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Abstract. Lorentzian geometry in the large has certain similarities and certain fundamental
differences from Riemannian geometry in the large. The Morse index theory for timelike geodesics
is quite similar to the corresponding theory for Riemannian manifolds. However, results on
completeness for Lorentzian manifolds are quite different from the corresponding results for
positive definite manifolds. A generalization of global hyperbolicity known as pseudoconvexity
is described. It has important implications for geodesic structures.

1. Introduction. The Hopf-Rinow Theorem [13], [14] is a key result for Riemannian

(i.e., positive definite) manifolds. It yields the equivalence for these manifolds of Cauchy

completeness (of the induced distance function), geodesic completeness and a third type

of completeness known as finite compactness (i.e., bounded sets have compact closure).

It also guarantees the existence of at least one geodesic joining any two distinct points of

a complete Riemannian manifold. This last property is known as geodesic connectedness

[21]. Furthermore, the equivalence of finite compactness and Cauchy completeness easily

yields the completeness of all compact Riemannian manifolds. Thus, compact Riemannian

manifolds are both complete and geodesically connected. The situation for Lorentzian

manifolds is quite different. If one has a space–time (i.e., a time-oriented Lorentzian

manifold) then one has a Lorentzian distance function. However, this function does not

do as much as the corresponding distance function for positive definite manifolds. In

the first place, the Lorentzian distance function is only positive for points connected

by timelike curves. In this case the distance is given as the supremum of lengths of

causal curves from the first point to the second. Notice that this Lorentzian distance is

not necessarily finite valued and is not a true distance in the topological sense. Also,

one does not have various forms of completeness equivalent to geodesic completeness.

Compact space–times are generally considered to be of marginal physical importance

since each compact space–time admits a closed timelike curve. Nevertheless, they are still
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of mathematical interest. However, examples show that they need not be geodesically

complete [2] and need not be geodesically connected [6].

In spite of a number of differences, there are still many ways in which the global theory

for Lorentzian manifolds is quite parallel to the corresponding theory for Riemannian

manifolds. One example of similar results is found in the splitting theorems, compare [9],

[10], [20]. However, it should be mentioned that for results such as the splitting theorems,

the proofs in the Lorentzian case can involve a number of new difficulties. In Section 2

we consider Jacobi fields and index theory along geodesics. Some of the ways in which

global theory of Lorentzian [2] and Riemannian [11] manifolds are similar are given in

this section. In particular, we give the Morse index theory for timelike geodesics which

says that the index form may be used to count conjugate points along a geodesic. Also,

we give a timelike diameter result which parallels the usual Diameter Theorem familiar

in the study of positive definite manifolds.

In Section 3 we consider an internal type of completeness property known as pseu-

doconvexity. This property has applications in terms of obtaining sufficient conditions

for the C1-fine stability of geodesic completeness and in terms of a Lorentzian version

of the Hadamard-Cartan Theorem. We also use pseudoconvexity in Section 4 where the

geodesics of a given (M, g) are made into a space G(M) by identifying each geodesic as a

single element of G(M). If the geodesics of (M, g) satisfy a nonreturning property, then

the geodesic system is pseudoconvex iff G(M) is a 2n− 2 dimensional manifold.

It should also be mentioned that one has a rich structure of problems for Lorentzian

manifolds that have no direct parallel in the positive definite case. For example, problems

dealing with black holes [12], [16] and cosmic censorship [8], [17] do not arise in the positive

definite case.

2. Jacobi fields and index forms. Let (M, g) be a space-time with metric signature

of the form (−,+,+,+), with induced Levi-Civita connection ∇, and with curvature

tensor

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

Given a geodesic γ : (a, b)→M , let J be vector field along γ. The vector field J is called

a Jacobi field [2] if it satisfies the following equation

J ′′ +R(J, γ′)γ′ = 0

Geometrically the vector field J measures the separation of two nearby geodesics. If we

further assume that the geodesic γ is a unit speed timelike geodesic, then the second

derivative J ′′ represents the relative or tidal acceleration of two nearby freely falling

observers. Using the above Jacobi equation, one obtains

J ′′ = −R(J, γ′)γ′

hence

g(J ′′, J) = −g(R(J, γ′)γ′, J)

To relate J ′′ to curvature, we assume for convenience that γ is a unit speed geodesic and

that J is orthogonal to the tangent vector γ′. Then, using g(γ′, γ′) = −1 and g(J, γ′) = 0
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one finds the sectional curvature [2], [7] of the plane containing J and γ′ is given by

K(J, γ′) = g(R(J, γ′)γ′, J)/[g(J, J)g(γ′, γ′)− g(J, γ′)2] = −g(R(J, γ′)γ′, J)/g(J, J)

Using |J | = g(J, J)1/2, one obtains

g(J ′′, J/|J |) = K(J, γ′)|J |.

