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Abstract. Quantum Lie algebras are generalizations of Lie algebras whose structure con-
stants are power series in h. They are derived from the quantized enveloping algebras Uh(g).
The quantum Lie bracket satisfies a generalization of antisymmetry. Representations of quantum
Lie algebras are defined in terms of a generalized commutator.

The recent general results about quantum Lie algebras are introduced with the help of the
explicit example of (sl2)h.

1. Introduction. The subject of this paper are the question marks in the following

diagram

g
?−−−−→ ghy x?

U(g)
Drinfel’d−−−−−→
Jimbo

Uh(g)

Drinfel’d [1] and Jimbo [2] have shown how to define a quantization Uh(g) of the en-

veloping algebra U(g) of any simple complex Lie algebra g. These quantized enveloping

algebras have proven to be important in several branches of mathematics and physics

and have been studied in detail. In contrast, very little is know about the quantization

of the Lie algebras themselves.

The approach to the quantization of Lie algebras which was initiated in [3, 8] consists

of making use of the known quantization of the corresponding enveloping algebras. The

quantum Lie algebras are extracted from the quantized enveloping algebras in the same

way as the unquantized Lie algebras can be extracted from the unquantized enveloping

algebras.
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In an alternative approach, initiated by Woronowicz [5], one can extract quantum

Lie algebras from the formalism of bicovariant differential calculi on quantum groups.

This approach always leads to quantum Lie algebras which have a larger dimension than

their classical counterpart. We now know that these algebras are not simple and that our

quantum Lie algebras are simple subalgebras of these. Here we will deal only with the

simple quantum Lie algebras obtained from our algebraic approach. For works on the

Woronowicz algebras see e.g. [6]. For an approach specific to quantum sln but related to

our general approach see [9].

In this paper we will use the simplest example, namely the three-dimensional Lie

algebra sl2 so familiar to physicists, to introduce the general results about quantum Lie

algebras which have recently been obtained. We will also give a matrix representation of

this algebra which has not yet been published.

2. The Lie algebra sl2. Complex Lie algebras g in general are vector spaces over C

equipped with a non-associative product, commonly denoted as the Lie bracket. This is

a linear map [, ] : g⊗ g→ g which satisfies

[a, b] = −[b, a] antisymmetry, (2.1)

[a, [b, c]] = [[a, b], c] + [b, [a, c]] Jacobi identity. (2.2)

The complex simple Lie algebra sl2 is spanned as a vector space by three elementsX+, X−

and H. The Lie bracket is given by

[X+, X−] = H, [H,X±] = ±2X±. (2.3)

Together with the antisymmetry property and the bilinearity these three relations define

the Lie bracket on the whole algebra uniquely.

3. The enveloping algebra U(sl2). The enveloping algebra U(sl2) is the associa-

tive unital algebra over C generated by the three generators X+, X− and H and the

commutation relations

X+X− −X−X+ = H, HX± −X±H = ±2X±. (3.1)

In other words: U(sl2) contains all possible ordered polynomials in the three generators

but two such polynomials are equal if they are related by the above commutation relations.

It can be seen that the relations allow one to commute all X− to the left and all X+

to the right. Thus as a basis for U(sl2) one can choose {(X−)nHm(X+)l|n,m, l ∈ N},
known as the Poincaré-Birkhoff-Witt basis.

The enveloping algebra U(sl2) is clearly infinite dimensional. It contains sl2 as the

subspace spanned by X−, X+ and H. This subspace is closed under the commutator

and the commutator coincides with the Lie bracket as defined in (2.3). Because of this

the mind of a physicist tends not to distinguish between Lie brackets and commutators.

Below however it will be crucial to keep the two concepts clearly separated.

