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Abstract. This is a collection of open problems in the theory of quantum groups. Emphasis
is given to problems in the analytic aspects of the subject.

We give a collection of problems on quantum groups that are, as far as we know,

still open. Many of these problems seem to be well known, though some are new. This

collection is by no means meant to contain all of the important problems in the subject.

However we do believe that solutions of some of these problems will give significant

contribution to the theory of quantum groups. By the nature of a collection of this kind,

it would be desirable to include an extensive bibliography. Because of insufficient space,

we have limited ourselves to listing only those references that are cited in the problems

contained in this collection. The reader can find further references in them.

1. Classifications of compact quantum groups and representations. Analy-

sis on quantum homogeneous spaces. Recently, three natural families of compact

matrix quantum groups, Au(Q), Ao(Q) and Bu(Q), were constructed [67, 68, 66, 72, 6, 7].

These quantum groups have remarkable properties. For instance, the Au(Q)’s form a

universal family of compact matrix quantum groups (namely, they are the universal

analogues of the ordinary unitary groups U(n)); one can take “intersections” of these

quantum groups to obtain “smaller” quantum groups (in the obvious sense); the famous

quantum groups SUq(2) are special examples of the Bu(Q) by choosing an appropriate

matrix Q. Unlike the quantum groups of Drinfeld-Jimbo [19, 24] and Woronowicz [81, 83],
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these quantum groups cannot be obtained by the method of quantization from the clas-

sical Lie groups. To gain deeper understanding of these quantum groups and to further

the theory of quantum groups, it is expected that completely new methods based more

on pure mathematical considerations, other than the quantization method, should be

developed. In this section, we describe some problems connected with these quantum

groups.

We first recall the constructions of the compact matrix quantum groups Au(Q), Ao(Q)

and Bu(Q) (cf [67, 68, 66, 72, 6, 7]). In the following, Q is any invertible matrix in

GL(m,C); u = (aij)
m
i,j=1; ut is the transpose of u; ū = (a∗ij); u

∗ = ūt. The unital

C*-algebras Au(Q) and Ao(Q) and Bu(Q) are defined by generators aij and the specified

relations.

Au(Q) : u∗u = Im = uu∗, utQūQ−1 = Im = QūQ−1ut;

Ao(Q) : utQuQ−1 = Im = QuQ−1ut, ū = u;

Bu(Q) : u∗u = Im = uu∗, utQuQ−1 = Im = QuQ−1ut.

Note that the C∗-algebra Ao(Q) as defined above makes good sense only for positive Q.

The quantum group Ao(Q) here is different from the one defined in [66] with the same

notation. Since the quantum group denoted by Ao(Q) in [66] is an “intersection” of the

quantum groups Ao(m) and Bu(Q), we believe it is better to reserve the notation Ao(Q)

for the quantum group defined above and we will do so from now on. The quantum group

Bu(Q) is also independently found by Banica, though he used our notation Ao(F ) for it

[6, 7]. If Q = Im, then Au(Q) reduces to the quantum groups Au(m), and both Ao(Q) and

Bu(Q) reduce to the quantum groups Ao(m). The quantum groups Au(m) and Ao(m)

were constructed earlier in [67, 68], where a complete classification (up to isomorphism) of

the quantum group structures and their underlying C*-algebras is given. But for general

Q, only a crude classification is obtained in [66].

Problem 1.1. Extend the method in [67, 68] to obtain complete classifications of the

quantum groups Au(Q), Ao(Q) and Bu(Q), as well as their underlying C*-algebras.

In addition to the quantum groups Au(Q), Ao(Q) and Bu(Q), there are q-deformations

of the classical compact Lie groups (see e.g. [81, 83, 62, 61, 58]), as well as the twists of

these deformations (see e.g. [33, 34, 2, 54, 71]). It is natural to ask whether there is a

nice classification theory for all these quantum groups.

Problem 1.2. Develop a classification theory of simple compact quantum groups, i.e.,

a quantum analogue of the Killing-Cartan theory.

A satisfactory solution of the above problem would be a natural extension of the

classical Killing-Cartan theory. In particular, the simple compact quantum groups would

include simple compact Lie groups. A common feature of the quantum groups in [81, 83,

62, 61, 58, 33, 34, 2, 54, 71] and [67, 68, 66] is that each of them contains a maximal torus.

This could be the starting point in classification of simple compact quantum groups.

