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Abstract. A mini-introduction to critical phenomena in gravitational collapse is combined

with a more detailed discussion of how gravity regularizes the “critical spacetimes” that dominate

these phenomena.

1. Critical phenomena in gravitational collapse. Initial data for general rela-

tivity may or may not form a black hole. In several ways one might compare this to

a phase transition, and there is a “critical surface” in superspace (the phase space of

GR) separating the two kinds of initial data. Choptuik [1] has explored this surface in a

systematic way. For simplicity he took a massless scalar field as his matter model, and

allowed only spherically symmetric configurations. (The numerical calculations were still

pioneering work, because they involve length scales spanning many orders of magnitude.)

To explore the infinite-dimensional phase space, he evolved initial data from a number of

one-parameter families of data crossing the critical surface. Let us call that parameter ge-

nerically p. By a bisection search, Choptuik found a critical value p∗ for each family, such

that data with p > p∗ form a black hole, but not data with p < p∗. He then discovered

two unforeseen effects:

Scaling: Near the critical surface, on the black-hole side of it (p > p∗), where the

mass of the black hole final state is small (compared to, for example, the ADM mass), it

scales as

M ≃ C(p− p∗)
γ , (1)

where the overall factor C depends on the family, but the “critical exponent” γ is universal

between families. For the scalar field matter, γ ≃ 0.37. I should stress that this expression

is invariant under redefinitions of p → p̄(p) such that p̄(p) is differentiable, with dp̄/dp 6= 0

at p∗: To leading order, only C changes under such redefinitions. To clarify this, and to
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avoid speaking in terms of one-parameter families altogether, one can formally introduce

coordinates (x0, xi) on superspace such that the coordinate surface x0 = 0 is the critical

surface. Then, for small positive x0, the black hole mass would be of the form

M ≃ f(xi)x
γ
0 , (2)

and again this form is invariant under coordinate diffeomorphisms such that x0 = 0

remains the critical surface.

Universality: Near the critical surface, on either side of it (p ≃ p∗ ), initial data

evolve towards an intermediate asymptotic solution (which I’ll call Z∗), which is again

universal with respect to initial data. (Clearly this solution cannot be a full-blown attrac-

tor, because all data must leave it eventually towards forming either a black hole or to-

wards dispersion. But it is an attractor of co-dimension one, or intermediate asymptotic.)

This solution shows self-similarity. In the case of scalar field matter, this self-similarity

is discrete, showing up as an “echoing” in the logarithm of spacetime scale, with period

∆ ≃ 3.44.

The matter model of Choptuik is special in that, even coupled to general relativity,

it has no intrinsic scale. (This is equivalent to saying that in geometric units, c = G = 1,

the action has no dimensionful parameters.) Therefore, from dimensional analysis alone,

there can no be no static, star-like solutions, and hence no minimum black hole mass.

Generic matter has both an intrinsic scale (or several), and star-like solutions. Astro-

physical black holes thus have a minimum mass given by the Chandrasekhar mass. To

make infinitesimally small black holes from ordinary matter, one would have to use ini-

tial conditions (for example rapid implosion) not arising in astrophysics. The important

point is that for any matter there is at least some region of superspace where critical

phenomena arise. Nevertheless, the interest of critical phenomena does not lie in astro-

physics, but in the dynamics of GR (with or without matter). Recent work by Choptuik,

Bizon and Chmaj [2] has clarified the role of matter scales. Investigating the spherical

collapse of Einstein-Yang-Mills, they find two regimes: one with the usual critical phe-

nomena dominated by a self-similar intermediate attractor (“second-order phase trans-

ition”), and one dominated by the Bartnik-McKinnon solution, which is a finite mass,

static intermediate attractor, and therefore having a mass gap (“first-order phase trans-

ition”).