The left hand side of the above equation represents the radial component of the

tidal acceleration. Consequently, one finds that radial tidal acceleration is proportional

to the product of the distance apart (i.e., |J |) and to the sectional curvature of the plane

determined by the tangent vector γ′ and the Jacobi vector J . Notice that, with our

sign convention, negative sectional curvature for timelike planes has a converging effect

on timelike geodesics and positive sectional curvature for timelike planes has a diverging

effect. In particular, the above equation and the fact that timelike geodesics may be used

to approximate null geodesics arbitrarily closely yield Proposition 2.1 below. Recall that

two points are said to be conjugate along a geodesic γ if there is a nontrivial Jacobi field

which vanishes at both points.

Proposition 2.1. Let (M, g) be a Lorentzian manifold with everywhere nonnegative

sectional curvatures on timelike planes, then no causal geodesic has conjugate points.

Since the sectional curvature function generically becomes unbounded near null sec-

tions [3], the above equation relating tidal accelerations to sectional curvature implies

that, generically, the tidal accelerations experienced by an extended body moving close

to light speed must be very large, compare [7], [18], [19]. In fact, they must become un-

bounded for such extended bodies as they approach light speed unless the null directions

their tangent vectors are approaching satisfy certain very special conditions, compare [3],

[4], [7].

If γ : [a, b]→M is a timelike geodesic segment, let V ⊥0 be the space of all vector fields

along γ which are always perpendicular to γ′ and which vanish at both endpoints of γ.

Let X and Y belong to V ⊥0 . The timelike index form is defined to be

I(X,Y ) = −
∫

[g(X ′, Y ′)− g(R(X, γ′)γ′, Y )]dt.

The index Ind(γ) is defined by

Ind(γ) = lub {dim(A) | A a linear subspace of V ⊥0 , I positive definite on A}

and Ind0(γ) is defined by

Ind0(γ) = lub {dim(A) | A a linear subspace of V ⊥0 , I positive semi-definite on A}.

Let Jt(γ) is the space of Jacobi fields that vanish at γ(a) and γ(t). Using the above

notation, the Timelike Morse Index Theorem [2] is then given by

Theorem 2.2. If (M, g) is a space-time and γ : [a, b]→M is a timelike geodesic, then

Ind(γ) counts the conjugate points with multiplicity for a < t < b and Ind0(γ) counts the

conjugate points with multiplicity for a < t ≤ b. More precisely , Ind(γ) =
∑
dim(Jt(γ))

where the sum is for a < t < b and Ind0(γ) =
∑
dim(Jt(γ)) where the sum is for

a < t ≤ b.
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Recall that for timelike vectors, negative timelike sectional curvature corresponds to

positive Ricci curvature. In some sense, the Ricci curvature on a timelike vector V is −3

times the average sectional curvature of timelike planes containing V . More precisely, for

a timelike vector V the Ricci curvature Ric(V, V ) = RijV
iV j is the negative of the sum

of the sectional curvatures of any three timelike planes containing V which have mutually

orthogonal normals. The next conjugate point result follows for Lorentzian manifolds [2]

from the definition of the index form and the Timelike Morse Index Theorem.

Theorem 2.3. If (M, g) is a space-time and satisfies either (1 ) all timelike sectional

curvatures satisfy Ktimelike ≤ −k < 0 or (2 ) Ric(V, V ) ≥ 3k > 0 for all timelike unit

vectors V , then each timelike geodesic γ : [0, b) → M with b > π/
√
k has a conjugate

point to γ(0).

