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Abstract. We show what extra condition is necessary to be able to use the positive mass
argument of Witten [12] on an asymptotically locally euclidean manifold. Specifically we show
that the “generalized positive action conjecture” holds if one assumes that the signature of the
manifold has the correct value.

1. Preliminaries. The purpose of this section is to explain some not so well known

aspects of spin-geometry, for the general background see [8]. Let Spin(n) be the spin group

in n dimensions and let (ρ,S) be the spinor representation. Let (M, g) be a Riemannian

spin manifold of dimension n ≥ 3 with spin structure Spin(M, g) and let S(M, g) =

Spin(M, g) ×ρ S be the spinor bundle on M associated to Spin(M, g). We will usually

drop the g from the notation.

1.1. Spin structures and spinors on quotient spaces. Let Γ be a group acting by

orientation preserving isometries on M . An element γ ∈ Γ acts on a frame f by f 7→ γ∗f .

Assume that this action of Γ on the frame bundle lifts to an action on Spin(M, g),

that is we have an action s 7→ γ̃s which projects to the action f 7→ γ∗f . Via the spin

representation this defines an action on the spinor bundle where we denote the action of

γ by γ̃.

Assume that Γ is a discrete group acting without fixed points. Then Γ has a lift if

and only if M/Γ is spin. In this case the spin bundle on the quotient is given by

Spin(M/Γ) = Spin(M)/Γ

and the associated spinor bundle is given by

S(M/Γ) = S(M)/Γ.
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This means that given a lift the sections of S(M/Γ) are precisely the Γ-periodic sections

of S(M).

1.2. Comparing spinors for different metrics. Let g, g′ be Riemannian metrics on a

manifold M , and define the ’gauge transformation’ A ∈ End(TM) by

g(AX,AY ) = g′(X,Y ).

g(AX,Y ) = g(X,AY )

Because of the first property A will map ON-frames for g′ to ON-frames for g, and thus

A induces a map SO(M, g′)
A→ SO(M, g). If M is spin and we choose equivalent spin-

structures for g and g′ this can be lifted to Spin(M, g′)
A→ Spin(M, g). A spinor field for g

can be viewed as a Spin(n)-equivariant map Spin(M, g)
ϕ→ S, where S is the spinor space,

so the composition ϕ ◦ A is a map Spin(M, g′)
ϕ→ S which also is Spin(n)-equivariant.

This gives the extension of A to a map S(M, g′)
A→ S(M, g) which respects Clifford

multiplication:

A(X · ϕ) = (AX) · (Aϕ).

Since the metric on the spinor bundle is given by a fixed Hermitean inner product on S,

A defines a fibrewise isometry. The above can be collected in a diagram.

Spin(M, g′)
A−−−−→ Spin(M, g)

ϕ−−−−→ Syπ yπ
SO(M, g′)

A−−−−→ SO(M, g)

We will now look at the relation between the canonical covariant derivatives for (M, g)

and (M, g′). Let ∇ and ∇′ be the Levi-Civita connections for g and g′, to be able to

compare ∇ and ∇′ on the frame and spin bundles for g we define a connection ∇ by

∇X = A(∇′A−1X).(1)

The connection ∇ is metric with respect to g and has torsion

T (X,Y ) = ∇XY −∇YX − [X,Y ](2)

= −((∇′XA)A−1Y − (∇′YA)A−1X).

Expressing the covariant derivative in terms of the Lie bracket and the metric we get

2g(∇XY −∇XY, Z) = g(T (X,Y ), Z)− g(T (X,Z), Y )− g(T (Y,Z), X).(3)

Next we compare ∇,∇ when lifted to the spinor bundle S(M, g). Let {ei} be a local

orthonormal frame for g, and let {σα} be the corresponding local orthonormal frame of

the spinor bundle. Denote by ωij , ωij the connection one-forms for ∇,∇ defined with

respect to {ei},
ωij = g(∇ei, ej)

ωij = g(∇ei, ej),
then the covariant derivatives of ϕ = ϕασα are given by [8, Thm 4.14]

∇ϕ = dϕα ⊗ σα +
1

2

∑
i<j

ωij ⊗ eiejϕ,
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∇ϕ = dϕα ⊗ σα +
1

2

∑
i<j

ωij ⊗ eiejϕ

and hence the difference between ∇ and ∇ acting on ϕ is

∇ϕ−∇ϕ =
1

2

∑
i<j

(ωij − ωij)⊗ eiejϕ.(4)

Using (2) and (3) we can estimate

|(ωij − ωij)(ek)| ≤ C|A−1||∇′A|.
We have proved the following lemma

Lemma 1.1. Let Y be a vectorfield and let ϕ be a spinor (w.r.t the g spin bundle),

then

|∇Y −∇Y | ≤ C|A−1||∇′A||Y |,(5)

|∇ϕ−∇ϕ| ≤ C|A−1||∇′A||ϕ|(6)

and

|Dϕ−Dϕ| ≤ C|A−1||∇′A||ϕ|,(7)

where D,D are the Dirac operators associated to the connections ∇,∇.

