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Abstract. In a braided monoidal category C we consider Hopf bimodules and crossed modu-
les over a braided Hopf algebra H . We show that both categories are equivalent. It is discussed
that the category of Hopf bimodule bialgebras coincides up to isomorphism with the category
of bialgebra projections over H . Using these results we generalize the Radford-Majid criterion
and show that bialgebra cross products over the Hopf algebra H are precisely described by
H-crossed module bialgebras. In specific braided monoidal abelian categories we define (bicova-
riant) braided differential calculi over H and apply the results on Hopf bimodules to construct a
higher order bicovariant differential calculus over H out of any first order bicovariant differential
calculus over H . This object is shown to be a bialgebra with universal properties.

1. Introduction. Cross products and cross coproducts of k-bialgabras over a field

k have been studied in [17]. Let H be a Hopf algebra and X be an H-right module

algebra and an H-right comodule coalgebra. Then the conditions are derived for H ⊗X
to be a bialgebra such that the algebra structure is given by the cross product and the

coalgebra structure is given by the cross coproduct. In this case Radford calls (H,X) an

admissible pair or simply bialgebra cross product over H [17]. The possibility of forming

bialgebra cross products over a quasitriangular Hopf algebra with any of its modules
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has been recovered in [11]. In Radford’s definition of an admissible pair crossed modules

implicitely appear. Explicitely crossed modules are defined in [21, 18]. Majid proved that

the category of crossed modules is braided monoidal [10]. He recovered that the (co-)

modules to be candidates for a bialgebra cross product are crossed module bialgebras

and hence he formulated the Radford criterion on bialgebra cross products in terms of

crossed module bialgebras.

Bicovariant differential calculi over k-Hopf algebras have been investigated in [20].

The so-called bicovariant bimodules [20] or Hopf bimodules are of special importance

for the construction of bicovariant differential calculi. The equivalent description of Hopf

bimodules through crossed modules has been found in [20].

In [1, 2] crossed modules and Hopf (bi-)modules in braided monoidal categories are

constructed. The equivalence of braided crossed modules and braided Hopf bimodules has

been found in [2] as well as the isomorphy of the braided Hopf bimodule bialgebras and

the braided bialgebra projections over a Hopf algebra H with invertible antipode. Both

theorems can be applied to generalize the Radford-Majid criterion to braided categories.

In the special case of braided quasitriangular Hopf algebrasH [11] this construction works

for any H-module Hopf algebra in a specific admissible category of H-modules [1, 5]. As

a result inhomogeneous quantum groups without additional dilaton generator have been

constructed [5].

Another application of the central theorems of [2] in certain braided abelian categories

is the construction of a graded Hopf algebra differential calculus over H which is in some

sense uniquely derived from a given braided bicovariant first order differential calculus.

This result is discussed in [3] and is an extension of the results of [20] to braided categories.

The paper in hand is concerned with these subjects. It is mainly based on [2, 3].

In Section 2 we fix our conventions and give the necessary definitions needed in the

following. We state the central results of [2]. Section 3 is dedicated to cross product

constructions. We formulate the generalized braided Radford-Majid criterion and consider

cross products over braided quasitriangular Hopf algebras or braided quantum groups.

In Section 4 we restrict to certain braided abelian monoidal categories which we call ∗∗-
abelian, and define (bicovariant) differential calculi in a generalized form. Staring from a

bicovariant first order differential calculus over a braided Hopf algebra H with invertible

antipode we deduce a graded Hopf algebra differential calculus over H. We outline the

universality of this graded bialgebra. For the derivation of these results extensive use of

the results of Section 2 has to be made.