Critical phenomena have also been found in two one-parameter families of matter

models in spherical symmetry (not to be confused with one-parameter families of data):

The first family is that of the perfect fluids with p = kρ, k a constant [3, 4, 5]. The other

family is that of the constant-curvature, two-dimensional sigma models, characterized

by the dimensionless curvature parameter κ [6]. (This family contains the free complex

scalar field [7], an inflaton-dilaton model [8], and an axion-dilaton model [9] as special

cases.) It is known for the latter family, and likely for the second, that at some value of

the parameter κ (and perhaps k) the critical solution switches over from continuous to

discrete self-similarity. Moreover, the critical exponent γ depends on the parameter κ or k.

Historically, the second occurrence of critical phenomena was found in the collapse

of axisymmetric gravitational waves (time-symmetric initial data, and hence with zero

angular momentum) [10]. Because of the much greater numerical difficulty, there are fewer
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experimental data, and regrettably, there has been no follow-up work so far. Axisymmetric

waves are highly interesting in two aspects: They go beyond spherical symmetry, and they

are vacuum data. It would also be extremely interesting to see what happens for initial

data with angular momentum, because black holes can of course have angular momentum,

but it must be smaller than the mass.

2. Self-similarity in GR. The critical solution for each matter model has the prop-

erty of being self-similar. In hindsight this is simply the form scale-invariance takes in the

problem. Self-similarity however takes the novel form of echoing, or discrete self-similarity,

in some models, notably Choptuik’s scalar field and axisymmetric gravitational waves.

Some definitions are necessary:

(Continuous) self-similarity (CSS) (or homotheticity) in a relativistic context [11] is

the presence of a vector field χ such that

Lχgab = 2gab, (3)

where Lχ denotes the Lie derivative. In discrete self-similarity (DSS) there exist a diffe-

omorphism φ and a real constant ∆ such that, for any integer n,

(φ∗)
n
gab = e2n∆gab, (4)

where φ∗ is the pull-back of φ.

To see what DSS looks like in coordinate terms, we introduce coordinates (τ, xα), such

that if a point p has coordinates (τ, xα), its image φ(p) has coordinates (τ +∆, xα). One

can verify that DSS in these coordinates is equivalent to

gµν(τ, x
α) = e2τ g̃µν(τ, x

α), where g̃µν(τ, x
α) = g̃µν(τ +∆, xα) (5)

In other words, the DSS acts as a discrete isomorphism on the rescaled metric g̃µν . τ is

intuitively speaking the logarithm of spacetime scale.

In order to clarify the connection between CSS and DSS, one may define a vector

field χ ≡ ∂/∂τ , although there is no unique χ associated with a given φ. The discrete

diffeomorphism φ is then realized as the Lie dragging along χ by a distance ∆. Clearly,

CSS corresponds to DSS for infinitesimally small ∆, and hence for all ∆, and is in this

sense a degenerate case of DSS. In this limit, χ becomes unique.

3. Universality and the critical solution. The critical solution dominating crit-

ical phenomena for a given matter model (and perhaps choice of symmetry, such as

spherical symmetry), has two essential properties. First, it must be self-similar, either

CSS or DSS. Secondly, it must have exactly one unstable mode. There are examples of

self-similar solutions with more than one unstable mode, with exactly one (i.e. genuine

critical solutions), but none with none: the latter would constitute a violation of cosmic

censorship in the strongest possible sense, that of a naked singularity arising from generic

initial data. The presence of exactly one unstable mode, on the other hand, constitutes

a dynamical explanation of the universality of the critical exponent. In this explanation,

near-critical data p ≃ p∗ (data near the critical surface) are precisely those in which

the one unstable mode is initially small. Skimming along the critical surface, they are

attracted towards the critical solution, which is either a fixed point (CSS) or a limit cycle
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Figure 1: The phase space picture for discrete self-similarity. The plane represents the critical

surface. (In reality this is a hypersurface of co-dimension one in an infinite-dimensional space.)

The circle (fat unbroken line) is the limit cycle representing the critical solution. The thin

unbroken curves are spacetimes attracted to it. The dashed curves are spacetimes repelled from

it. There are two families of such curves, labeled by one periodic parameter, one forming a black

hole, the other dispersing to infinity. Only one member of each family is shown.