We remark that it would be impossible to classify simple quantum groups by using

discrete objects, such as the Dynkin diagrams in the classification of simple Lie groups.
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We will need the continuum for such a task, as shown in [73]. In view of the classification

in [73], we have the following conjecture, which is true for K = SU(2) (see the end of

[73]).

Problem 1.3. For q, q′ ∈ (0, 1], and any simple compact Lie group K, the quantum

group SUq(2) is a quantum subgroup of Kq′ (as defined in [34]) if and only if q = q′.

Besides the classification of quantum groups, it is also interesting to classify their

representations. In [6, 7], by decomposing tensor products of the fundamental repre-

sentations, Banica classifies irreducible representations of quantum groups Au(Q) and

Bu(Q). In particular the irreducible representations of the quantum groups Au(m) and

Ao(m) are given by his scheme. In view of applications of his classification (to physics,

for instance), it would be of interest to

Problem 1.4. Find interesting models for the irreducible representations classified in

[6, 7].

It is well known that the representation theory of connected compact Lie group is

described by the Cartan-Weyl theory and the Borel-Weil theory [31, 63]. Note that these

theories were originally motivated from consideration of the concrete Lie groups, such

as U(m) and O(m) [79, 80]. For general compact quantum groups, no such theories are

available, though some interesting results in this direction are obtained in [1, 46, 8] for

the q-deformations of the classical Lie groups. Thus a solution of the following problem

will be of great importance.

Problem 1.5. Develop analogues of the Cartan-Weyl theory and Borel-Weil theory

for connected compact matrix quantum groups.

See [67, 68] for a definition of connected quantum groups. A solution of the above

problem will no doubt enrich the theory of quantum groups substantially. It is also an-

ticipated that, like the Cartan-Weyl theory and the Borel-Weil theory for compact Lie

groups, the theories we are searching for will have diverse applications in both mathe-

matics and physics.

In the classical Cartan-Weyl theory, the Lie algebra of a Lie group plays the central

role. Likewise, in the modern theory of representation theory of semisimple Lie groups

[31], the universal enveloping algebras of their Lie algebras also play dominant roles. In the

theory of quantum groups developed so far, there is no good definition of a quantum Lie

algebra for a compact matrix quantum group. It is expected that an appropriate definition

of the quantum analogue of Lie algebras for compact matrix quantum groups will be useful

for further development of the theory. In the realm of q-deformations, it is shown that the

Drinfeld-Jimbo quantized universal enveloping algebras are duals to the compact matrix

quantum groups constructed by Woronowicz et al (see [81, 83, 62, 61, 34, 56, 58]). Hence

in a sense the former are the infinitesimal quantum groups of the latter. However, there

are many natural compact matrix quantum groups, like Au(Q), Ao(Q) and Bu(Q), that

are not obtainable by the method of quantization. It is not clear what it should be meant

by “the infinitesimal quantum groups of Au(Q), Ao(Q) and Bu(Q)”.
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Problem 1.6. Find the right notion of infinitesimal quantum groups for compact

matrix quantum groups. Determine and study the infinitesimal quantum groups of Au(Q),

Ao(Q) and Bu(Q).

The quantum groups Au(Q), Ao(Q) and Bu(Q) contain many classical compact Lie

subgroups [72]. For instance the quantum groups Au(m) and Ao(m) contain the groups

U(m) and O(m) respectively (see [67, 68]). Note that the construction of induced rep-

resentations can be naturally extended to compact quantum groups, as well as the im-

primitivity theory [45, 74]. There is also a natural notion of quotient spaces of a compact

quantum group by its quantum subgroups [47, 48, 67, 68]. The following is a summary

of the problems related to these:

Problem 1.7. Understand the representations of the quantum groups Au(m) and

Ao(m) induced from the representations of the compact Lie groups U(m) and O(m).

Study the quantum quotient spaces of these quantum groups. Develop the theory of Gelf-

and pairs for compact quantum groups and find the applications thereof. Gain a better

understanding of the imprimitivity theory for compact quantum groups in the light of

Gelfand pairs and quantum quotient spaces.

Let E/F be a quadratic extension of a field F (char(F ) = 0). Let σ be the generator

of the group Gal(E/F ). For any Q in GL(n,E), we can still define the Hopf *-algebras

Au(Q), Ao(Q) and Bu(Q) as above, where the conjugation of the matrix Q is defined by

using σ.

Problem 1.8. Understand the Hopf *-algebras Au(Q), Ao(Q) and Bu(Q). Is there

any connection between these Hopf *-algebras and the theory of automorphic representa-

tions [10, 25]?