2. Asymptotically locally euclidean manifolds. We are going to study manifolds

with ends asymptotic to a flat cone Rn/Γ, they are called asymptotically locally euclidean

or ALE. We use a definition basically as in [3] since we will refer to that paper for

analytical results.

Definition 2.1. A complete Riemannian manifold (M, g) is called ALE with group

Γ if

1. Γ is a finite group of isometries of Rn acting freely outside the origin.

2. There is a compact set C and a diffeomorphism between M \ C and (Rn \ B)/Γ

where B is a ball around the origin in Rn. This diffeomorphism gives a specific set

of “coordinates at infinity”.

3. On the end the metric g and the flat metric g0 on Rn are uniformly equivalent.

4. Using the coordinates at infinity the difference between g and g0 satisfies

g − g0 ∈W 1,q
−d (S2T ∗M)

where W 1,q
−d is a weighted Sobolev space as defined next and d > 0 is called the

order of (M, g).

Definition 2.2. Let (M, g) be an ALE manifold and let V be a vector bundle with

a connection. Let r be a positive function extending the background radial coordinate

on the end. The weighted Sobolev spaces W k,q
δ (V ) are defined as the completion of the

smooth compactly supported sections of V with respect to the norm || · ||k,q,δ defined by

||f ||qk,q,δ =

k∑
j=0

∫
M

||∇jf ||qr−q(δ−j)−ndx.
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R e m a r k 2.3. If n > kq then f ∈W k,q
δ (V ) implies ||f || = o(rδ).

If Γ = {1} we say that M is asymptotically euclidean or AE. The motivating examples

of ALE manifolds come from the study of “gravitational instantons”, noncompact Ricci-

flat four-manifolds. Kronheimer has classified the four dimensional hyper-Kähler ALE

manifolds, see [6, 7].

2.1. The mass. From general relativity comes the following definition of the mass of

an ALE manifold.

Definition 2.4. The mass of an asymptotically locally euclidean manifold (M, g) is

defined by

m(M, g) = lim
r→∞

∫
Sr

(∂igij − ∂jgii)∂jyd vol

if the limit exists. Here i, j refer to the coordinates at infinity and Sr is the sphere of

radius r in these coordinates.

Following [3] we assume the following “mass decay conditions” hold.

Assumption 2.5. 1. g − g0 ∈W 2,q
−d (S2T ∗M) for some q > n and d ≥ n

2 − 1,

2. s(g) ∈ L1(M), where s is the scalar curvature.

And we get the following proposition.

Proposition 2.6. From the mass decay conditions it follows that mass is well-defined,

not depending on the coordinates at infinity. If d > n− 2 then the mass vanishes.

It was first shown by Schoen and Yau that an asymptotically euclidean manifold

with non-negative scalar curvature has non-negative mass, and that if such a manifold

has vanishing mass it has to be flat Rn. It was also conjectured that a similar positive

mass theorem would hold for ALE manifolds, but LeBrun found counterexamples to the

conjecture [9]. In this paper we will see that the positive mass theorem does hold for ALE

spin manifolds if one also assumes that the signature of the manifold takes the correct

value.

3. ALE from curvature decay. If the curvature of a manifold has sufficiently fast

decay and the volume grows to the same order as in euclidean space the manifold will be

ALE, by assuming even faster decay of the Ricci tensor the mass decay condition will be

satisfied. This follows from the main theorem in [2].

Theorem 3.1. Let (M, g) be a complete manifold and let ρ be the distance from a fixed

point. Suppose that the sectional curvature and the Ricci curvature decay asymptotically

as

|K| ≤ Cρ−(2+ε)

|Ric | ≤ Cρ−(2+µ)

for some µ ≥ ε > 0. Also assume that asymptotically the volume of the balls BR = {ρ ≤
R} grows as

vol(BR) ≥ V Rn
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for some V > 0. Then the manifold is ALE as in definition 2.1. If µ > n
2 − 1 then point

1. of assumption 2.5 holds. If µ > n−1 then point 2. holds as well and the mass vanishes.

