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Śniadeckich 8, 00-950 Warszawa, Poland

E-mail: krolak@impan.impan.gov.pl

Abstract. The occurrence and nature of the central naked singularity in aspherical Szekeres
models is investigated here, and the strength of the singularity is discussed. The implications for
the cosmic censorship hypothesis are considered.

1. Introduction. Several gravitational collapse scenarios exist where the final fate of

collapse, ensuing from a regular initial data, is a naked singularity. The important ques-

tion then is the genericity and stability of such singularities. If the initial data subspace,

which gives rise to the naked singularity as the end state of collapse, has zero measure

in some suitable sense in the set of all initial data, then one may still be able to refor-

mulate the censorship hypothesis in some way. This could be based on a criterion that

naked singularities could form in collapse but they may be non-generic in some sense. An

investigation of this nature is important because the assumption of censorship is crucial

to most of the important results in black hole physics. In fact, when one considers the

gravitational collapse in a generic situation, the very existence of black holes requires this

hypothesis.

Towards such a purpose, it would be useful to investigate if the naked singularities

still persist when one relaxes the assumption of spherical symmetry. Next question wo-

uld be regarding the strength of such singularities. It was supposed by Tipler [1], and

independently by Królak [2, 3] that all generic singularities are of strong curvature type.
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Explicit examples of naked strong curvature singularities in Królak’s sense ([4, 5, 6]) and

in Tipler’s sense ([7, 8, 9]) are known in the Tolman-Bondi-Lemâıtre (TBL) space-times,

which represent spherically symmetric inhomogeneous collapse of dust, and in Vaidya

radiation collapse. The TBL space-times are special in that they are spherically sym-

metric and they have matter in the form of irrotational pressureless dust. We need to

know whether naked strong curvature singularities occur in more general space-time

situations.

In this contribution we discuss a recent result [10] which shows that naked strong

curvature singularities occur in aspherical Szekeres models that do not have any Killing

vectors. This shows naked singularities do not arise as a result of spherical symmetry.

These models are generalizations of the TBL space-times. It is seen that they admit naked

singularities that satisfy both the limiting focusing condition and the strong limiting

focusing condition, and hence are strong both in the sense of Królak and Tipler.

2. Central singularity in TBL models. In order to decipher the outcome of con-

tinual gravitational collapse of a massive cloud, in terms of either a black hole or a naked

singularity, we first consider briefly the TBL model which gives an idea of the basic

method used here. The metric in this case is given by

ds2 = −dt2 +
R′2

1 + f
dr2 +R2(dθ2 + sin2θ dφ2), (1)

T ij = εδitδ
j
t , ε = ε(t, r) =

F ′

R2R′
, Ṙ2 =

F

R
+ f, (2)

where T ij is the stress-energy tensor, ε is the energy density, and R is a function of t and

r. Here the dot and prime denote partial derivatives with respect to parameters t and

r respectively. As we are considering collapse, we require Ṙ(t, r) < 0. The quantities F

and f are arbitrary functions of r and 4πR2(t, r) is the proper area of the mass shells

which goes to zero when R(t, r) = 0. The apparent horizon in the interior dust ball lies

at R = F (r).

With the integration of equation for Ṙ above, we have in all three arbitrary functions of

r, namely f(r), F (r), and t0(r); where the last one indicates the time along the singularity

curve. Using the coordinate freedom left in the choice of scaling of r (R(0, r) = r), the

number of arbitrary functions reduces to two and the free functions are now f and F . The

time t = t0(r) corresponds to the shell-focusing singularity R = 0. The singularity curve

t = t0(r) corresponds to the time when the matter shells meet the physical singularity.

The function f(r) classifies the space-time as bound, marginally bound, or unbound,

depending on the range of its values which are f(r) < 0, f(r) = 0, f(r) > 0, respectively.

The function F (r) is interpreted as the weighted mass within the dust ball of coordinate

radius r. Weak energy condition, TijV
iV j ≥ 0 is assumed for all non-spacelike vectors

V i which implies the density (ε ≥ 0) everywhere.

We call the singularity to be central singularity if it occurs at r = 0. Partial derivatives

R′ and Ṙ′ can be written as(
∂R(t, r)

∂r

)
t=const.

= R′ = (η − β)P −
[

1 + β − η√
λ+ f

+ (η − 3
2β) tr

]
Ṙ, (3)
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∂R′(t, r)

∂t

)
r=const.

