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Abstract. We study TT-tensors on conformally flat 3-manifolds (M, g). The Cotton-York
tensor linearized at g maps every symmetric tracefree tensor into one which is TT. The question
as to whether this is the general solution to the TT-condition is viewed as a cohomological
problem within an elliptic complex first found by Gasqui and Goldschmidt and reviewed in the
present paper. The question is answered affirmatively when M is simply connected and has
vanishing 2nd de Rham cohomology.

1. Introduction. In the context of the initial-value problem for the Einstein equa-

tions (see [5]) one is often interested in the following problem. Let (M, g) be a con-

nected, smooth, compact, 3-dimensional, orientable manifold and let tab be an element

of S2
0(M, g), that is to say a 2-covariant, symmetric tensor field which is tracefree with

respect to gab, i.e. tab = t(ab) and tabg
ab = 0, where gab is the inverse of gab. We want to

solve the equation

(δt)a := 2gbcDctab = 0, (1.1)

where Da is the Levi-Civita connection associated with gab. Elements of S2
0(M, g) satis-

fying (1.1) are also called TT-tensors. The equation (1.1) is an underdetermined elliptic

system. This means that the principal symbol of δ, namely the linear map

δ̄(k;x) : τ ∈ S2
0(R3, gx)→ ω ∈ Λ1(R3), k ∈ Λ1(R3), k 6= 0,

defined by

ωa = gbc(x)kcτab, (1.2)
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is surjective.1 There is a general method (see the Appendix of [2]) to solve such a system,

as follows: Define the operator L

L : Λ1(M)→ S2
0(M, g)

by

(LW )ab = DaWb +DbWa −
2

3
gabD

cWc. (1.3)

Clearly −L = δ∗, i.e. L is minus the formal adjoint of δ under the inner product given

by the Riemannian volume element of g. The kernel of L is the finite-dimensional space

of covector fields Wa, so that W a = gabWb is a conformal Killing vector field on (M, g).

Furthermore there is the decomposition

S2
0(M, g) = L(Λ1(M))⊕ ker δ. (1.4)

Starting with an element Qab ∈ S2
0(M, g), its component tab in ker δ can formally be

written as

t = [1− L(δ ◦ L)−1δ]Q. (1.5)

Since ker(δ ◦ L) = kerL and δQ is orthogonal to kerL, the right-hand side of Equ. (1.5)

is well defined. The relations given by (1.3) and (1.4) furnish what is called the York de-

composition (after [20], see also [6]) in the G.R. literature. This decomposition is closely

related to the study of the action of conformal diffeomorphisms on the space of Rieman-

nian metrics on M [9]. In the present work we seek a refinement of this decomposition in

a sense which is best explained by the example of the de Rham–Hodge theory. Consider,

thus, instead of (1.1), the equation

div ω = Daωa = 0. (1.6)

Again, this is an underdetermined elliptic system, and we have the orthogonal decompo-

sition

Λ1(M) = grad (C∞(M))⊕ ker div, (1.7)

where grad is minus the formal adjoint of div, namely the differential acting on functions.

Sometimes the relation (1.7) is called Helmholtz decomposition in the physics literature.

The splitting given by (1.7) can be refined by noticing that there is a large class of

explicit solutions to (1.6) namely all elements ω ∈ Λ1(M) of the form ω = rot µ, where

rot: Λ1(M)→ Λ1(M) is defined by

ωa = εa
bcDbµc. (1.8)

Every element in grad (C∞(M)), in turn, is in the kernel of rot. Then consider the

sequence of spaces and linear maps

0→ C∞(M)
grad−→ Λ1(M)

rot−→ Λ1(M)
div−→ C∞(M)→ 0. (1.9)

1That this is the case follows by setting

τab =
2

k2
k(aωb) −

1

2k2
gab(k, ω) − 1

2k4
kakb(k, ω),

where k2 := gab(x)kakb and (k, ω) := gab(x)ωakb.
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This is a complex, i.e. every element in each of these spaces which is in the image of

the map to the left, is also in the kernel of the map to the right. It is also an elliptic

complex, i.e. the corresponding complex of symbols is exact: every element in the kernel

of a symbol map to its right is in the image of the symbol map to its left. For grad and div

this just amounts to the statement that div is underdetermined elliptic, and, equivalently,

that grad is overdetermined elliptic (the associated symbol map is injective). Now define

the Hodge Laplacian ∆H

∆H : Λ1(M)→ Λ1(M)

by

∆H = (rot)
2 − grad div. (1.10)