(DSS), until the growing mode eventually takes over and ejects the trajectory, either to-

wards black hole formation or towards dispersion, in a unique manner. The solution has

forgotten from which initial data it came, up to one parameter (roughly speaking, the

number of echos, or the time spent on the intermediate asymptotic), which depends on

the initial amplitude of the growing mode and which will eventually determine the black

hole mass. Fig. 1 illustrates this behavior for DSS.

A given spacetime does not correspond to a unique trajectory in superspace, because it

can be sliced in different ways. In reverse, a point in superspace corresponds to a unique

spacetime, but not to a unique trajectory. In other words, there is no preferred time-

evolution flow on superspace, and therefore Fig. 1 is true only for a fixed slicing condition,

something extraneous to GR. A possible solution is to demand that the preferred time

evolution (choice of lapse and shift) should correspond to a “renormalisation group flow”,

or change of scale. This is the case for example if one takes τ as defined above as the

time variable. The analogy with critical phenomena in statistical mechanics would then
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be deeper: superspace corresponds to the space of Hamiltonians, and the preferred time

evolution to the renormalisation group flow.

In constructing the critical solution one has to proceed in two steps. Imposing self-

similarity together with certain regularity conditions, one obtains a non-linear hyperbolic

eigenvalue problem, which may have a solution. If it does, in a second step one has to

calculate the spectrum of its linear perturbations and check that there is exactly one

growing mode.

In the following I restrict myself to spherical symmetry. The regularity conditions just

mentioned are imposed in two places. One is the center of spherical symmetry. There one

imposes the absence of a conical singularity in the 3-metric, and that all fields be either

even or odd in r, depending on their being vector or scalar under rotations. The other

set of regularity conditions arises at, roughly speaking r = −t, and needs to be discussed

in more detail.

The general spherically symmetric solution of the wave equation in flat space is

φ(r, t) = r−1 [f(r − t) + g(r + t)], (6)

with f and g arbitrary functions. Furthermore, φ is DSS (in flat space) if φ(r, t) =

φ(e∆r, e∆t) for some ∆. One easily derives that the general DSS solution in flat space is

of the form

φ(r, t) = (1+ z−1)F [τ + ln(1+ z)] + (1− z−1)G[τ + ln(1− z)], τ ≡ ln t, z ≡ r/t, (7)

where F and G are now periodic (with period ∆), but otherwise arbitrary functions.

With the exception of φ = 0, a DSS solution can only be regular at either r = 0 (for

F = G), or at r = t (for G = 0), or at r = −t (for F = 0). All DSS solutions (except the

zero solution) are singular at the point (r = 0, t = 0). Coupling the wave equation to GR

in spherical symmetry changes the dynamics, but not the degrees of freedom. (There are

no spherically symmetric gravitational waves.)

Surprisingly, the presence of gravity acts as a regulator. In the presence of gravity,

there is (at least) one DSS solution which is regular at both r = 0 and at the past

light cone of (r = 0, t = 0) (the generalization of r = −t to curved spacetime) in the

sense of being analytic. It is even regular, in a weaker sense, at the future light cone.

(r = 0, t = 0) remains singular, in the sense of a curvature singularity. This solution

is precisely the intermediate attractor dominating near-critical collapse. It is found by

numerically solving a non-linear hyperbolic eigenvalue problem, with periodicity in some

coordinate τ , and regularity now imposed at both r = 0 and the past light cone [12, 13].

4. Calculation of the critical exponent. The calculation of the critical exponent

is such a nice piece of dimensional analysis [3, 4, 14] that I simply must sketch it here.

For simplicity of notation I assume CSS of the critical solution, the more generic DSS

case is given in the paper [13]. Mathematically, the calculation that follows (for CSS)

is identical with that of the critical exponent governing the correlation length near the

critical point in statistical mechanics [15].