2. Problems on finite quantum groups. Though the q-deformations of compact

Lie groups is well understood, finite quantum groups are still poorly studied. Both as

objects of great mathematical interest, like finite groups, and as objects with poten-

tial important applications in theoretical physics [14, 16], finite quantum groups worth

devoted efforts of study.

To start with, we should have a rich supply of natural and interesting examples, which

is still lacking so far, though a few non-trivial examples have been studied [30, 5]. In the

theory of finite groups, the finite groups of Lie type (Chevalley groups) are one of the

most important classes of finite groups. In view of the fact that classical Lie groups have

q-deformations, a natural question in this connection is

Problem 2.1. Do finite groups of Lie type have an analogue of q-deformations into

finite quantum groups?

In [75], a deformation of Rieffel type for finite groups (actually finite quantum groups)

that contain an abelian subgroup is constructed. However this deformation is not the

analogue of the q-deformations, it is rather an analogue of the Drinfeld twisting (see

[33, 34, 54, 55, 71]). We briefly recall this construction. Let (A,∆) be a finite quantum

group (in the sense that A = C(G), ∆ being the coproduct on A) with the property that
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its maximal subgroup X(A) = {*-homomorphisms from A into C} contains an abelian

subgroup T . Any such group T has the form

T ∼= Z/n1Z⊕ Z/n2Z⊕ · · · ⊕ Z/nlZ,

for some positive integers n1, n2, · · · , nl. Define an action α of H := T × T on the C∗-

algebra A as follows:

α(s,u) = λsρu,

where

λs = (E(−s) ⊗ id)∆, ρu = (id⊗ Eu)∆,

id being the identity map on A and Eu the evaluation functional on C(T ) corresponding

to u. Fix l generators for T . Every homomorphism S on T is uniquely determined by

its action on these generators and can be represented by an l × l matrix (sij) with

integer coefficients sij (viewed as homomorphisms from Z/njZ to Z/niZ). Let S be a

homomorphism of T whose matrix representation in the above sense is skew-symmetric.

Note that the skew-symmetricity of the matrix for S is independent of the choice of the

generators of T . Let J be the homomorphism S ⊕ (−S) on H. Define a new product ×J
on A by

a×J b =
∑

s,t,u,v∈T
αJ(s,u)(a)α(t,v)(b) < s, t >< u, v >, a, b ∈ A,

where < s, t > is the bilinear form on T (with values in the circle group) that identifies

T with its dual group T̂ . The main result of [75] is: Under the same coproduct ∆ of A,

the deformation (A,×J) is still a finite quantum group containing T as a subgroup. In

particular, a finite group that contains a finite abelian group of order of non-prime power

can be deformed into a finite quantum group. This construction is related to the ones in

[34, 54, 55, 71, 32, 23]. Just as the quantum groups obtained by the Rieffel quantization

[54, 55, 71], the quantum groups obtained in this manner contain the original finite abelian

group T and can be deformed again. However, unlike the construction in [32, 23], which

imposes cocyle type conditions in addition to the existence of an abelian subgroup, our

construction above is in some sense canonically associated with the abelian subgroup.

Because of this canonical feature of the construction, we believe more interesting secrets

associated with this construction need to be revealed. To gain better understanding of

this construction, it is desirable to solve the following

Problem 2.2. Characterize the finite quantum groups that can be obtained as defor-

mations of finite groups in the manner above. Find their isomorphic invariant(s).

For a number field F , the Galois group Gal(F̄ /F ) is a compact group having a

big abelian quotient group Gal(F̄ /F )ab, F̄ being the algebraic closure of F . The group

Gal(F̄ /F )ab is well-understood (class field theory). But the nonabelian part of the group

Gal(F̄ /F ) is still an object of immense interest in current research in number theory and

representation theory. It would be interesting to understand what light the deformations

of Gal(E/F ) in the above sense will shed on Gal(F̄ /F ), where E is a finite extension

of F .
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Problem 2.3. Investigate the deformations of Gal(E/F ) in detail and find their ap-

plications in number theory.

In view of the construction of Au(Q), Ao(Q) and Bu(Q) and their properties, we are

naturally led to the following

Problem 2.4. Find interesting finite quantum subgroups of Au(Q), Ao(Q) and Bu(Q)

by “taking their intersections or quotients”.

In view of application in theoretical physics [14, 16], it is important to solve the

following problem.

Problem 2.5. (Due to Connes) Find finite quantum symmetry groups of a finite

quantum space (i.e. a finite dimensional algebra).