The causal future J+(p) of a point p is the set of points that can be reached by a

future directed causal curve. The causal past J−(p) is defined dually. A space-time is

said to be strongly causal if each point has arbitrarily small neighborhoods such that

any causal curve leaving one of these neighborhoods fails to return. Strong causality is

usually considered to be a physically realistic assumption. Clearly, its failure raises the

possibility of serious physical paradoxes. A globally hyperbolic space-time is a strongly

causal space-time which has J+(p)∩J−(q) compact for all p, q ∈M. Global hyperbolicity

is a type of completeness and a fundamental result in global Lorentzian geometry is that

any two timelike related points in a globally hyperbolic space-time may be joined by a

timelike geodesic which is of maximal length among all causal curves joining the points

[22]. Since the distance between two timelike related points is the supremum of lengths

of causal curves joining the points, it follows that the distance between any two timelike

related points in a globally hyperbolic space-time is the length of such a maximal timelike

geodesic. The timelike diameter, diam(M), of a Lorentzian manifold (M, g) is defined to

be the supremum of distances d(p, q) between points of M . A corollary of the last theorem

is the Lorentzian version of the Diameter Theorem.

Corollary 2.4. If (M, g) is a globally hyperbolic space-time and satisfies either (1 )

all timelike sectional curvatures satisfy Ktimelike ≤ −k < 0 or (2 ) Ric(V, V ) ≥ 3k > 0

for all timelike unit vectors V , then diam(M) ≤ π/
√
k.

P r o o f. Assume there are two points p and q with d(p, q) = b > π/
√
k. Global

hyperbolicity implies there is a geodesic segment γ : [0, b] → M which is maximal and

goes from p to q. However, Theorem 2.3 implies such a geodesic must have a pair of

conjugate points and thus fail to be maximal, in contradiction.

3. Pseudoconvexity and disprisonment. Let γ : (a, b) → M be a geodesic. If

a < t0 < b, then the image corresponding to the forward end (i.e., γ[t0, b)) may or may

not be imprisoned in a compact set and this also holds for the other end (i.e., γ(a, t0]).

Thus, a geodesic may have no compactly imprisoned ends, one compactly imprisoned

end, or both ends compactly imprisoned. The space-time (M, g) is said to be causally

disprisoning [6] if each end of each causal geodesic fails to be imprisoned in any compact

set. Furthermore, (M, g) is said to be causally pseudoconvex if for each compact set K
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there is another compact set H such that any causal geodesic segment of (M, g) with both

endpoints in K has an image entirely in H. This is an “internal” type of completeness.

For example, it fails for Minkowski space-time less a single point. In this case, one may

take K to be three dimensional surface of a Euclidean ball about the deleted point and

easily verify that no compact set H contains all causal geodesic segments joining points

of K. The next lemma shows that causal pseudoconvexity is a generalization of global

hyperbolicity.

Lemma 3.1. If (M, g) is a globally hyperbolic space-time then (M, g) is both causally

disprisoning and causally pseudoconvex.

P r o o f. Strong causality yields the nonimprisonment of future and/or past endless

causal curves in compact sets [12]. Thus, causal disprisonment must hold. Let K be a

given compact set and cover K with open sets of the form I+(p)∩I−(q) where I+ and I−

denote chronological future and past. Since K is compact there must be a finite subcover

of the form I+(pi) ∩ I−(qi) for 1 ≤ i ≤ m. Let H be the finite union of all sets of the

form J+(pi) ∩ J−(qk) where 1 ≤ i, k ≤ m. Since H is a finite union of compact sets,

the set H is compact. Also, it is an easy matter to verify that all causal curves starting

and ending in K must remain in H which implies that all causal geodesic segments with

endpoints in K must lie in H, as desired.

Let Lor(M) denote the space of all Lorentzian metrics on M . The fine Cr-topologies

are defined on Lor(M) using a fixed locally finite set of charts {(Uα, φα)} such that each

of these charts has compact closure in a larger chart. For the covering {(Uα, φα)} let

δ : M → (0,∞) be continuous and let

|g − h|r < δ

mean that all components and mixed partials up to order r for g and h are δ close in

the special covering {(Uα, φα)}. A basis {W (h, δ)} for the fine Cr–topology on Lor(M)

is obtained by taking Lorentzian metrics h and continuous functions δ : M → (0,∞) and

setting

W (h, δ) = {g | |g − h|r < δ}.