2. Braided crossed modules and Hopf bimodules. For the definition of a monoidal

category we refer to [14]. From Mac Lane’s coherence theorem [15] it is known that every

monoidal category is equivalent to a strict one. Hence we restrict most of the consider-

ations to strict monoidal categories and denote by C := (C,⊗,1l,Ψ) a braided monoidal

category [6, 9] where ⊗ is the tensor product (bifunctor), 1l is the unit object and Ψ is

the braiding. We suppose that the reader is familiar with the notion of (co-)associative

(co-)unital (co-)algebras, (co-)modules and bi-(co-)modules in monoidal categories [19,

11, 10]. In a braided monoidal category the tensor product of two (co-)algebras is again a

(co-)algebra; the multiplication mU⊗V and the unit ηU⊗V of two algebras (U,mU , ηU )



BRAIDED DIFFERENTIAL CALCULUS 81

and (V,mV , ηV ) are given through mU⊗V = (mU ⊗ mV ) ◦ (idU ⊗ ΨU,V ⊗ idV ) and

ηU⊗V = ηU⊗ηV respectively. The coalgebra structure of the tensor product of two coalge-

bras is obtained in the dual symmetric manner which means that the order of the compo-

sition of morphisms will be reversed, and the multiplication m will be replaced by the co-

multiplication ∆ and the unit η by the counit ε, and vice versa. A bialgebra (B,m, η,∆, ε)

in a braided monoidal category C is an algebra (B,m, η) and a coalgebra (B,∆, ε) where

∆ and ε are algebra morphisms [10]. A Hopf algebra (H,m, η,∆, ε, S) in C is a bialgebra

together with the antipode S : H → H such that m◦(idH⊗S)◦∆ = m◦(S⊗idH)◦∆ = η◦ε.
Every bialgebra (B,m, η,∆, ε) in C is a bi-(co-)module through the regular action m and

the regular coaction ∆. The diagonal action of the tensor product of two right modules

(X,µXr ) and (Y, µYr ) is given by µX⊗Yd,r = (µXr ⊗µYr )◦(idX⊗ΨY B⊗ idB)◦(idX⊗ idY ⊗∆).

The right action µi,r on X⊗Y induced by Y is given through µX⊗Yi,r = idX⊗µYr . (Dually)

analogue all other types of diagonal (co-)actions and induced (co-)actions are defined. We

will also use the notion of (co-)adjoint (co-)action. Let H be a Hopf algebra in C and

let (X,µr, µl) be an H-bimodule then X becomes a right H-module through the right

adjoint action ad/ := µl ◦ (idH ⊗µr) ◦ (ΨXH ⊗ idH) ◦ (idX ⊗ (S⊗ idH) ◦∆). Similarly the

left adjoint action is defined. The coadjoint coactions are obtained in the dual symmetric

manner. If A is an algebra and f : H → A is an algebra morphism then the algebra

A becomes an H-bimodule (A,µfr , µ
f
l ) via pullback along f , µfl = mA ◦ (f ⊗ idA) and

µfr = mA ◦ (idA ⊗ f). The corresponding right adjoint action (induced by f) will be

denoted by adf
/ and the resulting right H-module algebra by Af := (A,m, η, adf

/).

We suppose that the categories C admit split idempotents, i.e. every idempotent in

the category C, e = e2 : X → X splits in C in the sense that there exists an object Xe

and morphisms ie : Xe → X and pe : X → Xe such that e = ie ◦ pe and ide = pe ◦ ie. For

example this holds in every abelian category. In what follows B and H denote bialgebras

and Hopf algebras in the braided category C respectively. We assume that the antipode

is invertible. The remainder of this section is mostly based on the results of [1, 2].

We start with the definition of braided crossed modules. They are (braided) analogues

of the k-vector space of invariant one-forms of a bicovariant bimodule (Hopf bimodule)

[20] and have a close connection to smash product constructions (see [17] in the case of

bialgebras over the field k and [1] for the braided case).

Definition 1. A right crossed module (X,µr, νr) over the bialgebra B is a right B-

module and a right B-comodule obeying the compatibility relations

(idX ⊗m) ◦ (ΨBX ⊗ idB) ◦ (idB ⊗ νr ◦ µr) ◦ (ΨX B ⊗B) ◦ (idX ⊗∆)

= (µr ⊗m) ◦ (idX ⊗ΨBB ⊗ idB) ◦ (νr ⊗∆). (1)

The category DY (C)BB is the category of crossed modules where the morphisms are both

right module and right comodule morphisms over B. In a similar way all other combina-

tions of crossed modules will be defined.

Example 1. A Hopf algebra H is a crossed module over itself through the adjoint

action and the regular coaction. Dually analogue H is a crossed module through the

regular action and the coadjoint coaction.
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The (pre-)braided monoidal structure of DY (C)BB is described in the next theorem.

