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Abstract. The most elegant definition of singularities in general relativity as b-boundary
points, when applied to the closed Friedman world model, leads to the disastrous situation: both
the initial and final singularities form the single point of the b-boundary which is not Hausdorff
separated from the rest of space-time. We apply Alain Connes’ method of non-commutative
geometry, defined in terms of a C∗-algebra, to this case. It turns out that both the initial
and final singularities can be analysed as representations of the C∗-algebra in a Hilbert space.
The method does not distinguish points in space-time, but identifies space slices of the closed
Friedman model as states of the corresponding C∗-algebra.

1. Introduction. There is growing both observational and theoretical evidence that

the Universe in its history went through a superdense phase commonly called Big Bang.

According to classical theorems on the existence of singularities (see [7]), in the Big

Bang the histories of all non-zero rest-mass particles and photons broke down (or rather

suddenly appeared out of non-existence). In the nowadays prevalent view, such a disaster

will be prevented by the future theory of quantum gravity. This theory will, when finally

discovered, violate at least one of the conditions (probably the one called the energy

condition) of the singularity theorems, and in this way free relativistic physics from the

nightmare of singularities. However, there are at least two major reasons for further inve-

stigating classical singularities. First, because they constitute a very interesting and rich
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in consequences study case for differential geometers and, second, because such studies

could suggest fruitful ideas in our search for the correct theory of quantum gravity. The

present paper is motivated by both these reasons.

Till now, all attempts to mathematically describe the structure of strong curvature

singularities, such as the initial and final singularities in the closed Friedman world model,

failed, and one had to use rather heuristic criteria (timelike or null geodesic incomplete-

ness) to prove the existence of singularities in some more general situations. Moreover,

it has turned out that the best available definition of singularities as points of the b-

boundary of space-time [20], when applied to the closed Friedman world model leads to

the disastrous situation: both the initial and final singularities form the single point of

the b-boundary which is not Hausdorff separated from the rest of space-time [2], [13].

To deal with similar situations Alain Connes [4] has developed the theory of non-

commutative geometry. The aim of the present paper is to apply this method to the

closed Friedman model with its singularities (understood as the b-boundary) and to

study the structure of these singularities. Although the work is at its preliminary phase,

the results seem to be interesting.

The organization of our material is the following. In section 2, we briefly summarize

Schmidt’s construction of the space-time b-boundary and discuss difficulties in which it is

involved. In section 3, we demonstrate how the ordinary smooth manifold can be presented

as a non-commutative space. This will give us a pedagogical introduction to some ideas of

non-commutative geometry and prepare a method which, after a suitable generalization,

will be applied, in section 4, to the closed Friedman model with its singularities.

2. Singular space-times. Let us briefly summarize Schmidt’s construction [20] of

the b-boundary of space-time. Let M be a smooth space-time manifold carrying a Lorentz

metric, and OM the connected component of the orthonormal frame bundle over M ,

π : OM → M . Levi-Civita connection in M determines the family of Riemann (positive

definite) metrics on OM ; all metrics belonging to this family are uniformly equivalent.

We choose one of them, by using it we define the distance function ρ on M , and construct,

in the usual way, the Cauchy completion OM of OM . Let us notice that the construction

of the Cauchy boundary ∂COM := OM \OM does not depend on the particular choice of

the Riemann metric on OM (from the above mentioned family of metrics). The Lorentz

group SO(3, 1) acts on OM on the right, and since it maps Cauchy sequences into Cauchy

sequences one can uniquely extend the action of SO(3, 1) to OM . The quotient space

M̄ := OM/SO(3, 1) is called the b-completion of space-time M , and ∂bM := M̄ \M the

b-boundary of M . M is open and dense in M̄ .

The distance function ρ on OM can be naturally extended to OM . If p = {pn} and

q = {qn} are Cauchy sequences in OM , the distance ρ̄(p, q) between p and q, p, q ∈
∂COM , is defined as limn→∞ ρ(pn, qn). The distance function ρ̄ defines the topology on

OM . Since it is the metric topology it is always Hausdorff. The extended projection

π̄ : OM → M̄ , assigning points in OM to their equivalence classes under the action of

SO(3, 1) (or identifying points in M̄ with the orbits of SO(3, 1)), induces topology on

M̄ from that on OM . However the induced topology need not be metric (since ρ̄ is not



SINGULARITIES IN FRIEDMAN’S COSMOLOGY 155

invariant under the action of SO(3, 1)). This is the source of a non-Hausdorff behaviour

in some cases.