A property is said to be Cr-stable if the set of metrics for which it holds is an open set in

the Cr-topology on Lor(M). Notice that Cr-stable implies Cs-stable for all r < s since

each open set in the Cr-topology is also open in the Cs-topology. Of course, one may

also define these topologies and corresponding notions of stability on other collections of

tensors such as the collection Riem(M) of all Riemannian metrics on M . Interestingly,

both geodesic completeness and geodesic incompleteness are C0-stable for Riem(M). This

follows easily since if g is a positive definite metric on M which is complete (respectively,

incomplete), then the set W in Riem(M) consisting of all metrics h satisfying

(1/2) < h(V, V )/g(V, V ) < 2

for all nontrivial tangent vectors V , is a C0 open subset of Riem(M) and all such metrics

h are also complete (respectively, incomplete). Notice that this same argument fails for

nonpositive definite metrics g because of the existence of null vectors. In fact, examples
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due to Williams [23] show that both geodesic completeness and geodesic incompleteness

may fail to be stable for Lorentzian manifolds. Furthermore, this failure of stability may

hold for compact as well as noncompact manifolds. Among other things, Williams showed

that the torus M = S1 × S1 = {(x, y) | 0 ≤ x ≤ 2π, 0 ≤ y ≤ 2π} with the usual

identifications and the complete flat metric g = dxdy has arbitrarily close metrics gn =

dxdy+(1/n)sin(x)dy2 which are geodesically incomplete. In particular, direct calculation

shows that the circle in M corresponding to x = 0 is an incomplete null geodesic for each

gn. In this example, the manifold and the metrics are all real analytic. Clearly, the metrics

gn converge to the limit metric g in the Cr-fine topology for every r.

Recall that the Christoffel symbols Γj
i
k depend on the components gij of the metric

tensor and on the first partials of these components. Thus, metrics which are close in the

C1-fine topology will have geodesic equations which are close and hence geodesic systems

which are close. The above mentioned example of Williams shows that requiring metrics

to have close geodesic systems by using the C1-fine topology on Lor(M) is not sufficient

to guarantee the stability of completeness. The next result [1] gives sufficient conditions

for the C1-stability of completeness for causal geodesics in terms of causal disprisonment

and causal pseudoconvexity.

Theorem 3.2. Let (M, g) be timelike and null geodesically complete. If (M, g) is both

causally disprisoning and causally pseudoconvex , then there is a fine C1 neighborhood

W (g, δ) of g in Lor(M) such that each h ∈W (g, δ) is also both timelike and null geodesi-

cally complete.

Using Lemma 3.1 we obtain the following corollary which applies to a number of

important examples such as Minkowski space-time, Einstein static space-time, and De

Sitter space-time.

Corollary 3.3. Let (M, g) be timelike and null geodesically complete. If (M, g) is

globally hyperbolic, then there is a fine C1 neighborhood W (g, δ) of g in Lor(M) such that

each h ∈W (g, δ) is also both timelike and null geodesically complete.

The singularity theorems [12] imply that, under certain physically realistic assump-

tions, there must exist at least one causal geodesic which is incomplete. However, one

of the assumptions used in these theorems is the timelike convergence condition which

is the assumption that the Ricci curvature is nonnegative on all timelike vectors (i.e.,

Ric(V, V ) ≥ 0 for all timelike vectors V and hence also for all null vectors). This condi-

tion fails to be Cr-fine stable for all r, since if there is a vector V0 with Ric(V0, V0) = 0,

then one may always perturb the metric g to get a metric h with negative Ricci curvature

for V0 such that h is arbitrarily close to g in any given Cr-fine topology. Consequently,

since geodesic incompleteness is not a stable property in general, one would like to obtain

a stability result which applies under some physically reasonable assumption. The next

result [2] gives a sufficient condition for the C1-fine stability of geodesic incompleteness

in terms of the failure of partial imprisonment. Recall that a geodesic γ(a, b) fails to be

partially imprisoned as t → b− if for each compact set K there is a parameter value t1
such that γ(t) fails to lie in K for all t1 < t < b. In other words, given any fixed

compact set K, the geodesic γ eventually leaves K and never returns.
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Theorem 3.4. Let (M, g) be a Lorentzian manifold and assume that (M, g) has a

geodesic γ(a, b)→M which is incomplete in the forward direction (i.e., b < ∞). If the

forward end (i.e., corresponding to t → b−) is not partially imprisoned in any compact

set , then there is a C1-fine neighborhood W (g) of g in Lor(M) such that each metric in

W (g) has at least one incomplete geodesic. Furthermore, if γ is nonspacelike, then W (g)

may be chosen such that each h ∈W (g) has an incomplete nonspacelike geodesic.