We will formulate the main theorems in this paper as concerning ALE manifolds as in

definition 2.1. Using the above theorem one sees that they apply under the geometrically

more natural assumptions of curvature decay and volume growth. In [5] it is shown that

one can do without the volume growth assumption if one instead assumes that the end

has finite fundamental group and non-trivial tangent bundle. However, this excludes the

four dimensional case which will be the focus of this paper.

4. Spinors and the Lichnerowicz formula. The Lichnerowicz formula is the

Bochner formula for the Dirac operator D relating D2 to the connection Laplacian. We

need an integrated version for manifolds with boundary which is derived as follows. Fix

a spinorfield ϕ and define a vectorfield L by

〈L,X〉 = 〈(∇X +X ·D)ϕ,ϕ〉.

Integrating the divergence of L over a manifold M with boundary ∂M we get the Lich-

nerowicz formula ∫
M

(
s

4
|ϕ|2 + |∇ϕ|2 − |Dϕ|2) =

∫
∂M

〈(∇ν + νD)ϕ,ϕ〉(8)

where ν is the outward normal of the boundary. Using the Lichnerowicz formula Witten

found a simple proof of the positive mass theorem. The important observation he made

was that if one has an AE (or ALE) manifold and a spinor ϕ which is constant (i.e.

parallell) with respect to the flat background metric in the coordinates at infinity then

the boundary integrals ∫
Sr

〈(∇ν + νD)ϕ,ϕ〉

tend to a constant times m(M, g) as r →∞. More precisely on the end ϕ is on the form

Aϕ0 where A is the gauge-transformation between g and the flat background metric (see

section 1.2) and ϕ0 is a constant spinor with respect to the flat background metric.

4.1. Constant spinors on Rn/Γ. To be able to use Witten’s positive mass argument on

an ALE manifold we need to know when there are parallell spinors on the flat background

cones for the end. Denote Rn \ {0} by Rn∗ and let Γ ⊂ SO(n) be a finite group acting

freely on Rn∗ . We need to know when there are parallel spinors on the quotient Rn∗/Γ.

There are natural trivializations SO(Rn∗ ) = Rn∗ × SO(n), Spin(Rn∗ ) = Rn∗ × Spin(n) and

S(Rn∗ ) = Rn∗ × S. In these trivializations γ ∈ Γ acts on SO(Rn∗ ) as

(x, f)
γ→ (γ(x), γf).

Assume that Rn∗/Γ is spin. Then by the discussion in Section 1.1 there is a bijective lift

of Γ to a subgroup Γ̃ ⊂ Spin(n), which specifies the action of Γ on the spin and spinor

bundles of Rn∗ , γ̃ ∈ Γ̃ acts as

(x, s)
γ→ (γ(x), γ̃s),

(x, ϕ)
γ→ (γ(x), ρ(γ̃)ϕ),
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The sections of S(Rn∗/Γ) are naturally identified with the Γ-periodic sections of S(Rn∗ ).
Since being parallel is a local condition on the spinor the parallel spinors on Rn∗/Γ are

precisely given by the parallel spinors on Rn∗ which are Γ-periodic. The parallel spinors

on the quotient thus correspond precisely to the elements of S which are fixed by the

spin-representation of the lifted group Γ̃, they depend both on Γ and via the choice of

lift the spin structure on the quotient. This proves the following Proposition.

Proposition 4.1. Let Γ be a subgroup of SO(n) acting freely on Rn∗ and let Γ̃ be a

bijective lift to Spin(n), then the parallell spinors on Rn∗/Γ with the spin-structure defined

by Γ̃ correspond one-to-one to the ϕ ∈ S which are fixed by the spinor representation

of Γ̃.

5. The positive mass theorem. We now come to a general positive mass theorem

for ALE manifolds. The first part of the theorem is the statement that m(M, g) is non-

negative, the second and more interesting part concerns the case when the mass vanishes.

Theorem 5.1. Let (M, g) be a spin ALE-manifold with group Γ and non-negative

scalar curvature. Suppose that the spin structure on the ALE end is equivalent to to the

spin structure on Rn∗/Γ defined by a lift Γ̃ of Γ. If Γ̃ fixes a spinor u ∈ S then m(M, g) ≥ 0.

If m(M, g) = 0 (for instance if the order d > n− 2) then the space of parallel spinors on

(M, g) is isomorphic to the subspace of S fixed by Γ̃.

R e m a r k 5.2. If Γ = {1} we have the classical positive mass theorem. In this case

m = 0 implies that there is dim(S)-dimensional space of parallel spinors so the spinor

bundle is flat and the manifold is isometric to Rn.

