my,(2) (3.11)
<A
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for certain constants df_zV’L if e € (0,er) and g € Vi(a,b). By definition, there exist
constants diu such that

PE(z;a,b;q,4") —l—Zd)\Vabq, Kyiny, (2) (3.12)

v<A

for g € Vi (a,b). It will be sufficient to prove that
lim A (a,b;q, % €) = d% (a, by q, ¢") (3.13)

for all v, A € PT with v < X and for all ¢ € V,(a,b), because
lim m, . =m, VYvePt. (3.14)
e—0 ’

Fix v, A € P with v < A. The proof of (3.13) consists of five steps:
(i) Define

Vea(a,b) = {g € Vi(a,b) / EY " (a,b;q,6%) # EPF(a,b5q,4%) V< A},

then Vi \(a,b) C Vi(a,b) is dense.

(ii) dAWL(a, b; q,q"; €) depends polynomially on ¢ for ¢ € Vz x(a,b).
(iif) lime o df\”;V’L(a b;q,q"%;€) = df’u(a, b; q,q") for all q € f/Ly,\(a, b).
(iv) The map ¢q — dAWL(a7 b;q,q"%;€) : Vi.(a,b) — C is continuous for all € € (0,¢r).
(v) The map ¢ — dA,V(a, b;q,q") : Vi.(a,b) — C is continuous.

It follows easily from (i), (ii) and (iv) that the limit lim. g clA " L(a,b;q, q"; €) exists for
all q € Vi(a,b) and that the limit depends continuously on g € VL( b) (cf. [SK], lemma

6.1). (iii) and (v) imply then that the limit will be dA’U(a, b; q,q") for all ¢ € Vi(a,b),
hence (b) of the theorem follows.

We proceed with proving the five steps. Fix v, A € P* with v < \.

(i) Tt is sufficient to prove that for arbitrary a,b € C and arbitrary \, u € PT,
Ef’L(a,b;q,qk) = EE’L(a,b;q,qk) as Laurent polynomials in ¢ if and only if A = p. If
E/j\B’L(a7 b;q,q%) = EE’L(a, b; q,q") as Laurent polynomials in ¢, then

(ab) Z (q)u:-&-k(n—i)-&-l _ qui+k(n—i)+1) _ Z (q—m—k(n—i) _ q—xi—km—i))

i=1 i=1
as Laurent polynomials in ¢. This implies that

Zq wi—k(n—i) _ qu)\ —k(n—1)

as Laurent polynomials in g. Smce A € Pt we get p; + k(n—1i) =X\ + k(n —1) for all
i. Hence A\ = p.

1 1 1
. be 2. —g2.,—qg2a
ii) Denote D¢ for the g-difference operator Dqu '9%,~4%,~q%a We have
( ) AW, L q P AW,q,q*

E,\ (aL(e),bL(e),cL(e),dL(e);q,qk) =E, ’L(a,b;q,qk) (3.15)
independent of € for all A € PT, so we can write PfW’L(z; €) for g € f/Ly,\(a, b) as

AW,L Dfélw}L - EE’L
o= [T —BL o hT | e (3.16)
n<A A - Lt
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Hence it is sufficient to prove that the coefficients 6?1;}/’L(e) (v <)) in the expansion
~AW,L
Diw,pmae = ey, (€)my e (3.17)

v<A

depend polynomially on e. The coefficients can be written as
AW.L € A=l AW 1 1 1 1 1 k
&y (€)= (q;) oW (661?17,6’ 9%, —q%,—q%a;q,q )
where CQLV (v < \) are the coefficients in the expansion

Dawmy = Z Cf,‘;vmu'
v<A

In [SK], prop. 5.3 (2), it was proven that the coefficients 6:\47KV’L(6) (v < A) depend
polynomially on e.
(iii) Follows from (3.16), (3.14) and (3.9), since the constant terms cI/\’W (v < ) of the
polynomials Efy‘;,V’L(e) (v < A) are exactly the expansion coefficients of DZ’Z 4+ with
respect to the basis {m, /pu € P}

D r = D Kot

v<A
(cf. [SK], theorem 5.1(2) and prop. 5.3 (2)).
(iv) The map
Eq%b eflq% —q% —q%a
q— (mp,m0>AW’é7q,€ T :Vi(a,b) —» C

is continuous for all p,o € PT and all € € (0,¢r,). Hence

q~ df";,V’L(a, b;q,q"; €):Vi(a,b) = C
is continuous for all € € (0,¢r) (cf. [SK], prop. 2.3(a)).
(v) The continuity of the map
g+ df,(a,b;q,¢") : Vi(a,b) = C
follows from the continuity of the maps

q = (i, itg) 3 o Vi(a,b) =+ C  (p,0 € PY).

This completes the proof of the theorem. m

The behaviour of the support of the orthogonality measures under these limit transi-
tions is similar to the behaviour in the one variable case (cf. [K2]). Indeed, for the limit
transition to the big g-Jacobi polynomials, fix ¢ € (0,1) and (a,b,¢,d) € VA. Fix k € N.
Then there exists an eg > 0 such that

1

(ap(€),bp(e),cp(e),dp(e)) = (eq%a (d/c)% , e g2 (c/d)% ,
—e g3 (d)o)? ,—eq%b(c/d)%) € Vaw

for € € (0,ep). Denote

1\ A 1
PAVE (2 ) = (@”) PV (q”;aB<e>,bB<e>,cB<e>,dB<e>;q,qk> ,
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then the support of the orthogonality measure of {P;\AW’B(Z; €)/ A€ Pt} foree (0,ep)
small enough, is essentially given by (cf. lemma 2.2)

n

U {z eC"/z € {qu”}Nl’e U {cq™ }N“ (l=1,...,m) such that

T1 =0 T2 =0
m=0

zi#q zjfor 1 <i#j<mandforr=0,...,k—1,
and |zl|:e(cd/q)% (l—m—+—1,...7n)}

with Ny, Na . € Ny the largest integers such that

€t (/)2 g™ e

> 1, resp. |e_1q%(c/d)%q > 1.