Theorem 1. For the bialgebra B in C the category (DY (C)BB ,⊗,1l) is monoidal with

unit object (1l, εB , ηB). It is pre-braided through

DY(C)B
BΨX Y := (idY ⊗ µXr ) ◦ (ΨX Y ⊗ idB) ◦ (idX ⊗ νYr ) (2)

where X, Y ∈ Ob(DY (C)BB). If H is a Hopf algebra (with isomorphic antipode) in C then

DY (C)HH is braided, i.e. the inverse of (2) exists and equals

(
DY(C)B

BΨX Y )−1 = (µXr ⊗ idY ) ◦ (idY ⊗ (ΨH Y )−1) ◦ (3)

((ΨX Y )−1 ⊗ S−1) ◦ (idY ⊗ (ΨXH)−1) ◦ (νYr ⊗ idX) �

Hopf bimodules in the braided category C are defined as follows.

Definition 2. An object (X,µr, µl, νr, νl) is called a B-Hopf bimodule in C if

(X,µr, µl) is a B-bimodule, and (X, νr, νl) is a B-bicomodule in the category of B-

bimodules, where the regular (co-)action on B and the diagonal (co-)action on tensor

products of modules are used. Hopf bimodules together with the B-bimodule-bicomodule

morphisms form the category of Hopf bimodules which will be denoted by B
BCBB .

A consequence of the bimodule property is given by the following lemma.

Lemma 2. Let (X,µr, µl, νr, νl) be an H-Hopf bimodule. Then the morphism XΠ :

X → X defined through XΠ := µl ◦ (S ⊗ idX) ◦ νl is an idempotent. �

We denote by X i : HX → X, Xp : X → HX the morphisms which split the idempotent

XΠ, i.e. X i◦Xp = XΠ and Xp◦X i = id
HX . Then the assignment H(−) : HHCHH → DY (C)HH

which is given through H(X) := HX for an H-Hopf bimodule X, and through H(f) =

Y p◦f ◦X i for a Hopf bimodule morphism f : X → Y , defines a functor. The right crossed

module structure on HX is given by µHX
r = Xp◦µXr ◦(X i⊗ idH) and νHX

r = (Xp⊗ idH)◦
νXr ◦ H i. Conversely if Y is a right crossed module over H then a full inclusion functor

Hn(−) : DY (C)HH → H
HCHH is defined by H n (Y ) = (H ⊗ Y, µH⊗Yi,l , νH⊗Yi,l , µH⊗Yd,r , νH⊗Yd,r )

and H n (f) = idH ⊗ f for any crossed module morphism f . These facts will be used to

formulate the following important theorems.

Theorem 3. The category of Hopf bimodules over H is monoidal with the tensor

product given by

⊗H := ⊗ ◦ (id× H(−)) : HHCHH × H
HCHH −→ H

HCHH .

H is the unit object. It is equipped with the regular H-Hopf bimodule structure. HHCHH is

braided with the braiding given on the objects X, Y ∈ Ob(HHCHH ) through
H
H
CH
HΨX Y = (µYl ⊗ Xp ◦ µXr ) ◦ (idH ⊗ΨX Y ⊗ idH) ◦ (νXl ⊗ νYr ◦ Y i) . � (4)

Theorem 4. Let H be a Hopf algebra in C with isomorphic antipode. Then the catego-

ries DY (C)HH and H
HCHH are braided monoidal equivalent through the functors

DY (C)HH
Hn(−)−−−→
←−−−
H(−)

H
HCHH . �
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3. Braided cross products. In this section we define braided cross products and

generalize the Radford-Majid criterion to braided categories. We review braided quasi-

triangular Hopf algebras and study braided quasitriangular bialgebra cross products. (See

[1, 2, 5])

For the investigation of cross product Hopf algebras, Hopf algebra projections and

Hopf bimodule Hopf algebras we introduce the relative antipode of a Hopf bimodule.

Definition 3. Let (X,µr, µl, νr, νl) be an H-Hopf bimodule. Then the relative an-

tipode SX/H of X w.r.t. H is defined by

SX/H := MX ◦ (S ⊗ idX ⊗ S) ◦NX (5)

where MX := µl ◦ (idH ⊗ µr) and NX := (idH ⊗ νr) ◦ νl.