R e m a r k 5.3. The existence of parallel spinors gives a strong restriction on the holon-

omy of the manifold, see the papers by Wang [10, 11]. For instance if M is simply con-

nected then M is either flat Rn or one of the following cases hold (N is the dimension of

the space of parallel spinors on M)

1. N = 2, M has dimension n = 2m and holonomy SU(m),

2. N = m+ 1, M has dimension n = 4m and holonomy Sp(m),

3. N = 1, n = 8, holonomy Spin(7),

4. N = 1, n = 7, holonomy G2.

Proposition 5.4 ([3]). Suppose (M, g) is an ALE manifold satisfying assumption

(2.5) and having non-negative scalar curvature. Then the Dirac operator is an isomor-

phism from W 2,q
−η (S) to W 1,q

−η−1(S) for 0 < η < n− 1.

P r o o f o f t h e t h e o r e m. Let ψ be a parallel spinor on Rn∗/Γ, f be a cut-off

function for the end and A be the gauge transformation between g and the flat metric on

the end. Define the spinor ϕ0 = fAψ on (M, g). It follows from (7) and our assumption 2.5

that Dϕ0 ∈W 1,q
−n

2
(S) so the equation Dϕ1 = Dϕ0 has a unique solution ϕ1 ∈W 2,q

−n
2 +1(S).

Set ϕ = ϕ0 − ϕ1, then Dϕ = 0 and since ϕ1 vanishes at infinity ϕ is asymptotic to ϕ0.

When plugging ϕ into the Lichnerowicz identity we get

0 ≤
∫
M

(
s

4
|ϕ|2 + |∇ϕ|2) = lim

r→∞

∫
Sr

〈(∇ν + νD)ϕ,ϕ〉 = c(n)m(M, g),
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the calculation for the last line can be found in [3]. This shows that m ≥ 0 and if m = 0

we see that ∇ϕ = 0. This procedure produces different parallel spinors ϕ if we start with

different ψ, and the theorem follows.

6. Four dimensions. We now consider the four dimensional case, in four dimensions

there are isomorphisms

Spin(4) = SU(2)× SU(2) = Sp(1)× Sp(1)

where the projection Spin(4) → SO(4) takes (p, q) to the map v → pvq∗ (quaternion

multiplication) and the spinor representation is SU(2)×SU(2) acting on S = S+⊕S− =

C2 ⊕ C2.

Suppose that Γ ⊂ SO(4) has a lift to Γ̃ ⊂ Spin(4) such that for all γ̃ ∈ Γ̃, γ̃ · u = u

where 0 6= u ∈ S. Then the same holds for the parts u+, u−, by a choice of orientation we

may assume u− 6= 0. This means that for all γ̃ the part in the second SU(2) factor, γ̃−,

has one eigenvalue equal to one and since the determinant is one we must have γ̃− = Id.

So S− is fixed by Γ̃ and Γ̃ is a subgroup of the first SU(2) factor, which also means that

Γ ⊂ Sp(1) = SU(2) ⊂ SO(4). The same reasoning gives that every finite subgroup of

SU(2) acts freely on the sphere. We conclude;

Proposition 6.1. If Γ is a finite subgroup of SU(2) then with the above choice of

orientation, the spinors ϕu with u ∈ S− give parallel spinors on the quotient ((R4
∗)/Γ

provided we choose the spin structure

Spin(R4
∗/Γ) = Spin(R4

∗)/Γ̃

defined by the lift γ → γ̃ = (γ, Id). Except for reversing orientation these are the only

cases allowing parallel spinors.

So we can only find asymptotically parallel spinors on an ALE four manifold if the fun-

damental group of the locally Euclidean end is a finite subgroup of SU(2). The following

groups are up to conjugation all finite subgroups of SU(2) ([13, Thm. 2.6.7]).

An: The cyclic group of order n generated by z =

(
ζ 0

0 ζ−1

)
where ζ = e2πi/n.

D∗n: The binary dihedral group of order 4n, this consists of {za, jza}2n−1a=0 where z =(
ζ 0

0 ζ−1

)
with ζ = e2πi/2n and j =

(
0 1

−1 0

)
.

T∗: The binary tetrahedral group.

O∗: The binary octahedral group.

I∗: The binary icosahedral group.

For these groups there is a canonical lift to Spin(4) and an associated canonical spin

structure on the end which we call the trivial spin structure. Any other lift of Γ to

Spin(4) is given up to conjugation by an element κ ∈ Hom(Γ,Z2) as follows

Γ 3 γ → γ̃ = κ(γ)(γ, Id) ∈ Spin(4).