The enveloping algebra is a Hopf algebra. In this paper we will only need to know

that this implies that one can define an action of the enveloping algebra on itself, the so
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called adjoint action. For U(sl2) it is defined by

(adX±) a = X±a− aX±, (adH) a = Ha− aH, ∀a ∈ U(sl2). (3.2)

Thus for the generators the adjoint action is just the commutator. For products of gener-

ators the adjoint action is obtained from the above by the defining property of an action,

i.e., (ad ab) = (ad a) (ad b) .

4. The quantized enveloping algebra Uh(sl2). The quantized enveloping algebra

Uh(sl2) [1, 2, 7] too is an associative unital algebra generated by the three generators

X+, X− and H. However it is an algebra over C[[h]], the ring of formal power series in

an indeterminate h (which in physical applications may be related to Planck’s constant,

but not necessarily linearly so). The commutation relations are deformed with respect to

(3.1). They now read

X+X− −X−X+ =
qH − q−H

q − q−1
, HX± −X±H = ±2X±, (4.1)

where q = eh. Thus the commutator of X+ and X− gives an infinite power series in h.

The first term in the series is just H, as classically, but the higher order terms in h (the

quantum corrections) are non-linear in H.

The important property of the deformation (4.1) is that it still defines a Hopf algebra.

However also the Hopf algebra structure is deformed and this leads in particular to a

deformed adjoint action

(adX±) a = X±aqH/2 − q∓1qH/2aX±,

(adH) a = Ha− aH, ∀a ∈ U(sl2). (4.2)

5. A quantum Lie algebra Lh(sl2) inside Uh(sl2). As explained in Section 3 the

Lie algebra sl2 can be viewed as a subspace of the enveloping algebra U(sl2) which is

spanned by the generators X+, X− and H and on which the Lie bracket is given by the

commutator. We would now like to obtain the quantum Lie algebra Lh(sl2) in a similar

manner from the quantized enveloping algebra Uq(sl2).

However, in the quantum case the space1 spanned by the generators X+, X− and H

does not close under the commutator. The non-linear terms in H in the commutation

relations (4.1) create a problem. The first idea is to replace the role of the commutator

by the adjoint action. As we had seen the two coincide in the classical case but differ

in the quantum case. If we find a three-dimensional subspace of Uq(sl2) which is closed

under the adjoint action then we can define a quantum Lie bracket on this space by

[a, b]h ≡ (ad a) b. (5.1)

The space spanned by

X±
h =

√
2

q+q−1 q
−H/2X±, Hh = 2

q+q−1

(
qX+X− − q−1X−X+

)
, (5.2)

1To be pedantic, because C[[h]] is a ring and not a field, we should not speak of vector

spaces but rather of C[[h]]-modules. However in this paper we would prefer not to dwell on such

subtleties.
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satisfies this requirement. Indeed, using (4.2), one can calculate the adjoint action of

these elements on each other. The reader is urged to perform these calculations. He will

find

[X+
h , X

−
h ]h = Hh, [X−

h , X
+
h ]h = −Hh,

[Hh, X
±
h ]h = ±2q±1X±

h , [X±
h , Hh]h = ∓2q∓1X±

h

[Hh, Hh]h = 2(q − q−1)Hh, [X±
h , X

±
h ]h = 0. (5.3)

These quantum Lie bracket relations are the quantum analog of the Lie bracket relations

(2.3). To zeroth order in h they agree with the classical Lie bracket relations.

6. q-antisymmetry. We stress that the quantum Lie algebra Lh(sl2) is not a Lie

algebra. The quantum Lie bracket defined by (5.3) does not satisfy the properties of

antisymmetry (2.1) and Jacobi (2.2). Instead it satisfies an interesting generalization of

antisymmetry which involves the operation q → 1/q. The details are as follows:

We define q-conjugation ∼: C[[h]]→ C[[h]] as the C-linear ring automorphism defined

by h̃ = −h (and thus q̃ = 1/q). We extend this to a q-conjugation on Lh(sl2) by defining(
aX+

h + bX−
h + cHh

)∼
= ã X+

h + b̃ X−
h + c̃ Hh. (6.1)

Then the quantum Lie bracket satisfies

[x, y]∼h = −[ỹ, x̃] ∀x, y ∈ Lh(sl2). (6.2)

We call this property q-antisymmetry. This property can easily be verified for the quantum

Lie bracket relations (5.3) even though it is not at all evident from the definition (5.1)

of the quantum Lie bracket. As shown in [4] all quantum Lie algebras (defined below)

possess this q-antisymmetry.