A good understanding of enough examples of finite quantum groups should make it

plausible to solve the following problems, which have remained open for a long period of

time:

Problem 2.6. Does the dimension of an irreducible representation of a finite quan-

tum group divide the order of the finite quantum group (cf [28])?

Problem 2.7. Is the classes of non-isomorphic finite quantum groups of a given order

finite?

Other problems in finite quantum groups naturally arise [17, 18].

3. Problems on non-compact quantum groups. Non-compact quantum groups

seem to present the most tantalizing problems. Though a few concrete non-compact

quantum groups have been studied in detail (see e.g. [29, 53, 64, 39, 40, 49, 50, 85, 3, 4]),

there is not a satisfactory analytic theory for complex semisimple quantum groups [19, 24].

Note however that the algebraic aspects of complex semisimple quantum groups are

quite well understood (see e.g. [57, 36, 35, 13]). It is quite easy to see that parts of the

work of Podles, Pusz and Woronowicz on the quantum Lorentz group [49, 50, 51] can

be generalized to arbitrary complex quantum groups. It is expected that the algebraic

aspects of these quantum groups will serve as main tools for understanding their analytic

aspects. Namely, we can expect an analytic theory for all complex semisimple quantum

groups that is in line with the tradition of Gelfand and Naimark and Harish-Chandra for

complex semisimple Lie groups.

Problem 3.1. Study the unitary representations of complex semisimple quantum

groups by extending the works in [39, 40, 49, 50, 51].

Problem 3.2. Develop a theory of admissible representations for complex semisimple

quantum groups [31].

Now we turn to the abstract theory of locally compact quantum groups. There is still

no satisfactory notion of a locally compact quantum group, though some recent attempts

are made [5, 4, 60, 41, 43, 88]. The main problem is

Problem 3.3. Find a notion of locally compact quantum groups that contains ring

groups (i.e. Kac algebras) [22], compact quantum groups [82, 86, 67, 68], and all the
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interesting non-compact quantum groups constructed so far (e.g. [29, 53, 55, 64, 49, 85]),

and entails the existence and uniqueness of the Haar measure.

In practice, the most useful Lie groups are matrix groups (linear groups). In view of

this, it is more practical to solve the following problem first:

Problem 3.4. Develop a theory of non-compact matrix quantum groups along the

lines of [82].

We remark that some tools needed to solve the problem above have been developed

by Woronowicz [85, 88].

The most tractable classes of general locally compact quantum groups seem to be the

regular ones, i.e., those corresponding to the regular (or semi-regular, or manageable)

multiplicative unitaries [5, 4, 88]. For the quantum groups SV and ŜV associated with

such a multiplicative unitary V (see [5] for the meaning of these symbols and related

definitions), the existence and uniqueness of the Haar measures should be determinable by

the following procedure. Because of the regularity (or semi-regularity, or manageability) of

V , one should be able to construct two left Hilbert algebras HV and ĤV sitting in SV and

ŜV respectively, in exactly the same way as the construction of the left Hilbert algebras

HV = Cc(G) and ĤV = Cc(G) sitting in SV = C∞(G) and ŜV = C∗r (G) respectively

when V is the multiplicative unitary associated with a locally compact group G. (One

can also construct two right Hilbert algebras.) The unique modular weights associated

with the left Hilbert algebras HV and ĤV should be the Haar measures for the quantum

groups SV and ŜV . For compact quantum groups and the quantum groups associated with

Kac algebras, the idea above for the Haar measure can be easily verified. The following

remains to be settled.

Problem 3.5. For any regular (or semi-regular or manageable) multiplicative unitary

V , give a rigorous construction of left Hilbert algebras HV and ĤV suggested above, and

show that the unique modular weights associated with them are left Haar measures on SV
and ŜV respectively (that is, they are invariant under left translations).

Similarly, one may formulate a conjecture for right Haar measures.

Experience shows that once the Haar measures are found, it is not hard to to verify

the following conjecture of Skandalis (see the end of [60]).

Problem 3.6. Let φ and ψ (resp. φ̂ and ψ̂) be the left and right Haar measures on

SV (resp. ŜV ). There should exist positive unbounded operators F and F̂ affiliated with

the the centralizers of φ and φ̂ such that for all x ∈ SV and y ∈ ŜV , one has

ψ(x) = φ(FxF ), ψ̂(y) = φ̂(F̂ yF̂ ).