Let us notice the strategy underlying this construction. Singularities do not belong

to space-time but only to its boundary. However, the singularities are accessible to the

investigation from the inside of space-time (i. e., they are defined entirely in terms of

space-time domains). This nicely corresponds to the current cosmological practice which

tries to reconstruct the structure of the beginning from the later history of the Universe,

but from the geometric point of view one would perhaps prefer to deal with space-time

together with its singularities regarded as a single object.

Schmidt’s construction is very elegant, but to compute b-boundaries for particular ca-

ses turned out to be a difficult task. In the original Schmidt’s paper only rather toy-models

were computed, and in these cases the construction worked well. In 1976 Bosshard [2] and

in 1977 Johnson [13] succeeded to show that in the closed Friedman model the initial and

final singularities form the single point of the b-boundary, and that the topology of the

b-completed space-times of both closed Friedman solution and Schwarzshild solution is

not Hausdorff. This discovery practically eliminated Schmidt’s construction as a working

definition of singularities.

In our previous works [12], [19], [9], we have elucidated the nature of difficulties in

which Schmidt’s construction is involved. Let us briefly discuss this problem.

In 1960 Koszul [14] developed an algebraic approach to differential geometry in terms

of a (commutative) associative algebra C and C-modules. In the case of a smooth manifold

M , C is the algebra of smooth functions on M , and C-modules are spaces of smooth

sections of smooth vector bundles over M. Subsequently, many authors tried various

modifications of this approach (for review see [8]). The general idea was to consider any

algebra of functions (perhaps with some additional conditions) as smooth functions from

definition, and accordingly develop differential geometry. In this spirit, we have recently

developed the theory of structured spaces and applied it to investigate b-completed space-

times [11].

By a structured space we understand the pair (M, C), where M is a topological space

and C a sheaf of algebras of real functions on M such that for any open set U ⊂M and

any functions ω ∈ R, f1, . . . , fn ∈ C(U), for any n ∈ N, one has ω ◦ (f1, . . . , fn) ∈ C(U).

It is a strong generalization of the usual manifold concept, and it works well when it is

applied to space-times with various types of singularities [18], [6], [11]. Let us suppose that

(M, C) is a structured space equivalent to the space-time manifold of the closed Friedman

world model. We have proved that there exists the unique differential structure C̄ which is

a prolongation of C to the b-completed space-time M̄ (i.e., such that C̄|M = C), and that

C̄ consists only of constant functions on M̄ [9], [11]. The topology on M̄ , as defined by the

family of constant functions, is evidently non-Hausdorff. Moreover, since the derivations

of constant functions vanish the “bundle length” of any curve joining the initial and final

singularities is zero, and consequently both these singularities form the same point of

the b-boundary. We have also shown that such situations occur always when the fiber

π̄−1(x0) over the singular point x0 ∈ ∂bM degenerates to the single point [9], [10]. We call

such singularities malicious singularities. The central Schwarzschild singularity belongs

to this type.
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Let M̄ be a space-time with a malicious singularity. Since the differential structure C
is a sheaf of function algebras we can always work with C(U), where U is open subset of

M , or even with C(M) (since M is open in M̄), without any problems, but we cannot

extend our geometric structures to M̄ because then the topological problems begin. In

this sense, malicious singularities remain non-accessible. To deal with them we need

further generalization of geometry. It is provided by changing from commutative to non-

commutative algebras.

3. Non-commutative geometry: a simple example. As is well known, any to-

pological manifold M can be reconstructed by suitably gluing together open subsets of

some number of copies of Euclidean spaces, but for simplicity let us assume that M is

compact. Let N be a disjoint union of such open subsets, N =
⋃
Uj . We define the

equivalence relation R ⊂ N ×N in the following way: for x, y ∈ N, xRx iff p(x) = p(y)

where p : N → M is a suitably defined surjection.1 Then M = N/R (for details see [1,

p. 31]).

Now, following Connes [4, p. 86], let us define the graph of the above equivalence

relation

R = {(x, y) ∈ N ×N : xRy}
and endow it with the local compact topology. Let further C0(R) be the vector space of

continuous functions on R vanishing at infinity. It is easy to show that C0(R) with the

operations of convolution and involution defined in the following way

(f ∗ g)(x, z) =
∑

xRyRz

f(x, y)g(y, z),

f∗(x, y) = f(x, y),

is a C∗-algebra which we shall denote by C∗(R).