The elements of Hom(Γ,Z2) are

An: κ0 = 1 and if n is even κ1 defined by κ1(z) = −1.
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D∗n: κpq, p, q = 0, 1 defined by κpq(z) = (−1)p and κpq(j) = (−1)q.

T∗: 1.

O∗: κ0 = 1 and κ1 which is nontrivial.

I∗: 1.

We will now see that the spin structure on an ALE end can be detected by the

signature of the manifold. Let Mr be an ALE manifold M with the end cut off at distance

r. So Mr is a compact manifold with boundary and as r → ∞ the boundary ∂Mr will,

if we rescale to constant volume, approach the spherical space-form S3/Γ. To relate the

spinstructure at the boundary to the signature we use the Atiyah–Patodi–Singer index

theorem to compute the index of the Dirac operator with the Atiyah–Patodi–Singer

boundary condition and the relative signature σ(Mr, ∂Mr). This signature is independent

of r if r is large enough and we will denote it by just σ(M).

ind(D) =

∫
Mr

Â+

∫
∂Mr

TÂ− ηD(∂Mr),(9)

σ(M) =

∫
Mr

L+

∫
∂Mr

TL− ησ(∂Mr),(10)

where Â,L are the A-roof genus and the Hirzebruch L-genus, TÂ,TL are their trans-

gressions and ησ(∂Mr) and ηD(∂Mr) are the eta-invariants of the Signature- and the

Dirac-operator on the boundary. In four dimensions the Hirzebruch genus and the A-roof

genus are both proportional to the first Pontrjagin class,

−8Â =
1

3
p1 = L

and

−8TÂ = TL

so we can cancel the integrals and get

σ(M) + 8 ind(D) = −ησ(∂Mr)− 8ηD(∂Mr).(11)

Now if s ≥ 0 the index of the Dirac-operator on ∂Mr vanishes for r large enough. For

suppose we have a harmonic spinor ϕ satisfying the Atiyah–Patodi–Singer boundary

condition and we plug it into the Lichnerowicz formula (8). Then the left-hand side∫
M

(
s

4
|ϕ|2 + |∇ϕ|2)

is explicitly non-negative. The boundary integral in (8) can be written as∫
∂M

〈(∇ν + νD)ϕ,ϕ〉 =

∫
∂M

〈νD̃ϕ, ϕ〉+
1

2
tr(h)〈ϕ,ϕ〉

where D̃ is the Dirac-operator of the induced metric on the boundary and h is the second

fundamental form, h(X,Y ) = g(ν,∇XY ). The Atiyah–Patodi–Singer boundary condition

tells us that the first term is non-positive and using (2.5) one sees that for r large the trace

tr(h) is negative since it is then sufficiently close to −(n−1)/r, which is the corresponding

trace in the Euclidean case.
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So both sides in the Lichnerowicz formula must vanish and we see from the left-hand

side that ∇ϕ = 0 and from the right-hand side that ϕ = 0 on the boundary. We conclude

that ϕ = 0 and ind(D) = 0.

Since the left-hand side of (11) is a topological invariant we can choose any metric to

compute the right-hand side, we choose one for which the boundary is isometric to the

spherical space-form S3/Γ. Then

σ(M) = −ησ(S3/Γ)− 8ηD(S3/Γ).(12)

One can now compute the eta-invariants for S3/Γ explicitly [4] and ηD involves the spin

structure via κ. The details of the computation of the eta-invariants are described in [1].

We summarize the result for the finite subgroups of SU(2) in Table 1.

Table 1: Eta invariants and signature

Group Spin structure ησ ηD σ(Mr)

An κ0
(n−1)(n−2)

3n
n2−1
12n −n+ 1

κ1 (for n even) −n
2+2
12n 1

D∗n κ00
2n2+1

6n
4n2+12n−1

48n −n− 2

κ01
4n2−1
48n −n

κ10 − 2n2−12n+1
48n −2

κ11 − 2n2+1
48n 0

T∗ 49
36

167
288 −6

O∗ κ0
121
72

383
576 −7

κ1 − 49
576 −1

I∗ 361
180

1079
1440 −8

The above discussion proves the following version of the positive mass theorem.

Theorem 6.2. Let (M, g) be a four-dimensional spin ALE-manifold with group Γ and

non-negative scalar curvature. Suppose σ(M) takes the value corresponding to the trivial

spinstructure on the end, that is

Γ σ(M)

An −n+ 1

D∗n −n− 2

T∗ −6

O∗ −7

I∗ −8.

Then m(M, g) ≥ 0 and if m(M, g) = 0 the manifold is hyper-Kähler.

The conclusion is that the manifold has to be one of the manifolds constructed in [6].
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