Let Z stand for the variables of the problem in a first-order formulation, in spacetime

coordinates and matter variables adapted to the problem [12, 13]. Z(r) is an element of
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the phase space, and Z(r, t) a solution. The self-similar solution is of the form Z(r, t) =

Z∗(r/t). (I won’t spell out what Z stands for or how r and t are defined.) In the echoing

region, where Z∗ dominates, we linearize around it. To linear order, the solution must be

of the form

Z(r, t) ≃ Z∗

(r

t

)

+

∞
∑

i=1

Ci(p)(−t)λiδiZ
(r

t

)

. (8)

Here, the general form of the linear perturbations follows from the form of the background

solution Z∗. Their coefficients Ci depend in a complicated way on the initial data, and

hence on p. If Z∗ is a critical solution, by definition there is exactly one λi with negative

real part (in fact it is purely real), say λ1. As t → 0, all other perturbations vanish,

and in the following we consider this limit, and retain only the perturbation with i = 1.

Furthermore, by definition the critical solution corresponds to p = p∗, so we must have

C1(p∗) = 0. Linearizing around p∗, we obtain

lim
t→0

Z(r, t) ≃ Z∗

(r

t

)

+
dC1

dp
(p− p∗)(−t)λ1δ1Z

(r

t

)

. (9)

This form holds over a range of t, that is, is an approximate solution. Now we extract

Cauchy data by picking one particular value of t within that range, namely tp defined by

dC1

dp
(p− p∗)(−tp)

λ1 ≡ ǫ, (10)

where ǫ is some constant ≪ 1, so that at tp the linear approximation is still valid. (The

suffix p indicates that tp depends on p.) At sufficiently small t, the linear perturbation

Z1 has grown so that the linear approximation breaks down. Later on a black hole forms.

The crucial point is that we need not follow this evolution in detail. It is sufficient to note

that the Cauchy data at t = tp depend on r only in the combination r/tp, namely

Z(r, tp) ≃ Z∗

(

r

tp

)

+ ǫ δ1Z

(

r

tp

)

. (11)

As furthermore the field equations do not have an intrinsic scale, it follows that the

solution based on those data must be exactly of the form

Z(r, t) = f

(

r

tp
,
t− tp
tp

)

(12)

throughout, even when the black hole forms and perturbation theory breaks down, and

still after it has settled down and the solution no longer depends on t. (This solution holds

only for t > tp, because in its initial data we have neglected the perturbation modes with

i > 1, which are growing, not decaying, towards the past.) Because the black hole mass

has dimension length, it must be proportional to tp, the only length scale in the solution,

M ∝ tp ∝ (p− p∗)
−

1

λ1 , (13)

and we have found the critical exponent.

When the critical solution is DSS, the scaling law is modified [13]. On the straight

line relating lnM to ln(p−p∗) a periodic wiggle of small amplitude is superimposed. This
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wiggle is again universal with respect to families of initial data, and there is only one free

parameter for each family to be adjusted, corresponding to a shift of the wiggly line in

the lnM direction. (No separate adjustment in the ln(p− p∗) direction is required.)

5. Gravity as a regularizer of self-similar solutions. I now come back to the

critical solution, which by definition is DSS and regular. As I said before, DSS is impo-

sed as periodicity in a coordinate system of the form (5) adapted to the problem, and

boundary conditions at r = 0 arise in a straightforward manner, from the necessity of

avoiding a conical singularity.

From the form (5) of the metric it is easy to see that the curvature blows up as

τ → −∞. Furthermore, this singularity is a “point” in, for example, the following sense.

Let (τ1, ζ1, θ1, ϕ1) and (τ2, ζ2, θ2, ϕ2) be two points. (Here τ is the coordinate defined by

equation (5), θ and ϕ are the Euler angles adapted to the spherical symmetry, and ζ

is a choice of remaining coordinate, roughly speaking ln(r/t).) Their geodesic distance

vanishes as eτ as τ1 → τ2 → −∞, for any values of (ζ1, θ1, ϕ1) and (ζ2, θ2, ϕ2).