It can be shown [4, pp. 87 and 153] that the algebra C∗(R) coincides with the C∗-

algebra of compact endomorphisms of the continuous field of Hilbert spaces (Hx)x∈M over

M , where Hx = l2(p−1(x)) for every x ∈M . As is well known, any topological manifold

M can be defined in terms of the commutative algebra C(M) of continuous (complex)

functions on M (this definition is equivalent to the one in terms of local maps). We

thus have two descriptions of the same manifold: (i) in terms of the non-commutative

C∗-algebra C∗(R), and (ii) in terms of the commutative C∗-algebra C(M). These two

algebras are strongly Morita equivalent: C∗(R) ' C(M). (Let us remind that strong

Morita equivalence plays the role of an isomorphism for C∗-algebras; two strongly Morita

equivalent commutative algebras are isomorphic in the usual sense; see [4, pp. 152-159],

[15, pp. 140-141].) The main difference between these two descriptions is that the algebra

C(M) distinguishes points of M , whereas the algebra C∗(R) does not. Information about

points is somehow encoded in the family of Hilbert spaces (Hx)x∈M which is parametrized

by points of M . But both these algebras lead to the same topological invariants, in

particular to the same K-theory. The main advantage of the approach in terms of the

1In other words, xRy iff there exist coordinate maps φi : Ui → Rn and φj : Uj → Rn, such

that Ui ∩ Uj 6= ∅, and x = (φi ◦ φ−1
j )(y).
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C∗-algebra C∗(R) is that in strongly singular situations, when the traditional approach

fails, it remains valid. In such situations one could truly speak of the desingularization

method with the help of a C∗-algebra. The above simple example illustrates the main

features of this method. The essential points are: 1) To change from the space N/R to a

suitably organized subset R of N ×N ; we shall call it “pairing process”. In our case N/R

was a manifold, but the fact that it was given as a quotient set suggests that, in general,

this space might have some pathologies. 2) To define a suitable C∗-algebra on R. 3) To

extract information on N/R from this C∗-algebra. In the next section we shall use this

approach to study space-time with malicious singularities.

4. Desingularization procedure. Let us start with a space-time M̄=OM/SO(3, 1)

with one or more malicious singularities understood as b-boundary points. For the sake

of concreteness we could think about the closed Friedman world model with its initial

and final singularities.

To perform the “pairing process” let us notice that since the structure group SO(3, 1)

acts along fibres on the right, the transformation from a frame p to a frame q (both

frames in the same fibre) can be presented as a pair γ := (p, pg), where q = pg, and a

single frame as the pair (p, pe) where e is the unit of SO(3, 1). One can regard (p, pg) as

an arrow beginning at p and ending at pg, and (p, pe) as a loop at p. We shall treat these

pairs or arrows as “elementary units” of our construction. We can also write simply (p, g)

and (p, e), respectively.

Now, we define two sets

G = OM × SO(3, 1), G(0) = OM × {e} = {(p, e) : p ∈ M̄}

(notation is the same as in section 2; a frame in a singular fibre should be understood as

a limit of equivalence class of Cauchy sequences) and two mappings

r, s : G→ G(0)

such that r(p, g) = p and s(p, g) = pg. Now, we can introduce the composition of pairs

◦ : G(2) → G

by

(p, g1)(q, g2) = (p, g1g2)

where

G(2) := {(γ1, γ2) ∈ OM ×OM : s(γ1) = r(γ2)}

= {((p, g1), (q, g2)) : pg1 = q}.
We have also the inverse (p, g)−1 of (p, g) which is equal to (pg, g−1).

It is straightforward to verify that in this way we have defined a groupoid structure

on G = OM ×SO(3, 1). This groupoid will be called the groupoid of orthonormal frames

over M̄ .2

2This construction is quite general. In fact, the construction of the preceding section could

also be carried out in terms of a groupoid: graph of any equivalence relation can be given the

groupoid structure (see [17, p. 7]).
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The groupoid G of orthonormal frames over M is smooth as a structured space: the

differential structure on OM can be pulled back from the Euclidean space into which

OM is embedded and SO(3, 1) itself carries a smooth manifold structure.

In the following, two sets will be important: the set of arrows which begin at p ∈ OM ,

Gp = {(p, g) : g ∈ SO(3, 1)},

and the set of arrows which end at q,

Gq = {(qg−1, q) : g ∈ SO(3, 1)}.