A “polarized” form of the anti-(co-)multiplicity of the antipode holds, SX/H ◦ µr =

µl ◦ ΨXH ◦ (SX/H ⊗ S) and SX/H ◦ µl = µr ◦ ΨHX ◦ (S ⊗ SX/H), and dually analogue

for the coactions. The relative antipode SH/H coincides with the antipode S of H. In the

next definition we define braided bialgebra projections in the sense of [17].

Definition 4. Let B1 and B2 be bialgebras in C and B1

η
→ B2

ε→ B1 be a pair

of bialgebra morphisms such that ε ◦ η = idB1
. Then (B1, B2, η, ε) is called a bialgebra

projection on B1. The bialgebra projections on B1 constitute the category B1-Bialg-C.
The morphisms obey the relations f ◦ η = η and ε ◦ f = ε.

One easily verifies that for a bialgebra projection (B1, B2, η, ε) on B1 the object

B2 = (B2, µ
B2
r , µB2

l , νB2
r , νB2

l ) is a B1-Hopf bimodule through the (co-)actions

µB2

l = mB2
◦ (η ⊗ idB2

) , µB2
r = mB2

◦ (idB2
⊗ η) , (6)

νB2

l = (ε⊗ idB2
) ◦∆B2

, νB2
r = (idB2

⊗ ε) ◦∆B2
.

For the formulation of the next theorem observe that in the category H
HCHH the tensor

product ⊗
H

and the cotensor product �
H

exist and coincide up to isomorphism with ⊗H .

The corresponding coequalizer λ and equalizer ρ for two H-Hopf bimodules N and M

are given respectively by

N ⊗M λH
N,M−−−→N ⊗

H
M ∼= N ⊗ HM

λHN,M = (µNr ⊗ id
HM ) ◦ (idN ⊗ (idH ⊗Mp) ◦ νMl ) (7)

and

N ⊗ HM ∼= N �
H
M

ρHN,M−−−→N ⊗M

ρHN,M = (idN ⊗ µMl ◦ (idH ⊗M i) ◦ (νNr ⊗ id
HM ) . (8)

The following theorem states that the categories of Hopf bimodule bialgebras and bial-

gebra projections are equal up to isomorphism.

Theorem 5. For any bialgebra projection (H,B, η
B
, εB) the object B is a bialgebra

(B,mB , ηB ,∆B , εB) in H
HCHH where the projection morphisms η

B
and εB are the unit and
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counit respectively. Multiplication mB and comultiplication ∆B are defined through

mB = mB ◦ (idB ⊗ H i) and ∆B = (idB ⊗ Hp) ◦∆ . (9)

Conversely every bialgebra B = (B,mB , ηB ,∆B , εB) in H
HCHH can be turned into a bialge-

bra B = (B,mB , ηB ,∆B , εB) in C where the structure morphisms are given by

mB = mB ◦ λHB,B , ηB = η
B
◦ ηH , ∆B = ρHB,B ◦∆B , εB = εH ◦ εB . (10)

The pair (H,B) is a bialgebra projection on H via the morphisms (η
B
, εB). There also ex-

ists a correspondence of Hopf algebra structures. For a Hopf algebra projection

(H1, H2, ηH2
, εH2

) on H1 the antipode of H2 is given by

SH2
= MH2 ◦ (idH1 ⊗ SH2 ⊗ idH1) ◦NH2 (11)

and for any Hopf algebra H2 in H1

H1
CH1

H1
the antipode of H2 is given by

SH2 = SH2
◦ SH2/H1

= SH2/H1
◦ SH2

. (12)

In other words the categories H-Bialg- C and Bialg-HHCHH are isomorphic through the

functorial assignment on the objects described in equations (9) – (12) and through the

identity on the morphisms. �

The equivalence of the braided categories HHCHH and DY (C)HH allows us to modify the

previous theorem in terms of the category DY (C)HH . Then we obtain a formulation of

bialgebra cross products in terms of braided crossed module bialgebras and a braided

generalization of the Radford-Majid criterion (see [17, 10] and [1, 2] in the braided case).

This will be outlined in more detail in the following.