Since each end of each causal geodesic in a strongly causal space-time fails to be

partially imprisoned [12], one obtains the following corollary.

Corollary 3.5. Let (M, g) be a strongly causal space-time. If (M, g) has a least one

incomplete causal geodesic, then there is a C1-fine neighborhood W (g) of g in Lor(M)

such that each metric in W (g) has at least one incomplete causal geodesic.

The Hadamard-Cartan Theorem [15] is a fundamental result of Riemannian geometry

in the large. This theorem guarantees that a complete simply connected Riemannian

manifold with no conjugate points has an exponential map which, at each fixed point p,

is a diffeomorphism from the tangent space TpM onto the manifold M . Among other

things, this yields that the manifold M is topologically Rn. A complete simply connected

Riemannian manifold is called a Hadamard manifold. For positive definite manifolds,

nonpositive sectional curvature implies the nonexistence of conjugate points. Using this

fact and well known results on covering manifolds, it follows that a complete Riemannian

manifold with nonpositive sectional curvature has a universal covering space which is a

Hadamard manifold.

In order to get a Lorentzian version of the Hadamard-Cartan Theorem, we first extend

our notions of disprisoning and pseudoconvexity from the collection of causal geodesics

to all geodesics. The Lorentzian manifold (M, g) is said to have a geodesic system which

is disprisoning if each end of each geodesic fails to be imprisoned in any compact set.

Similarly, the Lorentzian manifold (M, g) is said to have a geodesic system which is

pseudoconvex if for each compact set K there is another compact set H such that all

geodesic segments with both endpoints in K have their images entirely contained in H.

Our next result is a Lorentzian Hadamard-Cartan theorem. A somewhat strengthened

version may be found in [6].

Theorem 3.6. Let (M, g) be a complete n-dimensional Lorentzian manifold with a

geodesic system which is both disprisoning and pseudoconvex. If (M, g) has no conju-

gate points, then M is topologically Rn and at each point p ∈ M the exponential map

is a diffeomorphism from its domain in TpM onto M . Furthermore, M is geodesically

connected.

4. The space of geodesics. In this section we let M have dimension n and consider

the collection of all geodesics of (M, g) where each geodesic is identified as a point in a

new spaceG(M). Here geodesics are identified if they represent different parametrizations

of the same point set. Thus, γ1 and γ2 are identified if there are constants a and b with

a 6= 0 such that γ1(t) = γ2(at+b). Clearly, this is an equivalence relation on the collection

of geodesics of (M, g). Let [γ] denote the equivalence class of the geodesic γ. If v is a
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nontrivial tangent vector to M at some point p ∈M , let γv be the geodesic which satisfies

γv
′(0) = v. Let T ′M denote the collection of all nontrivial tangent vectors of M and let

π : T ′M → G(M) be the map v → [γv]. We put a topology on the space of geodesics

G(M) by requiring that π be a quotient map. Thus, a subset W of G(M) is open iff

π−1(W ) is open in T ′M .

An alternative approach to the topology on G(M) is given by tangential convergence.

A sequence of geodesics {γn} is said to converge tangentially to the geodesic γ : (a, b)→M

if there is some parameter value a < t0 < b and a sequence of geodesics {βn} with βn
∈ [γn] for each n and with βn

′(t0) → γ ′(t0). Notice that this is the requirement that

there is some point γ(t0) such that corresponding points of the geodesics γn converge to

this point and the the tangents at the corresponding points of the geodesics γn converge

in direction to the direction determined by γ ′(t0). It can be shown that the sequence

{γn} converges tangentially to γ iff the sequence [γn] in G(M) converges to [γ]. Thus,

convergence in the quotient topology on G(M) is equivalent to tangential convergence

of geodesics of (M, g). Using tangential convergence one may prove that G(M) is a T1
topological space iff the image of each geodesic of (M, g) is a closed subset of M . It follows

that the Einstein Static Universe and anti-DeSitter space–time have spaces of geodesics

which are T1. However, the spaces of geodesics for these space–times are not Hausdorff,

compare [5].