It is easy to see that both these sets have the structure of the smooth group manifold

SO(3, 1), and that this structure is preserved even if p and q are in the fibre over a

malicious singularity. This is an important step in the desingularization procedure.

To define a suitable C∗-algebra we shall strictly follow Connes’ method [4, pp. 99-102].

We construct the line bundle τ : Ω1/2 → Ḡ over the groupoid of orthonormal frames,

where

Ω1/2 =
⋃
γ∈G

Ω
1/2
γ

and Ω
1/2
γ is the set of mappings

Ω
1/2
γ = {ρ :

∧
k Tγ(Gp)⊗

∧
k Tγ(Gq)→ C :

ρ(λν) = |λ|1/2ρ(ν), λ ∈ R, ν ∈
∧

k Tγ(Gp)⊗
∧

k Tγ(Gq)}

for γ = (p, pg), dim(Gp) = dim(Gq) = 6. It can be shown that this line bundle is trivial

Ω1/2 = G× Ω̃1/2 where

Ω̃1/2 = {ρ :
∧

6 o(3, 1)⊗
∧

6o(3, 1)→ C}

By so(3, 1) we have denoted the Lie algebra of the Lie group SO(3, 1). To show that it

is indeed a trivial bundle we define the bijection F : Ω1/2 → Ḡ× Ω̃1/2 by F (ρ) = (γ, ρ̂),

where

ρ̂ :
∧

k o(3, 1)⊗
∧

k o(3, 1)→ C

is defined by

ρ̂(u1 ∧ . . . ∧ uk ⊗ v1 ∧ . . . ∧ vk) =

= ρ(ιp∗u1 ∧ . . . ∧ ιp∗uk ⊗ ιq∗v1 ∧ . . . ∧ ιq∗vk),

and the mappings

ιp : O(3, 1)→ {p} ×O(3, 1) = Gp,

ιq : O(3, 1)→ {qg−1} ×O(3, 1) = Gq

are given by

ιp(h) = (p, hg),

ιq(h) = (qg−1, hg),

with h ∈ O(3, 1); the last two equalities define diffeomorphisms between manifolds. This

trivial structure of the line bundle is preserved at singularities (even if they are malicious).
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To define the required C∗-algebra we first change the space of smooth compactly

supported cross-sections C∞c (Ḡ,Ω1/2) of the line bundle τ : Ω1/2 → Ḡ into an involutive

algebra by defining the convolution (as multiplication in the algebra)

(s ∗ t)(γ) =

∫
Gp

s(γ1)t(γ2)

where s, t ∈ C∞c (Ḡ,Ω1/2), γ = (p, g), γ = γ1 ◦ γ2, and the involution s 7→ s∗ as s∗(γ) =

s(γ−1).

The final step consists in proving [3], [17] that for each q ∈ G(0) the expression

(πq(s)ξ)γ =

∫
Gq

s(γ1)ξ(γ−11 γ),

where γ ∈ Gq, ξ ∈ L2(Gq), s ∈ C∞c (Ḡ,Ω1/2), defines an involutive non-degenerate repre-

sentation

πq : C∞c (Ḡ,Ω1/2)→ EndL2(Gq)

of C∞c (Ḡ,Ω1/2) in the Hilbert space L2(Gq) of the square integrable functions on the

group manifold Gq. The completion of C∞c (Ḡ,Ω1/2) with respect to the norm

‖s‖ = supq∈G(0)‖πq(s)‖

is a C∗-algebra. We shall denote it by C∗(OM). This algebra contains information about

space-time with singularities. Our next task is to decipher this information.

5. Discussion. The algebra C∗(OM) is a non-commutative algebra, and it does

not identify points. Space-time with malicious singularities is non-Hausdorff and can be

treated only globally. If we want to recover points (and their neighborhoods) we must

change to a commutative (functional) algebra over the regular (non-singular) part of

space-time but then, of course, we loose information about singularities.