The braided cross product and the braided cross coproduct in the category C can be

defined in a formal manner similar to the symmetric case. For a Hopf algebra H in C and

an algebra (A,µA) in CH the cross product H nµA
A is defined as the universal algebra

in C such that:

1. There are algebra morphisms j : H → H nµA
A and i : A → H nµA

A. In addition

i is algebra morphism in CH where the module structure on H nµA
A is the right

adjoint action induced by the morphism j, i.e. i ∈ AlgH(A, (H nµA
A)j)

2. If U is any algebra in C and g ∈ Alg(H,U), f ∈ AlgH(A,Ug), then there exists a

unique algebra morphism g nµA
f : H nµA

A → U such that f = (g nµA
f) ◦ i and

g = (g nµA
f) ◦ j.

The cross coproduct HnνC C is defined in the dual symmetric manner. Both products are

unique up to (co-)algebra isomorphism. The cross product can be realized on the tensor

product H ⊗A through [11, 5, 2]

mn = (mH ⊗mA) ◦ (idH ⊗ (idH ⊗ µAr ) ◦ (ΨAH ⊗ idH) ◦ (idA ⊗∆H)⊗ idA) ,

ηn = ηH ⊗ ηA , i = ηH ⊗ idA , j = idH ⊗ ηA .

Then g nµA
f = mU ◦ (g ⊗ f) for the corresponding unique morphism which is induced

by g and f .

If X is at the same time a right H-module algebra and a right H-comodule coalgebra

such that the smash product and the smash coproduct (realized on H⊗X) are compatible

in such a way that H nX := (H ⊗X,mn, ηn,∆n, εn) is a bialgebra in C then we say, in
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the sense of [17], that the pair (H,X) is admissible; X is called H-admissible object in C.
The category H-cp-C is the category of admissible pairs (H,X) with bialgebra morphisms

h : H nX → H n Y such that h ◦ jX = jY and kY ◦ h = kX , where k = ε⊗ idH .

Without difficulties one proofs that the following relations hold for an admissible pair

(H,X) in C.

εX ◦mX = εX ⊗ εX , εX ◦ µXr = εX ⊗ εH ,
∆X ◦ ηX = ηX ⊗ ηX , νXr ◦ ηX = ηX ⊗ ηH , (13)

εX ◦ ηX = id1l

From (13) it follows that (H,H nX, idH ⊗ ηX , idH ⊗ εX) is a bialgebra projection on H.

Using the results of [1] and Theorems 4 and 5 this yields a description of H-admissible

objects in the category C in terms of crossed module bialgebras.

Theorem 6. Let H be a Hopf algebra in C with isomorphic antipode. Then the

category of admissible pairs H-cp- C and the category of H-crossed module bialgebras

Bialg-DY (C)HH are isomorphic. The functorial isomorphism is given through

Bialg-DY (C)HH
Hn(−)−−−−→
←−−−−
H(−)◦F

H-cp- C where F : H-cp- C → Bialg-HHCHH is the restriction of

the corresponding isomorphism of Theorem 5. �

Braided quantum groups (quasitrangular Hopf algebras) were introduced in [12] and

the basic theory was developed there. We use slightly modified definitions [1] which reflect

the symmetry between the two coalgebra structures under consideration. In what follows

we set C := (C,⊗,1l,Ψ−1), which is the same monoidal category as C but with inverse

braiding. Then we say that a pair of bialgebras (Hopf algebras) (A,A) in C × C and a

convolution invertible bialgebra pairing R : 1l → Aop ⊗ A in C define a braided quasitri-

angular bialgebra (Hopf algebra) (A,A,R), if A and A only differ in their comultiplication

(and antipode), i.e. A = (A,m, η,∆, ε(, S)) and A = (A,m, η,∆, ε(, S)), and if the identity

(ΨA,A◦∆) ·R = R·∆ holds, where “·” is the convolution product and Aop is the opposite

bialgebra w.r.t. A in (C,⊗,1l,Ψ). Similar to the case of ordinary quantum groups it is

shown in [1] that the antipodes of the quasitriangular Hopf algebra (A,A,R) are invertible

to each other1. In particular S
−1

= u · S · u−1, where u := m ◦ (idA ⊗ S) ◦ R.