This has the following properties: It is formally self-adjoint and elliptic (i.e. its symbol is

injective and surjective). Thus (see Warner [19]) ker ∆H is finite-dimensional and

Λ1(M) = ∆H(Λ1(M))⊕ ker ∆H

= grad (C∞(M))⊕ rot (Λ1(M))⊕ ker ∆H

= grad (C∞(M))⊕ ker div. (1.11)

Thus

ker div = ker ∆H ⊕ rot (Λ1(M)), (1.12)

and this is the sought-for refinement of (1.7). The relation (1.12) also shows that the

de Rham cohomology group H2 = ker div/rot (Λ1(M)) is isomorphic to ker ∆H . In other

words: the possible failure of the expression (1.8) to furnish the general solution to Equ.

(1.6) is measured by the second Betti number of M , in particular is a topological invariant

of M . At the same time, using the formal self-adjointness of rot and the fact that ∆H

and rot commute, it follows from the second line of (1.11) that

ker rot = grad (C∞(M))⊕ ker ∆H . (1.13)

Thus H1 = ker rot/grad (C∞(M)) is also isomorphic to ker ∆H , which is an expression

of Poincaré duality in the situation at hand. Note that

ker ∆H = ker div ∩ ker rot. (1.14)

We now ask whether a similar scenario exists for Equ. (1.1). This, indeed, turns out to

be the case provided (M, g) is (locally) conformally flat. The associated elliptic complex

has been found by Gasqui and Goldschmidt [10] in a study of infinitesimal deformations of

conformally flat structures for a general manifold of dimension n ≥ 3. Their work starts

from the left end of the complex, i.e. the conformal Killing equation LW = 0. (Their

method is to apply the Spencer–Kodaira–Quillen–Goldschmidt (see e.g. [18]) theory of

overdetermined systems to LW = 0.) In a similar vein Calabi [3] and Bérard-Bergery et

al. [1] had previously considered the integrability theory of the Killing equation on (M, g)

when (M, g) is a space of constant curvature.

Acknowledgements. At the time of the lecture given at the Banach centre I was

unaware of the Gasqui-Goldschmidt work. I am indebted to Professor J.-P. Bourguignon

for pointing out its existence and for helpful discussions. Furthermore I am grateful to

Professor D. Burghelea for teaching me the notion of an elliptic complex in the early
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stages of this work and to Professor J. Lafontaine for important information regarding

the premoduli space of conformally flat structures in the case of space forms. I also thank

Professor L. Andersson for telling me of Ref. [3] and Professor S. Deser for comments on

the manuscript.

In the next paragraph of this paper we describe the conformal elliptic complex which

plays the same role for TT-tensors as the role played by the de Rham–Hodge complex for

Equ. (1.6). Here the operator rendering explicit solutions (to the TT-condition) is H, the

Cotton–York tensor linearized at the conformal metric g, viewed as a map sending trace-

free symmetric tensors into themselves. When M is compact, the obstruction to tensors in

the image of this map to furnish the general solution of (1.1) is, by an analogue of Poincaré

duality, the same as the obstruction to Killing forms to be the general elements of the null

space of H. This, in turn, has a nice geometric interpretation: namely it is the premoduli

space at g of the space of conformally flat deformations of g. For the general, non-compact,

case, but when M is assumed to be simply connected, Gasqui and Goldschmidt [10] have

shown that the latter cohomology, namely kerH/L(Λ1(M)), is zero. In § 3 of the present

paper we prove our main result. It states that, when M is simply connected and its

second de Rham cohomology is zero, the cohomology ker δ/H(S2
0(M, g)) vanishes. In

§ 4 we compute this space when (M, g) is a compact space-form. In the elliptic case

the obstruction is found to be zero, i.e. g is infinitesimally rigid as a conformally flat

structure. In the flat case, where M is necessarily a torus, we find the obstruction space

is five-dimensional: this corresponds to flat deformations modulo constant rescalings of

g. In the hyperbolic case the deformation space is given by the space of tracefree Codazzi

tensors on (M, g). This result has already been obtained by Lafontaine [14] for manifolds

of general dimension ≥ 3.