We have not yet discovered the q-analog of the Jacobi identity.

7. General definition of Lh(g). The quantum Lie algebra Lh(sl2) constructed in

Section 5 is the simplest example of the following general definition.

Definition 1. A quantum Lie algebra Lh(g) inside Uh(g) is a finite-dimensional in-

decomposable ad - submodule of Uh(g) endowed with the quantum Lie bracket [a, b]h =

(ad a) b such that

1. Lh(g) is a deformation of g, i.e., Lh(g) = g (mod h).

2. Lh(g) is invariant under the q-Cartan involution θ̃, the q-antipode S̃ and any dia-

gram automorphism τ of Uq(g).

Property 2 plays an important role in the investigations into the general structure of

quantum Lie algebras in [3]. In particular it allows the definition of a quantum Killing

form. We refer the reader to the paper [3] for more information on these matters. It

is shown in [3] that given any module satisfying all properties of the definition except

property 2 one can always construct from it a quantum Lie algebra Lh(g) which satisfies

property 2 as well. Thus this extra requirement is not too strong.

While finding a quantum Lie algebra Lh(sl2) inside Uh(sl2) was easy, performing the

similar task for other groups is much more involved. However, as reported in [3], it has
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been done by using the computer algebra program Mathematica for the Lie algebras

g = sl3, sl4, so5 = sp4 and G2. There is also a method for constructing quantum Lie

algebras in general using the universal R-matrix. This method has been applied in [8] to

obtain quantum Lie algebras for g = sln for all n. The method is described also in [4]. This

construction proves in particular that quantum Lie algebras exist for all g. However the

determination of the structure of these quantum Lie algebras has not yet been performed

except in the above mentioned cases.

8. The abstract quantum Lie algebra (sl2)h. The space spanned by the three

generators X+
h , X

−
h and Hh given in (5.2) is not the only three dimensional subspace of

Uh(sl2) which is closed under the adjoint action and gives rise to a quantum Lie algebra

Lh(sl2). But it is easy to convince oneself of the fact that any quantum Lie algebra Lh(sl2)

inside Uh(sl2) is spanned by three elements of the form

X±
h =

√
2

q+q−1 q
−H/2X±P(C), Hh = 2

q+q−1

(
qX+X− − q−1X−X+

)
P(C), (8.1)

where P(C) can be any polynomial in the Casimir element

C =
1

(q3 + q−3)

(
(q − q−1)2X+X− + qH−1 + q−H+1

)
(8.2)

whose coefficients sum to 1. Because of the properties of the Casimir element, all these

quantum Lie algebras lead to the same quantum Lie bracket relations (5.3). Thus all

quantum Lie algebras Lh(sl2) are isomorphic as algebras. This defines an abstract quan-

tum Lie algebra (sl2)h. (sl2)h is the algebra spanned by three abstract generators X+
h , X

−
h

and Hh with the Lie bracket relations (5.3). The concrete quantum Lie algebras Lh(sl2)

are just different embeddings of (sl2)h into Uh(sl2).

Similarly, as proven in [4], there is a unique abstract quantum Lie algebra gh for any

simple complex Lie algebra g.

Theorem 1. All concrete quantum Lie algebras Lh(g) for the same g are isomorphic

to a unique abstract quantum Lie algebra gh.

Furthermore it has been shown that the structure constants of gh are equal to the

q-Clebsch-Gordon coefficients for adjoint×adjoint into adjoint.