We will give now a formal calculation in order to see which weights tend (formally) to
non zero weights under the limit transition. We will rescale the weights (rescaling factor
depends on ¢) for the Askey—Wilson polynomials involved in the limit in such a way,
that the formal limits € | 0 of the rescaled weights exist and are not all identically zero.
The formal limit we will use, is the following. Let aq,...,ar,b1,...,bs € C\{0}, then we
assume that

. (alxa"'7a"l"r;q)

1 * =0 3.18
60 (biz,...,bsx;q) (3.18)

ifr<sorifr=sandlay...ar| <|by...b]. In order words, writing the quotient of

infinite products in (3.18) as

we assume that we may take the limit termwise within the infinite product. Denote
1 1
Z(m)(e) = (Zla ceey2m, € (Cd/q)2 Cm+15---5€ (Cd/q)2 Cn) )

where m € {0,...,n}, |emy1| = ... =|en| =1 and z; € {—dq", cq®}rsen, 1=1,...,m)
such that z; # ¢"z; for 1 <i# j <mandforr=0,...,k—1. z(m)(e) is in the support of
the orthogonality measure for the polynomials {P;\4 WB(ze)/Ae P} if € is sufficiently
small. The corresponding (rescaled) weight is given by

AZ (0 (¢)
-2 n_kn(n—1) q%Z(m)(G)
= (—eqq) € Apwm | ———
e(ed)2
A straightforward calculation, using the formal limit (3.18), gives that

11%1Aﬁ(z(m)(e)) =0if0<m < n,

;aB(€)7 63(6)763(6)7d3(6); q, qk> .

n

. B n) _ )
iy O7(:0) = Kndn(2) [ 5

with Kp a positive constant given by

Kp = (g:0)" (=d/e,~c/d;q) [ (C ::id) ") (e ),
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Since Ny, N2, — oo if € | 0, we see that formally in the limit € | 0, the part of
the measure with (partially) continuous support disappears while the completely discrete
part of the orthogonality blows up to the set

{z eR"/z €{—dq", c¢’}rsen, (i=1,...,n) such that

zi;«éqlzjfor1Si#jSnandforl:O,...,k—l}. (3.19)

We recognize the set (3.19) as the support of the orthogonality measure for the big
q-Jacobi polynomials {PP(z;a,b,c,d;q,q%) /A € P} (cf. lemma 3.1), and the corre-
sponding formal weights are (up to a positive constant) equal to the weights for the big
g-Jacobi polynomials.

A similar interpretation can be given for the the limit from Askey—Wilson polynomials
to little g-Jacobi polynomials. Fix ¢ € (0,1), (a,b) € V/ and k € N. The support of the
orthogonality measure for the polynomials {P;‘W’L(z; a,b;q,q%€) /X € Pt} (cf. (3.11))
for e sufficient small is given by

U{zeC"/zlEVa(e)(lzl,...,m) such that z; # ¢"z; for 1 <i# j<m

m=0

and for r =0,...,k—1, and |zl\:e/q% (lm+1,...,n)}

where V,(€) = {¢" ey U {—ea} if lag?| > 1 resp. Va(e) = {¢"}Ne, if |ag?| < 1 and with
N, € Ny largest such that |e—1q%qNs

z(m)(e) = (21, .. zm,cmﬂe/q% ,cne/q%) ,

where m € {0,...,n}, [emi1] = ... = |en| = 1 and 2 € {¢"}ren, U {—ea} if Jag?| > 1
resp. z € {¢'}ien, if \aq%| <1(=1,...,m),such that z; # ¢"z; for 1 <i#j<m
and for 7 = 0,...,k — 1. 2™ (¢) is in the support of the orthogonality measure for

the polynomials {P;\4 W-k(2:€) /X € Pt} if € is sufficiently small. The corresponding
(rescaled) weight is then given by

1.(m)
_ _ n _ 2z €
AL (e) == (e g, ¢ qasq) " ”AAW,m(q”;aL(e),bL(e),

€

cr(e),dr(e); g, q’“) :

with (ar(e),br(€),cr(€),dr(€)) given by (3.10). A straightforward calculation, using the
formal limit (3.18), gives then that

liﬁ)l AL (M () =0 if0<m<n,

liﬁ)lA,LL(z(")(e)) =0 if z; = —ea for certain i € {1,...,n},

L . .
IEIJI})IA (2™ (e)) = KL AL(2 sz if z; # —ea Vi € {1,...,n}
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with K a positive constant given by

Ky = (q;q);ozn kz@),

Since N, — oo if € | 0, we see that formally in the limit € | 0 the part of the orthogonality
measure with (partially) continuous support disappears while the completely discrete part
of the orthogonality blows up to the set

{z eR"/z €{¢°}sen, (i=1,...,n) such that z; # qlzj

for1§i7éjgnandforl:O,...,k:—l}. (3.20)

The set given by (3.20) is exactly the support of the orthogonality measure for the
little g-Jacobi polynomials {P(z;a,b,c,d;q,¢*) /X € P*} (cf. lemma 3.3), and the
corresponding formal weights are (up to a positive constant) equal to the weights for the

little g-Jacobi polynomials.
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