Let ∆φ, ∆ψ, ∆φ̂, ∆ψ̂ be the modular operator associated with the weights φ, ψ, φ̂, ψ̂,

respectively. Then one has

∆φ = L(F−1)R(F−1)λ(F̂ )ρ(F̂−1), ∆ψ = L(F )R(F )λ(F̂ )ρ(F̂−1),

∆φ̂ = L(F−1)R(F )λ(F̂−1)ρ(F̂−1), ∆ψ̂ = L(F−1)R(F )λ(F̂−1)ρ(F̂−1),

where L, R, λ, ρ are defined as in [5].
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4. Other problems. Noncommutative geometry with quantum groups

Problem 4.1. (cf [81, 84]) Develop a canonical differential calculus on a compact

matrix quantum group G = (A, u) by introducing a canonical spectral triple (A, H,D)

(in the sense of Connes [14, 16]) so that the Haar integral h is related to the quantized

integral Trω of Connes by the following formula

h(a) = Trω(a|D|−d), a ∈ A.

Problem 4.2. (Due to P.M. Hajac) Find the structure quantum groups of the quan-

tum vetor bundles for T 2
θ [52]. One should be able to use the universal quantum groups

[66] to find clues to these quantum groups (by reduction of the structure group).

Find interesting examples of quantum principal bundles [11, 27].

Problem 4.3. From the philosophy of the Tannaka-Krein duality [83, 70], one can

recover a compact quantum group G from its dual Ĝ. Calculate the cyclic theory of the

Krein algebra A(G) (see [70]) of a compact quantum group in terms of Ĝ. For the special

cases of compact Lie groups, groups algebras of discrete groups, and the quantum SU(2)

groups, this is done respectively in [15, 12, 42].

Structure of free product of quantum groups

Problem 4.4. Compact quantum groups are the same as discrete quantum groups by

duality (see [49, 5, 70, 67, 21, 65]). In view of the free product construction of quantum

groups [67, 68], it is interesting to know if there are analogs of the theorems of Gruško,

Kurosh and Schreier (see Serre [59]).

Problem 4.5. Many constructions of quantum groups (Hopf algebras) can be viewed

as constructions of Woronowicz Hopf C∗-ideals in the free product A ∗B of two quantum

groups (see [37, 69]). Develop a classification theory for such constructions (or equiva-

lently, ideals).

Quantum groups and operator algebras

Problem 4.6. There are few examples of actions of quantum groups on operator al-

gebras (see [44, 76]), though there is a general theory for such actions [9]. It is very

interesting to decide if the quantum groups SUq(2) (with q ∈ [−1, 1]\{0}) admitts ergodic

actions on the hyperfinite II1 factor R, though the group SU(2) admitts no such actions

[78]. The root of unity case q = −1 should be exceptionally interesting.

Problem 4.7. From the fundamental representation of the universal compact quan-

tum group Au(m) [68, 66], one can construct a natural action of Au(m) on the hyperfinite

II1 factor R [76]. This action extends the natural action of the unitary group U(m) (note

that U(m) is a subgroup of Au(m) [68]) on R, and by restriction, it gives rise to a nat-

ural action of its quantum subgroup SU−1(m) on R. In view of 4.7 of [26], it would be

interesting to relate the subfactors of R and (finite) quantum subgroups of Au(m) and

SU−1(m) from this action.

Problem 4.8. Study the von Neumann algebras generated by the GNS representations

of the Haar measures of the quantum groups Au(n). Try to relate these von Neumann
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algebras to the free group II1 factors L(Fn) and to von Neumann’s famous problem on

these factors (See Chapter V of [14]).
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Note on Problem 2.5: In our paper Quantum symmetry groups of finite spaces

under preparation, we have found the quantum automorphism groups of finite spaces

that have no additional (noncommutative) Riemmanian structure. These quantum groups

are generically infinite. All finite quantum symmetry groups of such spaces are quantum

subgroups of the quantum groups in that paper.
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[6] T. Banica, Théorie des représentations du groupe quantique compact libre O(n), C. R.

Acad. Sci. Paris t. 322, Serie I (1996), 241-244.

[7] T. Banica, Le groupe quantique compact libre U(n), Preprint, Unversity of Paris VII,

1996.

[8] L. C. Biedenharn and M. A. Lohe, An extension of the Borel-Weil construction to the

quantum group Uq(n), Comm. Math. Phys. 146 (1992), 483-504.

[9] F. Boca, Ergodic actions of compact matrix pseudogroups on C∗-algebras, in Recent Ad-

vances in Operator Algebras, Astérisque 232 (1995), 93-109.
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