For a quasitriangular bialgebra (A,A,R) we define the category CO(A,A) as the full

subcategory of the category of A-right modules CA with objects (X,µr) satisfying the

identity

(idA ⊗ µr) ◦ (ΨX A ⊗ idA) ◦ (idX ⊗∆) = (idA ⊗ µr) ◦ (Ψ−1X A ⊗ idA) ◦ (idX ⊗∆) . (14)

This category is identified with a full braided monoidal subcategory of DY (C)AA [1, 12];

every module (X,µr) in CO(A,A) becomes a crossed module (X,µr, νr) in DY (C)AA through

the coaction νr := (µr⊗ idA)◦(idX⊗R). This embedding allows us to prove the following

generalized bosonization construction [1].

1This result does not hold in general in [11] since there Aop is not necessarily supposed to be

a Hopf algebra.
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Theorem 7. Let (A,A,RA) be a quasitriangular bialgebra in C and (B,B,RB) be

a quasitriangular bialgebra in CO(A,A) then (A n B,A n B,RAnB) is a quasitriangular

bialgebra in C, where A n B and A n B are the bialgebras obtained through the functor

An (−) and An (−) in C and in C respectively. The R-matrix of the product is given by

RAnB := (mAnB ⊗mAnB) ◦ (ιB ⊗ (ιA ⊗ ιA) ◦ RA ⊗ ιB) ◦ RB (15)

where ιA : A→ AnB and ιB : B → AnB denote the canonical algebra monomorphisms.

Analogous results hold in the Hopf algebra context.

Theorem 7 allows us to specify the braided version of the Radford-Majid theorem to

the case where the braided groups are equipped with quasitriangular structures respected

by the projections in the following sense.

Definition 5. Let (A,A,RA) and (H,H,RH) be braided quantum groups in C. Then

the pair
(
A

iA−→
←−
pA

H , A

i
A−→
←−
p
A

H
)

is called a quantum group projection if the following holds.

1. Both (A,H, iA, pA) and (A,H, iA, pA) are bialgebra projections in C and C respec-

tively.

2. For H ∈ Ob(AACAA) and H ∈ Ob(A
A
CAA) according to Theorem 5 the idempotents HΠ

and HΠ defined in Lemma 2 coincide.

3.

(idH ⊗ pA) ◦ RH = (iA ⊗ idA) ◦ RA and (pA ⊗ idH) ◦ RH = (idA ⊗ iA) ◦ RA .

Then we obtain a Radford-Majid criterion for braided quantum groups.

Theorem 8. Let (A,A,RA)

(iA,iA)
−→
←−

(pA,pA)

(H,H,RH) be a braided quantum group projection

in C. Then there exists a quantum group (B,B,RB) in the category CO(A,A) such that

(H,H,RH) ' (AnB,AnB,RAnB) . (16)

4. Braided differential calculus. Differential calculi on quantum groups are con-

structed in [20] where Hopf bimodules or bicovariant bimodules appear as the basic notion

in Woronowicz’s approach to bicovariant differential calculi on quantum groups. The dif-

ferential bialgebra structure of the exterior higher order differential calculus, which has

been generated by a first order bicovariant differential calculus, was found in [4] after the

more general investigation of differential bialgebras and quantum groups had been worked

out in [16]. These authors all have in common that they work over the symmetric tensor

category of vector spaces over a field k. Braided differential calculi have been considered

in [13] on the quantum plane – the fundamental (co-)representation of the underlying

(co-)quasitriangular quantum group. A successful attempt to construct braided bicova-

riant differential calculi is described in [8] where braided GLq(n)-covariant differential

calculi on the braided matrix algebra BMq(n) and on the quantum hyperplanes have

been found.
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In this section we outline the definition and the construction of braided bicovariant

differential calculi [3]. We show that every braided first order bicovariant differential

calculus over a Hopf algebra H in C induces a braided exterior bicovariant differential

calculus over H. The universality of this construction is discussed. For the derivation of

these facts we make use of the results of the previous sections. In what follows we focus

our consideration to abelian, braided monoidal categories with a bilinear tensor product,

such that X is flat for every object X in the category. We will call henceforth categories

with these properties ∗∗-abelian categories. All the results in the sequel can be derived

under weaker conditions. The more general case is studied in [3].