9. Representations of (sl2)h. An n-dimensional representation of a Lie algebra is

a linear map π from the Lie algebra into the n× n matrices, π : g→ Matn(C), such that

the Lie bracket is realized as the matrix commutator, i.e.,

π([a, b]) = π(a)π(b)− π(b)π(a). (9.1)

Such maps π exist because the commutator also possesses the defining properties of the

Lie bracket, namely antisymmetry (2.1) and Jacobi (2.2).

To arrive at a good definition of a representation of a quantum Lie algebra we have to

find a q-generalization of the commutator which is q-antisymmetric in the sense of (6.2).

We propose the following definition:

Definition 2. An n-dimensional representation of a quantum Lie algebra gh consists

of
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• a linear map π : gh → Matn(h),

• a q-conjugation ∼: Matn(C[[h]])→ Matn(C[[h]]),

such that

π(ã) = π̃(a), (9.2)

π([a, b]h) = π(a)π(b)− (π̃(b)π̃(a))
∼
. (9.3)

By definition [3] a q-conjugation is q-linear, i.e., (λ a)∼ = λ̃ ã ∀λ ∈ C[[h]], a ∈
Matn(C[[h]]), and is an involution, i.e., ˜̃a = a ∀a ∈ Matn(C[[h]]).

To illustrate this definition we will give the 2-dimensional representation of (sl2)h.

The representation matrices are

π(X+
h ) =

√
q+q−1

2

(
0 1

0 0

)
, π(Hh) =

(
q 0

0 −q−1

)
, π(X−

h ) = π(X+
h )t (9.4)

and the q-conjugation is given by(
1 0

0 0

)∼

=
1

q + q−1

(
2q 0

0 q − q−1

)
,

(
0 1

0 0

)∼

=

(
0 1

0 0

)
,

(
0 0

0 1

)∼

=
1

q + q−1

(
q−1 − q 0

0 2q−1

)
,

(
0 0

1 0

)∼

=

(
0 0

1 0

)
. (9.5)

The reader is urged to check that the q-commutators of the representation matrices in

(9.5) do indeed reproduce the algebra (5.3).

The author has a construction for representations of (sl2)h of any dimension.

10. Discussion. We have reviewed quantum Lie algebras by using the explicit ex-

ample of sl2. Quantum Lie algebras were originally defined as certain subspaces Lh(g) of

the quantized enveloping algebras Uh(g). It was then found that as algebras all the Lh(g)

are isomorphic to an abstract quantum Lie algebra gh. We have seen that q-conjugation

q → 1/q plays a central role in the theory of quantum Lie algebras. In particular, the

quantum Lie bracket turns out to be q-antisymmetric in the sense of (6.2). This has lead

to the definition (9.3) of a q-commutator to represent the quantum Lie bracket.

Many definitions for q-commutators can be found in the literature. They generally

differ from the usual commutator by multipying the terms by certain powers of q. Our

definition (9.3) of the q-commutator is quite different and arises naturally in the theory

of quantum Lie algebras. It will be interesting to study its physical applications.

Drinfel’d has introduced a quantized enveloping algebra Uh(g) for any complex sim-

ple Lie algebra g. There is no definition of what a quantized enveloping algebra is in

general. Similarly we have so far defined the concept of a quantum Lie algebra gh only

for complex simple (finite-dimensional) Lie algebras g. There are however indications

that an axiomatic definition of quantum Lie algebras can be obtained which parallels the

axiomatic definition of Lie algebras through the properties of antisymmetry (2.1) and

Jacobi (2.2).

Antisymmetry and Jacobi identity are the necessary and sufficient conditions for an

algebra to have a representation in terms of commutators. Similarly q-antisymmetry
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and q-Jacobi should be the necessary and sufficient conditions for an algebra to have a

representation in terms of q-commutators. The q-antisymmetry (6.2) is clearly a necessary

condition but we are still searching for the q-Jacobi identity which gives a sufficient

condition. It could be hoped that this will then also finally lead to an axiomatic definition

of quantized enveloping algebras. For up to date information see [10].
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