2. The conformal elliptic complex. Let now (M, g) be conformally flat, with M

not necessarily compact. Recall that this means that each point of M has a coordinate

neighbourhood xa in which

gab = ω2δab, ω > 0, (2.15)

where δab is the flat Euclidean metric. It is well known [16] that, in dimension 3, this is

equivalent to the vanishing of the Cotton–York tensor Hab defined by

Hab = 2εcd(aD
cRdb) =: rot2Rab (2.16)

where Rab is the Ricci curvature of gab. Note the following properties of Hab.
(i) gabHab = 0

(ii) DaHab = 0

(iii) Hab[ω2g] = ω−1Hab[g], ω > 0.

Geometrically these properties arise as follows. Let U ⊂ M be a coordinate neighbour-

hood and consider the Chern–Simons action

S[g] =

∫
U

εabc
(

Γd
e
aRbcde −

2

3
Γd

e
aΓe

f
bΓf

d
c

)
√
g d3x, (2.17)

where Γb
a
c are the Christoffel symbols in the local chart xa. The functional S[g] has

the (non-obvious) properties of being invariant a) under conformal rescalings of g and
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b) invariant under infinitesimal coordinate changes, provided these changes suitably ap-

proach the identity on ∂U . (See Chern [4] and Deser et al. [7].) Note, finally, that the

Euler–Lagrange expression of S[g] is nothing but −3Hab. Then (i,iii) are implied by a)

and (ii) is implied by b).

Consider, next, the linearization of Hab at a conformally flat metric g, i.e. at a metric

gab satisfying Hab[g] = 0. The resulting object, which we call H(h), i.e.

Hab(h) =
d

dλ

∣∣∣∣
λ=0

Hab[g + λh], (2.18)

is a third-order linear partial differential operator acting on symmetric tensors hab. By

virtue of H being the Hessian of S at a critical point, it is formally self-adjoint. Equiva-

lently we can use the tensor

Babc := εab
c Hcd = 2D[aLb]c, (2.19)

where Lab := Rab − 1
4gabR, R = gabRab, and Babc, the linearization of Babc at g. In the

following we shall apply the operators Hab and Babc only to tensors which are trace-free.

With this assumption, Babc is explicitly given by

Babc = 2(D[aσb]c − Cdc[aLb]d), (2.20)

where

σab = D(aD
chb)c −

1

2
∆hab −

1

4
gabD

cDdhcd + 3R(a
chb)c −

3

4
gabh

cdRcd −
3

4
Rhab (2.21)

with ∆ := gabDaDb the rough Laplacian and

Cdab =
1

2
gcd(Dahbc +Dbhac −Dchab). (2.22)

We note the following property of TT-tensors:

∆h ∼ −1

4
(rot2)2h and Hh ∼ 1

8
(rot2)3h, provided δh = 0 (2.23)

where “∼” denotes “modulo curvature terms”. Now consider the following sequence

0→ Λ1(M)
L→ S2

0(M, g)
H→ S2

0(M, g)
δ→ Λ1(M)→ 0. (2.24)

Proposition [Gasqui & Goldschmidt]. The sequence (2.10) is an elliptic complex.

P r o o f. Since g satisfies Hab[g] = 0, it follows immediately from property (ii) of Hab
that δ ◦H = 0. But L = −δ∗, and thus

H ◦ L = −H ◦ δ∗ = −H∗ ◦ δ∗ = −(δ ◦H)∗ = 0,

so (2.10) is a complex. Ellipticity at the far left and right of this complex is equivalent to

δ being an underdetermined elliptic operator, which we have checked already. Ellipticity

at the second and third place is seen as follows: Denote the symbol of any operator O by

Ō(k). Then, for example, we want to solve

H̄(k)h = t, δ̄(k)t = 0, k 6= 0. (2.25)
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Using (2.9) we easily see that ker H̄(k) ∩ ker δ̄(k) = {0}. Thus S2
0(R3, gx) = im H̄(k) ⊕

ker δ̄(k) = ker H̄(k)⊕ im L̄(k). The last two relations imply that both (2.11) and

L̄(k)W = h, H̄(k)h = 0, k 6= 0 (2.26)

have solutions. This ends the proof of the Proposition.

Next observe that all operations in (2.10) are natural under conformal rescalings of

g. Thus, when g′ = ω2g,

L′W ′ = ω2LW, W ′ = ω2W

H ′h′ = ω−1Hh, h′ = ω2h

δ′t′ = ω−3δt, t′ = ω−1t.