R e m a r k 1. If the category C of the previous sections is ∗∗-abelian then it is a non-

trivial but straightforward computation to verify that in particular the category H
HCHH is

also ∗∗-abelian.

Let us consider any ∗∗-abelian category D. Let in the following I be either the set

{0, 1} or IN0. Then the I-graded category DI is the functor category where I is considered

to be discrete, i.e. the objects in DI are of the form X̂ = (X0, X1, . . .) where Xj ∈ Ob(D)

and the morphisms f̂ : X̂ → Ŷ are given by f̂ = (f0, f1, . . .) where fj : Xj → Yj is a

morphism in D (see e.g. [14]). It is not difficult to verify

Proposition 9. DI is a ∗∗-abelian category. In particular the tensor product and

the braiding are given respectively by (X̂ ⊗ Ŷ )j =
⊕

k+l=j Xk ⊗ Yl and (Ψ̂X̂ Ŷ )j =⊕
k+l=j(−1)klΨXk Yl

. �

The category of complexes over D will be defined in the usual manner – see e.g. [7].

Definition 6. (X̂, d̂) is called a complex in DI if X̂ is an object in DI and the

differential d̂ = (d0,d1, . . .) is given as a sequence of morphisms dj : Xj → Xj+1 in D
such that dj+1 ◦ dj = 0. Morphisms of complexes f̂ : (X̂, d̂X) → (Ŷ , d̂Y ) are morphisms

in DI such that fj+1 ◦ dX j = dY j ◦ fj . The category of complexes is denoted by cDI .

Proposition 10. cDI is a ∗∗-abelian category. The tensor product and the braiding

are given as in Proposition 9. The differential of the tensor product of two complexes is

given through

(dX̂⊗Ŷ )j =
∑
k+l=j

(
dX k ⊗ idYl

+ (−1)k idXk
⊗ dYl

)
. � (17)

Through the canonical mappings X 7→ X̂ := (X, 0, 0, . . .) 7→ (X̂, d̂ := 0) one obtains

the following braided monoidal inclusions.

Lemma 11.

D ↪→ DI ↪→ cDI . �

Let H be a Hopf algebra in D (with invertible antipode). Then by use of Remark 1

and Lemma 11 we obtain

Proposition 12. There are braided monoidal isomorphisms

H
H(DI)HH ∼= (HHDHH )I and H

H(cDI)HH ∼= c(HHDHH )I . �
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For any object X in D we consider its tensor algebra TD(X) in DIN0 with (TD(X))0 =

1lD and (TD(X))j = X⊗ j the j-fold tensor product of X. Since D is braided it is possible

for any fixed j ∈ I to define a section Sj 3 σ 7→ σD(X) ∈ Aut(X⊗ j) of the symmetric

group Sj to the representation of the braid group Bj on X⊗ j generated by the braiding

ΨXX [20]. We denote by S(k,l) the shuffle permutations in Sk+l which shuffle k numbers

in {1, 2, . . . , k + l} to the first k places without changing their order and the remaining

l numbers to the places k + 1, . . . , k + l without changing their orders. Then we define

Aj(X) =
∑
σ∈Sj

(−1)l(σ) σD(X) and A(k,l)(X) =
∑
σ∈S(k,l)

(−1)l(σ) σD(X) where l(σ) is

the length of the permutation σ. Similarly we define

A(k,l)(X) =
∑

σ∈S(k,l)

(−1)l(σ) σD(X)

where S(k,l) are the shuffle permutations inverse to S(k,l). Using braid algebra one can

prove the following proposition.

Proposition 13. On TD(X) a Hopf algebra structure is given by

m(n,m)
∼= idX⊗n+m : X⊗n ⊗X⊗m → X⊗n+m ,

η0 = idk, ηj = 0 for j 6= 0 ,

∆(n,m)
∼= A(n,m)(X) : X⊗n+m → X⊗n ⊗X⊗m , (18)

ε0 = idk, εj = 0 for j 6= 0 ,

Sj = (−1)j (σ0
j )D(X)

where σ0
j =

(
1 . . . j

j . . . 1

)
. Because of duality a Hopf structure dual to (18) can be esta-

blished on TD(X). Explicitely it is given by

◦
m(n,m)

∼= A(n,m)(X) : X⊗n ⊗X⊗m → X⊗n+m ,
◦
η0 = idk,

◦
ηj = 0 for j 6= 0 ,

◦
∆(n,m)

∼= idX⊗n+m : X⊗n+m → X⊗n ⊗X⊗m , (19)
◦
ε0 = idk,

◦
εj = 0 for j 6= 0 ,

◦
Sj = (−1)j (σ0

j )D(X) .