The past light cone of this singularity is the equivalent of r = −t in curved spacetime.

It is called the past self-similarity horizon. We use the remaining freedom in the coordinate

system (5) to label this light cone ζ = 0. From the analogy with the general CSS solution

(7) of the wave equation in flat space one would assume that any solution regular at r = 0

is singular here, showing an infinite number of oscillations of the form φ ∼ F (ln ζ) (with

F periodic) as ζ → 0.

But this is not so, and I now show why [13]. In flat space, the inward and outward

traveling modes are φ′ + φ̇ and φ′ − φ̇. Let us call their curved-space equivalents X+ and

X−. It is X− that we expect to be singular at ζ = 0. The equation for X−, to leading

order in ζ, is

X−,ζ =
A(τ)X− −X−,τ + C(τ)

ζB(τ)
, (14)

where the coefficients A, B and C are constructed from the other fields and are therefore

periodic in τ .

This approximate equation admits an exact general solution, namely

X− = X inhom
−

(τ) +Xhom
−

(ζ, τ). (15)

The particular inhomogeneous solution X inhom
−

is defined as the unique solution of

AX inhom
−

−X inhom
,τ + C = 0 (16)

with periodic boundary conditions. This solution exists and is unique, unless the average

value of A vanishes. The general homogeneous solution Xhom
−

is of the form

Xhom
−

= ζ
A0

B0 e
∫

A −
A0

B0

∫

B
F

[

τ +

∫

B − ln |ζ|

B0

]

. (17)

where A0 is the average value of the periodic function A, and
∫

A is its principal function

after the average value has been subtracted, so that
∫

A is by definition also periodic. The

periodic function F depends on the initial data for the equation (14). I have not given

the expressions for A, B, and C here, but in flat space A and B vanish. In the critical

solution, which is far from flat, A0 is negative and B0 is positive. The exponent of ζ,
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A0/B0, is negative for the critical or neighboring solutions. In consequence, Xhom
−

only

has two alternatives, it either blows up at ζ = 0, or it is analytic there (for F ≡ 0). To

impose regularity at ζ = 0, it suffices therefore to impose

A(τ)X− −X−,τ + C(τ) = 0 (18)

at ζ = 0. As it happens, there is locally just one solution which obeys this condition, as

well as the other boundary conditions.

As I have said, A vanishes in flat space. But then the equation (18) has no solution

X− with periodic boundary conditions, because the average value of C does not vanish.

But the presence of the term proportional to X− changes the character of the equation

quantitatively, and a solution always exists. (In the limit as A vanishes, this solution

blows up.)

We have now found the solution in the past light cone of the singularity. The data on

the past light cone then determine the solution up to the future light cone, also called

the future self-similarity horizon. (We can go no further because the future light cone

of the singularity is a Cauchy horizon.) Calculating this maximal extension numerically

requires two more nontrivial changes of coordinate system, giving rise to fresh eigenvalue

problems. We arrange the final coordinate patch so that once more the future light cone

is a coordinate line. Now it is X+ which is potentially singular. Its equation is of the

same form (14), where X+ replaces X−, and ζ has been redefined so that ζ = 0 is now

the future light cone. Now, however, there is no freedom left to adjust any data in order

to set F ≡ 0, and in fact F does not vanish with the data we have in hand. So the

solution cannot be analytic at the future light cone. In contrast to the past light cone,

however, both A0 and B0 are positive. This means that Xhom
+ , with an infinite number of

oscillations as ζ = 0 is approached, is present, but vanishes at ζ = 0 as a (small) positive

power of ζ. X+ exists at ζ = 0, but ∂X+/∂ζ does not. From the Einstein equations,

which I have not given here, it follows that the metric and all its first derivatives exist,

but not some of its second derivatives. Nevertheless these particular second derivatives

cancel out of all components of the Riemann tensor, so that the Riemann tensor exists

(but not some of its first derivatives).