(2.27)

Therefore the cohomology groups associated with (2.10) only depend on [g], the conformal

structure of g which is, of course, locally trivial. Gasqui and Goldschmidt have shown that,

if the above complex is interpreted in the sense of local formal power series expansions

the cohomologies associated with it, except for the first one, are all trivial.

The first cohomology group of (2.10), namely kerL, is the space of (globally defined)

conformal Killing vectors on (M, g). The second cohomology group, kerH/L(Λ1(M)), is

nothing but the premoduli space of conformally flat structures around [g]. The remaining

cohomologies do not have an immediate geometrical interpretation. In the compact case,

however, we have the following duality.

Theorem. Let M be compact. Then all cohomologies are finite-dimensional and

kerL ∼= Λ1(M)/δ(S2
0(M, g)), ker δ/H(S2

0(M, g)) ∼= kerH/L(Λ1(M)). (2.28)

P r o o f. For the first isomorphism just recall that Λ1(M) = kerL⊕ δ(S2
0(M, g)). The

finite dimensionality of the first summand follows by differential geometry or by noticing

that kerL = ker δL and δL is an elliptic operator. For the second isomorphism, define

the “generalized Laplacian” D by D = H2 + (Lδ)3. This is a sixth-order, elliptic, self-

adjoint operator D : S2
0(M, g) → S2

0(M, g). Its kernel is finite-dimensional and given by

kerD = kerH ∩ ker δ. By an argument analogous to that involving the Hodge Laplacian

in Sect. 1, one sees that kerD is equal to both ker δ/H(S2
0(M, g)) and kerH/L(Λ1(M)).

This ends the proof of the Theorem.

3. The main theorem. Gasqui and Goldschmidt [10] have proved the following

Theorem. Let M be simply connected. Then kerH/L(Λ1(M)) = {0}.

Our main result is the following

Theorem. Let M be simply connected and of vanishing second de Rham cohomo-

logy. Then ker δ/H(S2
0(M, g)) = {0}. In other words, under the above hypotheses, the

expression t = H(h) furnishes the general solution to the equation δt = 0.

P r o o f. The following method of proof is inspired by the proof of a Lemma in [17,

footnote 13], due to Ashtekar, which states that a tracefree Codazzi tensor, i.e. tab sa-

tisfying rot2t = 0 on a simply connected space of constant curvature is of the form

tab = DaDbα− 1
3gab∆α, see also Ferus [8]. Let λa be a conformal Killing vector of (M, g).
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Then, when δt = 0, the 2-form defined by εab
dtdcλ

c is curl-free. Thus

εab
dtdcλ

c = D[aGb]. (3.29)

Since the space of λ’s is finite-dimensional there is a way to linearly assign to each λ a

covector Gb. Pick any such assignment. Thus we can write Ga = Ga(λ). By the conformal

flatness of g, there is, locally, the maximum number of λ’s, that is to say 10. Furthermore,

since M is simply connected (see e.g. [11]) these λ’s can be extended to global conformal

Killing vectors. These global conformal Killing vectors can be uniquely characterized by

their conformal “Killing data”, i.e. the values of λa, Kab = D[aλb], Dλ := Daλa and

DbD
aλa at any point of M . Thus there are tensor fields Uab, Uabc = Ua[bc], Va, Vab such

that

Gb(λ) = Ubcλ
c + UbcdK

cd + Vb(Dλ) + VbcD
c(Dλ). (3.30)

We now insert this into (3.1) and use the conformal Killing equation satisfied by λa, i.e.

Daλb = Kab +
1

3
gab(Dλ), (3.31)

and some of its corollaries. Since from now on all calculations are purely local, it is

possible to choose a conformal gauge for gab so that the curvature is zero. With this in

mind, there holds

DaKbc = −2

3
ga[bDc](Dλ) (3.32)

DaDb(Dλ) = 0. (3.33)

Substituting (3.3,4,5) into (3.1,2) and using that the conformal Killing data are arbitrary,

we obtain

εab
d tdc = D[aUb]c (3.34)

0 = D[aUb]
cd + U[a

[cδb]
d] (3.35)

0 = −1

3
U[ab] +D[aVb] (3.36)

0 =
2

3
U[ab]

c − V[aδb]c +D[aVb]
c. (3.37)

We solve the equations “from bottom to top” except for (3.8) which turns out to be

implied by the remaining relations. Since Uabc = Ua[bc], there is the identity

Uabc = U[ab]c + U[ca]b − U[bc]a. (3.38)