The dual Hopf algebra according to (19) will be denoted by
◦
TD(X). �

The two Hopf algebras are linked in a nice way via the graded morphism (Â(X))j :=

Aj(X) : X⊗ j → X⊗ j . This yields the following proposition [3].

Proposition 14. Â(X) : TD(X) →
◦
TD(X) with (Â(X))j := Aj(X) is a bialgebra

morphism in DI . Hence it follows that Â(X) induces a Hopf algebra structure in DI on

the object

T∧D(X) := coim(Â(X)). �

R e m a r k 2. If D is a category of vector spaces then T∧D(X) is a braided version of

the exterior tensor algebra, T∧D(X) = TD
/

(ker Â(X)).
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From now on we suppose that the category C of the previous sections is ∗∗-abelian.

The definition of a differential calculus in C is then given by

Definition 7. A complex (Ŷ , d̂) in cCI is called a differential calculus if (Ŷ , d̂) is an

algebra in cCI and the image of the morphism m0,j+1 ◦ (idY0 ⊗ dj) is Yj+1 for all j ∈ I.

Let B̂ be a bialgebra in CI . Then (Ŷ , d̂) is called B̂-left covariant, B̂-right covariant or

B̂-bicovariant differential calculus if it is a differential calculus in the category B̂(cCI),
(cCI)B̂ or B̂(cCI)B̂ respectively. 2

If I = {0, 1} we sometimes use the name first order differential calculus. If I = IN0 we

speak of higher order differential calculus [20]. These definitions generalize the notations

of [20] in the following sense. If (Ŷ , d̂) is a differential calculus and a bialgebra in cCI then

it is straightforward to show that (Ŷ , d̂) is a braided Y0-bicovariant differential calculus

or a braided bicovariant differential calculus over Y0. For I = {0, 1} this is just a braided

version of the definition of bicovariant differential calculi given in [20].

Now let D = H
HCHH be the category of H-Hopf bimodules and ((H,X), d) be a braided

bicovariant first order differential calculus over the Hopf algebra H. Then it follows rather

immediately that X is in particular an H-Hopf bimodule. Hence we can apply the results

of Proposition 13 and 14 to derive the Hopf algebra T∧H
H
CH
H

(X) in (HHCHH )IN0 . To obtain

from T∧H
H
CH
H

(X) a Hopf algebra (projection) in CIN0 we apply the corresponding functor of

Theorem 5 and call the resulting object X∧. This object X∧ turns out to be the braided

generalization of an algebra of exterior forms over the group as explained in [20] for the

case of the symmetric category of vector spaces. To find the differential structure on

X∧ is a nontrivial matter [3]. We use ideas of [20] and exploit strongly the results and

techniques of [2] which have been outlined in the previous sections. We state the result

in the following theorem.

Theorem 15. On X∧ there exists a unique differential d̂ such that

1. The 0.th component of d̂ is the differential d of the bicovariant first order differential

calculus (H,X, d), i.e. d0 = d.

2. (X∧, d̂) is an IN0-graded Hopf algebra differential calculus over H and hence in

particular a bicovariant differential calculus over H. �

The construction of X∧ is universal in the following sense. Consider bialgebras Ŷ in

CIN0 such that Y0 is a Hopf algebra with invertible antipode and the components Yn+1

are generated through the multiplication mY by Y0 and Y1, i.e. im(mY
1,n) = Yn+1 ∀n > 1.

Then we obtain the next proposition.

Proposition 16. Let Ŷ be a bialgebra of the above mentioned form, and let (f0, f1) :

(Y0, Y1)→ (H,X1) be a bialgebra morphism in C(0,1). Then there exists a unique bialgebra

morphism f̂ : Ŷ → X∧ such that f̂0 = f0 and f̂1 = f1. �

2According to the general notion these are the corresponding B̂-comodule categories.
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