Let us denote C∗(OM) by A, and let A∗ be the dual of A, i.e., the space of continuous

linear functionals on A with the norm

‖ω‖ = supa∈A{|ω(a)| : ‖a‖ ≤ 1}

for every ω ∈ A∗. Each positive ω (i.e., such that ω(aa∗) ≥ 0 for all a ∈ A) with the unit

norm is called a state. The set of all states is convex; the extremal elements of this set

are called pure states, the remaining ones – mixed states (for precise definitions see [5],

[16]). In the case of the commutative algebra A = C0(V ) of continuous functions on a

compact space V , the states are equivalent to a probability measure on V , and one can

write

ωµ(f) =

∫
fdµ,

for f ∈ C0(V ). It can be shown that a state ω is a pure state if and only if it is equivalent

to the Dirac measure concentrated on a point x ∈ V ; in such a case ωx(f) = f(x) (see

[15, p. 70]. In other words, the pure states form the space of characters of the algebra

A, i.e., the space of *-homomorphisms ω : A → C. It is clear that pure states can be

identified with points of V , and the algebra A can be regarded as an algebra of functions

defined on the space of characters.
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Let now A be the non-commutative algebra C∗(OM) and W ⊂ A∗ the space of its

pure states. Being non-commutative A cannot be isomorphic to the algebra C0(W ) but,

in fact, there is an embedding of A = C∗(OM) (considered as a vector space) into C0(W ),

C∗(OM)→ C0(W )

given by s 7→ fs where fs(ω) = ω(s), (see [15, p. 73]). We may regard pure states of a

non-commutative algebra as generalizations of the usual concept of point.

If A is a non-commutative C∗-algebra, π its representation in the Hilbert space H,

and ξ ∈ H, then a 7→ (π(a)ξ, ξ), a ∈ A, is a positive form on A. This form is a pure state

if and only if π is a non-zero irreducible representation of A in H (see [5]).

Let π1 and π2 be two representations of an involutive algebra A in two Hilbert spaces

H1 and H2, respectively. π1 and π2 are said to be equivalent representations of A if there

is an isomorphism between H1 and H2 such that π1(a) = π2(a) up to isomorphism for

every a ∈ A.

Putting the above considerations together we can conclude that pure states or, inter-

changeably, equivalence classes of irreducible representations of A, can be thought of as

non-commutative generalizations of points.

For the sake of concreteness let us focus on the case of the closed Friedman model

with the initial and final singularities, remembering that our analysis will be valid, mu-

tatis mutandis, for other space-times with malicious singularities. The space-time of this

model with its b-boundary can be investigated as a single object. The initial and final

singularities are two distinct structures given by two representations (strictly speaking

by two equivalence classes, each consisting of only one element)

πpi : C∞c (Ḡ,Ω1/2)→ EndL2(Gpi),

i = 1, 2, where p1 is the single “limit frame” in the singular fibre over the initial singularity,

and p2 is the single “limit frame” in the singular fibre over the final singularity. Corre-

spondingly, the two singularities are given by two states (positive forms on C∗(OM)),

s 7→ (πpiξ, ξ), s ∈ C∗(OM), ξ ∈ L2(Gpi), i = 1, 2.

If we construct the C∗-algebra C∗(OM) for the space-time of the closed Friedman

model without its b-boundary, we must recover the ordinary geometry of this space-time.

In fact, it turns out that, in this case, the C∗-algebra is strongly Morita equivalent to the

commutative algebra C(M) of continuous complex functions on M .

As strongly Morita equivalent both algebras C∗(OM) and C(M) have the same

space of equivalence classes of irreducible representations, but in the case of C∗(OM)

they cannot be identified with points of M . However, even in this case they convey an

interesting information. For instance, it can be easily seen that the space of equivalence

classes of representations πq : C∗(OM) → EndL2(G2), i.e., the space of states for the

closed Friedman model, coincides with the space of space sections t = const. Indeed,

because of the maximal symmetry of such constant time sections it is easy to show that

two Hilbert spaces L2(Gp) and L2(Gq), where pr(p) = x, pr(q) = y, such that x and

y belong to the same space section, and pr is the usual projection from OM to M , are

isomorphic, and that this isomorphism induces the transformation of πp(s) into πq(s) for

every s ∈ C∗(OM). It is a nice result since, as is well known, the set of space sections is
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strictly connected with the space of 3-geometries which serves as the space of states in

the canonical quantization of gravity.

Finally, it is interesting to notice that classical singularities in the non-commutative

approach seem to know that in the extreme conditions of shrinking mathematical struc-

tures familiar from quantum mechanics (algebra of operators on a Hilbert space) give

better results than the traditional tools of differential geometry. Is here any lesson which

we could learn for our search of the correct theory of quantum gravity? – it remains to

be seen.
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