=
β

2r
Ṙ+

λ

2rP 2

[
1 + β − η√
λ+ f

+ (η − 3
2β) tr

]
, (4)

where we have used the notation, R(t, r) = rP (t, r), η = rF ′/F, β = rf ′/f, F (r) = rλ(r).

To focus the discussion, we restrict to functions f(r) and λ(r) which are analytic at r = 0

such that λ(0) 6= 0.

The tangents Kr = dr/dk and Kt = dt/dk to the outgoing radial null geodesics, with

k as the affine parameter, satisfy

dKt

dk
+

Ṙ′√
1 + f

= 0,
dt

dr
=
Kt

Kr
=

R′√
1 + f

(5)

Now the task is to examine the nature of the singularity at R = 0. In particular, the

problem of nakedness or otherwise of the singularity can be reduced to the existence

of real, positive roots of an algebraic equation, constructed out of the free functions F

and f , and their derivatives [7], which constitute the initial data for the problem. Our

purpose is to find whether these geodesics terminate in the past at the central singularity

r = 0, t = t0(0). The exact nature of this singularity t = 0, r = 0 could be analyzed by

the limiting value of X ≡ t/r at t = 0, r = 0. If the geodesics meet the singularity with

a definite value of tangent then using l’Hospital rule we get

X0 = lim
t→0,r→0

t

r
= lim
t→0,r→0

dt

dr
= lim
t=0,r=0

R′√
1 + f

(6)

where the notation is, λ0 = λ(0), β0 = β(0), f0 = f(0) and Q = Q(X) = P (X, 0). Using

the expression for R′, the above can be written as V (X0) = 0, where

V (X) ≡ (1− β0)Q+

(
β0√

λ0 + f0

+ (1− 3

2
β0)X

)√
λ0

Q
+ f0 −X

√
1 + f0 (7)

Hence if the equation V (X) = 0 has a real positive root, the singularity could be naked. In

order to be the end point of null geodesics, at least one real positive value X = X0 should

satisfy the above equation. Clearly, if no real positive root of the above exists, then the

singularity t = 0, r = 0 is not naked. Suppose now X = X0 is a simple root to V (X) = 0.

To determine whether X0 is realized as a tangent along any outgoing singular geodesics to

give a naked singularity, one can integrate the equation of the radial null geodesics in the

form r = r(X). It is then seen that there is always at least one null geodesic terminating

in the past at the singularity t = 0, r = 0, with X = X0. In addition, there would be

infinitely many integral curves as well, depending on the values of the parameters involved,

that terminate at the singularity in the past. It is thus seen [7] that the existence of a

real positive root of the equation V (X) = 0 is the necessary and sufficient condition for

the singularity to be naked. Finally, to determine the curvature strength of the naked

singularity at t = 0, r = 0, one may analyze the quantity k2RabK
aKb near the singularity,

and it is seen that the strong curvature condition is satisfied in that the above quantity

remains finite in the limit of approach to the singularity.

3. Central singularity in Szekeres models. We now discuss the application of

such a method to the Szekeres models. The Szekeres space-time [11] is a solution of

Einstein’s equations representing irrotational dust, Gab = Tab = ρuaub, uau
a = 1,
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(c = 8πG = 1). The metric has the diagonal form,

ds2 = dt2 −X2dr2 − Y 2(dx2 + dy2), (8)

where (r, x, y) are comoving spatial coordinates. The solution is given by (we consider

the case Y ′ = ∂Y
∂r 6= 0)

Y =
R(t, r)

P (r, x, y)
, X =

P (r, x, y)Y ′(t, r)√
1 + f(r)

. (9)

Here f(r) > −1, and P = a(r)(x2 +y2)+2b1(r)x+2b2(r)y+c(r), with ac−b21−b22 = 1/4.

We get Ṙ2 = f + F (r)/R, where F (r) is an arbitrary function of r, and the dot denotes

partial derivative with respect to the time coordinate t.