Substituting from (3.9) into the right-hand side of (3.10), inserting into (3.7) and taking

a trace of (3.7) we find after some calculation that

Ubc = 3DbVc +
3

2
gbc(∆Vd

d −DdDeVde)−

− 3(∆V(bc) −DdDcV(bd)) + 3DbD
dV(cd) −

−3DbDcVd
d − 3DbD

dV[cd]. (3.39)

Thus the antisymmetric part V[ab] of Vab does not contribute to D[aUb]c. Inserting (3.11)

into (3.6), we finally obtain (hab := 3
8V(ab) −

1
8gabVc

c)

εab
d tdc = −1

8
D[a(∆hb]c −DdD|c|hb]d) + trace-terms. (3.40)
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Thus Vc
c drops out of (3.12). Furthermore trace-terms, i.e. terms of the form gc[a · b], do

not contribute to tab. So taking the dual of (3.12) with respect to the indices a and b,

we obtain that tab has exactly the form of Hab, as given from Hab = 1
2ε(a

cdB|cd|b) and

Equ.’s (2.6,7) in the local gauge where Rab = 0. Thus we have proved the Theorem.

We remark that in the next section we give examples of conformally flat structures

for which ker δ/H(S2
0(M, g)) 6= {0}.

For the remaining cohomology in (2.10) we have no results except for the duality in

the compact case.

4. Compact space-forms. Let M be compact and gab of constant curvature. In 3

dimensions

Rabcd =
R
3
gc[agb]d ⇐⇒ Rab =

R
3
gab, R = const. (4.41)

Clearly gab is conformally flat. We want to compute the space of essential infinitesimal

conformally flat deformations of gab, i.e. kerH/L(Λ1(M)). By the Proposition at the end

of the previous section, this amounts to determining kerH ∩ ker δ. Using (2.6,7,8) and

(4.1) we find after a straightforward calculation that, when Dahab = 0,

Babc = −D[a∆hb]c +
R
3
D[ahb]c. (4.42)

Furthermore, when Dahab = 0,

D[a∆hb]c = ∆D[ahb]c. (4.43)

Thus kerH/L(Λ1(M)) is the same as the space of solutions of the system(
∆− R

3

)
D[ahb]c = 0, Dahab = 0. (4.44)

Suppose first that R ≥ 0. Then, contracting the first equation in (4.4) with D[ahb]c and

integrating by part, we find that

DdD[ahb]c = 0. (4.45)

Contracting (4.5) with gda this implies(
∆− R

2

)
hab = 0. (4.46)

Upon contraction with hab and integration this implies

Dahbc = 0 (4.47)

and

hab = 0 when R > 0. (4.48)

Thus, in the elliptic case (i.e. R > 0), the conformal structure defined by gab is rigid

amongst all conformally flat structures on M . In fact, this already follows from Kuiper

[13] and the results of [1]. When R = 0, (M, g) has to be a flat torus T3 (see Ch.

V, Theorem 4.2 of [12]). Corresponding to each S1-factor of T3 there is a covariantly

constant vector. Taking tensor products, symmetrizing and subtracting out the trace, we

obtain a 5-parameter set of tensors obeying (4.7). Since solutions to (4.7) are uniquely
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determined by their value at some point, these are all solutions to Equ. (4.7). Thus these

deformations stay within metrics on T3 conformal to a standard flat one.

Finally we consider the hyperbolic case, R < 0. We use the identity, valid when

Datab = 0,

∆tab = −1

4
(rot2)2tab +

R
2
tab. (4.49)

Thus (4.4) implies [
(rot2)2 − 2R

3

]
rot2tab = 0. (4.50)

Contracting (4.10) with rot2t
ab and integrating, noting that rot2 is self-adjoint and using

R < 0, yields

(rot2)2 tab = 0, (4.51)

which, upon contracting with tab, results in

rot2 tab = 0⇐⇒ D[atb]c = 0. (4.52)

Thus, in the hyperbolic case, the infinitesimal deformation space kerH/L(Λ1(M)) is iso-

morphic to the space of traceless Codazzi tensors. This, as Lafontaine [14] has shown, can

be non-trivial for certain space forms. By the Mostow rigidity theorem [15], the deformed

conformally flat structures can not again be space forms. In fact such deformations (even

finite ones) have been constructed (see refs. in [14]), using methods completely beyond

the ones of this paper.
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