Fig. 2 summarizes the global situation, with one angular coordinate suppressed. We

have spherically symmetric, discretely self-similar spacetime, with a single point-like sin-

gularity. The self-similarity corresponds roughly speaking to periodicity in the logarithm

of the distance from the singularity. The past light cone of the singularity is totally

regular, in no way distinguished from other spacetime points. The future light cone, or

Cauchy horizon, is perhaps as regular as one can expect, with the scalar matter field C0,

the metric C1 and the Riemann tensor C0. In particular it carries well-defined null data

(which are of course self-similar), and there exists a regular, self-similar (and of course,

non-unique) extension of the spacetime inside the Cauchy horizon, with only the horizon

itself of limited differentiability. Surprisingly, the null data on the horizon are very small,

so that the extension can be made almost flat and empty. The situation is similar in the

other two cases where the critical solution has been calculated up to the Cauchy horizon

[7, 9]. The spacetime there is CSS, but also almost flat at the horizon. A limiting case

arises in the closed-form solution of Roberts [16], where the null data on the horizon
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past lightcone (regular)

asymptotically conical

Cauchy horizon
(almost regular, nearly flat)

curvature singularity

non-unique extension

Figure 2: The global structure of the critical spacetimes. One dimension in spherical symmetry

has been suppressed.

vanish exactly, so that a possible extension inside the light cone is flat empty space. (In

the Roberts solution, the past light cone also carries zero data, in contrast to the other

examples, where the past light cone is very far from flat.) Finally I should add that at

large spacelike distances from the singularity, spacetime becomes asymptotically conical,

with a constant defect solid angle.

Of course, all these global considerations are not directly relevant to critical collapse,

where the spacetime asymptotes the critical spacetime in some bounded region inside the

past light cone. Therefore, neither the singularity nor the asymptotically conical region,

nor the Cauchy horizon appear.

6. Conclusions. Looking back on what has become a small industry in the past two

years, I think that the dynamical mechanism of universality, scaling and echoing is now

understood in an intuitive way. Furthermore we can calculate the echoing period ∆ and

critical exponent γ as nonlinear eigenvalues, in a manner distinct from that of fine-tuning

data in numerical experiment.

Critical phenomena have also given new material to the study of cosmic censorship.

There are self-similar spacetimes (spherically symmetric, except for one axisymmetric

example) with a naked singularity that have an infinity of decaying linear perturbation

modes opposed to only one increasing perturbation mode. This still implies cosmic cen-

sorship in the sense that a generic perturbation, which will contain some small fraction

of that unstable mode, destroys the naked singularity (either by forming a horizon or by

avoiding a singularity altogether, depending on the sign of the mode amplitude). But we

are very close to a violation, in that we only have to set one mode out of an infinity of

modes to zero to get the naked singularity. A single generic parameter in the initial data

provides a sufficient handle to do this. (In the notation above, we only have to set the

one amplitude C1 equal to zero, and if C1 depends in some way on p, we can do this by

adjusting p.) Therefore by arbitrary fine-tuning of one generic parameter in the initial
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data one can obtain asymptotically flat spacetimes in which a region of arbitrarily large

curvature is visible to an observer at infinity.

There are a number of important open questions. Are there additional unstable per-

turbations of the critical solution among the non-spherical modes? Are there critical

solutions in axisymmetry, or even lower symmetry? Is DSS more generic than CSS? How

do the charge and angular momentum of the black hole scale as one fine-tunes initial data

with charge and angular momentum, with the aim of making a black hole of infinitesimal

mass (and not caring about charge and angular momentum)? Is there a preferred flow

on superspace which would complete the analogy with the renormalisation group flow

in statistical mechanics? Is there even statistical physics hidden somewhere? (Very, very

unlikely, but who would have thought it of black holes pre-1974?) Can someone give an

existence proof for the critical solutions, which so far have only been constructed numer-

ically? Can one prove that they must have the limited differentiability (metric C1 etc.)

at the Cauchy horizon which I have described, not more or less?
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