We will say that (M, g) has the nonreturning property if each point p ∈ M has

arbitrarily small neighborhoods such that any geodesic which leaves such a neighborhood

fails to return. In other words, the nonreturning property is the natural extension of

strong causality to the collection of all geodesics. The following result [5] shows that for

manifolds which are nonreturning, pseudoconvexity is equivalent to each of G(M) being

Hausdorff and G(M) being a 2n− 2 dimensional manifold.

Theorem 4.1. If M is n-dimensional and (M, g) is nonreturning , then the following

three conditions are equivalent : (1 ) G(M) is a Hausdorff topological space; (2 ) G(M) is

a 2n− 2 dimensional manifold ; and (3 ) the geodesic structure of (M, g) is pseudoconvex.

If (M1, g1) and (M2, g2) are semi-Riemannian manifolds of arbitrary metric signature

and arbitrary dimensions, the natural product metric on M1×M2 is the semi-Riemannian

metric given by g=g1⊕g2. Recall that a topological space X is said to be locally Euclidean

if each p ∈ X has a neighborhood U(p) which is homeomorphic to an open set in some

Rn. A locally Euclidean space need not be Hausdorff and thus need not be a manifold.

Our next result [5] gives conditions for G(M1 ×M2) to be locally Euclidean.

Theorem 4.2. Let (M1, g1) and (M2, g2) be semi-Riemannian manifolds and assume

that both G(M1) and G(M2) are locally Euclidean. Then G(M1×M2) is locally Euclidean

iff each of (M1, g1) and (M2, g2) fails to have any closed geodesics.

It can be proven [5], that if (M1, g1) and (M2, g2) are each nonreturning and pseudo-

convex semi-Riemannian manifolds, then G(M1×M2) is a manifold. On the other hand,

this result fails for warped products. In particular, universal two dimensional anti-DeSitter

space-time is given by ds2 = −cosh2(x)dt2 + dx2 on R2 and the geodesic space of this

space-time fails to be Hausdorff and hence fails to be a manifold. Since this space-time
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is clearly a warped product of (R1, dx2) with (R1,−dt2) using the warping function

cosh2(x), we find that G(M1 ×f M2) need not be a manifold even when (M1, g1) and

(M2, g2) are nonreturning and pseudoconvex.

5. Geodesics and curvature. Any study of geometry in the large must involve

both geodesics and curvature because of the fundamental roles they play in understand-

ing global questions. We have compared and contrasted global results for positive definite

metrics with the corresponding results for metrics which are indefinite. One underlying

difficulty in the investigation of metrics which fail to be definite is that the sectional

curvature function for these spaces becomes generically unbounded near degenerate sec-

tions, see [3], [4]. Since the sectional curvature is a key tool in studying the behavior

of geodesics, this difficulty with the sectional curvature function greatly complicates the

global study of manifolds which have metrics which are indefinite. This sectional curva-

ture difficulty also has a physical implication for space–times. Observers moving close to

the speed of light, generically, experience large tidal accelerations. Another fundamental

obstacle in the investigation global questions in the indefinite case is that there is no fully

satisfactory replacement for the Hopf-Rinow Theorem. In particular, the conclusions of

the Hopf-Rinow Theorem fail to hold for complete Lorentzian manifolds. Thus, it is clear

that one needs to have conditions such as global hyperbolicity for these spaces to use

as at least partial replacement for the completeness assumption used in the Riemannian

case. We have seen that for many applications one may use an alternative assumption of

pseudoconvexity as a substitute for a completeness assumption. The study of the space

of geodesics G(M) illustrates the fundamental role that pseudoconvexity plays in deter-

mining the geodesic structure. Future investigations will involve investigating how the

curvature determines the topological structure of G(M) and how curvature is related to

the pseudoconvexity property.
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