The regularity conditions assumed are, the metric is everywhere C1, locally Euclidian

at r = 0 (so f(0) = 0), and Ro(r) = R(r, 0) be a monotonically increasing function of

r . Then P must be everywhere non-zero, and its derivative with respect to r must be

continuous and vanishing at r = 0. We can then use the freedom in the choice of the

radial coordinate r to obtain Ro(r) = r on the initial time slice. The dust density ρ is

given by

ρ =
PF ′ − 3FP ′

P 2R2Y ′
. (10)

Although for P > 0 the surfaces r = const, t = const are spheres, the solution is not

spherically symmetric. This is because the spheres are not concentric, their centers being

given by (−a−1b1,−a−1b2). Szekeres analyzed the singularities, and their causal structure

in his space-times. When R = 0, the singularity is of the first kind, and when Y ′ = 0 the

singularity is of the second kind. The singularities of the second kind are familiar shell-

crossing singularities that also occur in TBL space-times [12]. Like in TBL space-times,

shell-crossing singularities in Szekeres spaces can also be both locally and globally naked

[11]. However, they are generally believed to be mild and we shall not consider them here.

We eliminate these singularities by imposing a regularity condition Y ′ > 0. Szekeres has

also shown that whenever r > 0, the shell of dust always crosses the apparent horizon

before collapsing to singularity. Therefore, for r > 0, the singularity cannot be naked.

It follows that the singularity of the first kind can be naked only when r = 0, which

is the central singularity. This is analogous to the TBL case. We see that like in TBL

space-times, the strong curvature naked singularities do occur in Szekeres space-times.

For the case of gravitational collapse, we have Ṙ < 0. For simplicity, we consider the case

of marginally bound collapse, that is, f(r) = 0. Then the function R(r, t) is given by

R = r

(
1− 3

2

√
F

r3
t

)2/3

. (11)

Following an analysis similar to the TBL case discussed above, the structure of the central

singularity can now be analyzed [10]. If the outgoing null geodesics are to terminate in

the past at the central singularity r = 0 at time t = to, when R(to, 0) = 0, then along

such trajectories we have R→ 0 as r → 0. The following is satisfied along null geodesics:

dR

du
=

(
1−

√
Λ

X

)
H(X,u)

α
+

√
XΛ

α
L ≡ U(X,u), (12)
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where u = rα, X = R/rα, η = rF ′/F,Λ = F/rα,Θ = (1−η/3)/r3(α−1)/2,L = rP ′/P and

H = ηX
3 + Θ√

X
. The unique value of the constant α ≥ 1 is determined by the condition

that Θ/
√
X does not vanish, or go to infinity identically, as r → 0 in the limit of approach

to the central singularity along any X = const. direction. We assume the above functions

are at least C2.

Let us consider the limit Xo of the function X along the null geodesics terminating

at the singularity at R = 0, u = 0. Using the l’Hospital rule we get

Xo = lim
R→0,u→0

R

u
= lim
R→0,u→0

dR

du
= lim
R→0,u→0

U(X,u) = U(Xo, 0) (13)

The necessary condition for the existence of a null geodesic outgoing from the central

singularity is the existence of a positive real root Xo of the equation V (X) ≡ U(X, 0)−
X = 0. By our regularity conditions we have that limr→0 L = 0. Consequently, the

necessary condition for the existence of the naked singularity in the marginally bound

case of Szekeres space-times is the existence of real positive roots of the equation(
1 +

√
Λo
X

)
H(X, 0)

α
−X = 0, (14)

where we have put ηo = η(0),Λo = Λ(0),Θo = Θ(0). This is the same equation as in

the marginally bound TBL case [7]. Hence, the same analysis as in the TBL case applies

here. We shall only summarize here the results. To show that the singularity is naked we

still need to prove that there exists a solution of the geodesic equations such that the

tangent Xo is realized at the singularity. One can prove that there is always at least a

single null geodesic outgoing from the central singularity ([7] p.5363). Thus, the existence

of a real and positive root of the equation above is both necessary and sufficient condition

for the existence of a naked singularity. Finally, the strength of this singularity can be

investigated, and it is seen that the central singularity considered here is strong, both in

the sense of Królak as well as Tipler [10].

The assumption of vanishing pressures here, which could be important in the final

stages of the collapse, may be considered as the limitation of dust models. On the other

hand, it is also sometimes argued that in the final stages of collapse, the dust equation

of state could be relevant as at higher and higher densities the matter may behave more

and more like dust. Further, if there are no large negative pressures (as implied by the

validity of the energy conditions), then the pressure also might contribute gravitationally

in a positive manner to the effect of dust, and may not alter the conclusions.
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