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Abstract. We present a stable class of spacetimes which satisfy the conditions of the singu-

larity theorem of Hawking & Penrose (1970), and which contain naked singularities. This offers

counterexamples to a geometric version of the strong cosmic censorship hypothesis.

1. Introduction. One of the outstanding pursuits in relativity is to understand the

nature of singularities. Evidence for the existence of regions with diverging curvature is

supported by two classes of results.

1. The incompleteness theorems of Penrose, Hawking and others established the exi-

stence of inextensible, incomplete causal geodesics in physically realistic spacetimes (Haw-

king & Ellis 1973, Beem & Ehrlich 1981). These theorems can be applied to spacetimes

resembling our universe on a cosmological scale or to those spacetimes containing dense,

compact objects which are modelled by the existence of closed trapped surfaces. The

most natural physical explanation is that curvature singularities develop in spacetime,

thus preventing some of the causal geodesics from being complete. Mathematically howe-

ver, the incompleteness theorems do not contain much information about the character

of these singularities. In fact, as the Taub-Nut-spacetime exemplifies, it is possible for a

locally completely regular region of spacetime to contain inextensible, incomplete causal

geodesics.

2. Many exact solutions have regions of diverging curvature which contain incomplete,

inextensible timelike geodesics. These exact solutions have high symmetry groups and it

is not known to what extent they represent the generic case.

While the incompleteness theorems indicate the existence of singularities, it is the

exact solutions which give us an idea of what they should look like. In particular, a

survey of exact solutions indicates that in general, singularities which form in our future
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are black holes rather than naked singularities. In the absence of other data this reasoning

is highly plausible, but it is by no means clear how accurately our models represent generic

singularities.

The nature of singularities, and especially the question of whether they are naked or

resemble black holes, is essential for questions concerning the global predictability of the

future from initial data. With the exception of the big bang, if all other singularities are

(locally invisible) black holes, then they cannot influence the future of a partial Cauchy

surface. On the other hand, if naked singularities exist, one would have to provide ad-

ditional (singular) initial data at these singularities.1 Therefore their future would not

be predictable using the regular initial data for a partial Cauchy surface located in their

past. In part, this motivates the strong cosmic censorship hypothesis which is generally

considered to be one of the most important problems in relativity. Penrose conjectured

that for “physically realistic matter models” spacetime metrics which fail to be globally

hyperbolic are “unstable”. Unfortunately, neither the requirement of a “physically real-

istic matter model” nor the notion of “stability” are well defined. Two broad schools of

thought exist on the approach to strong cosmic censorship. In the pde-based approach

a “physically realistic matter model” (such as vacuum) is specified. pde-based strong

cosmic censorship holds if for “almost all” initial data sets given at a partial Cauchy

surface, the maximal globally hyperbolic solution of Einstein’s equation is in fact locally

inextensible. The alternative is a geometric approach in which certain energy, causality,

and additional geometric conditions are imposed. Geometric strong cosmic censorship

holds if “almost all” such inextensible spacetimes are globally hyperbolic. In this case

one may also impose further conditions to guarantee that the singularities considered are

due to incompleteness theorems.

The pde-based approach has the advantage that the Whitney Ck- and Sobolev topolo-

gies are reasonable for the initial data sets of a given spacelike hypersurface. It is however

not realistic that any general theorem along these lines can be proven in the near future.

Even proving the stability of Minkowski spacetime is highly complicated (Christodoulou

& Klainerman 1992). Further the requirement of a fixed matter model is restrictive to a

non-generic class of spacetimes. Hence even if stability has been proven with respect to

some matter model it is not clear that “perturbed” matter models will have the same

qualitative properties. In this paper, we will therefore investigate a geometric version of

the cosmic censorship hypothesis. The aim is to present stable counterexamples to strong

cosmic censorship.

Let Lor(M) be the space of Lorentzian metrics on M and fix a topology τ for Lor(M)

which will be used to express the stability of examples. (Later we will specify several

topologies τ for Lor(M).) Since the incompleteness theorems are the main reason for

expecting the existence of singularities, only those singularities predicted by these the-

1In the simplest case, the additional data could simply consist of stipulating that the sin-

gularity does not eject matter qualitatively different from the matter anticipated at the partial

Cauchy surface. For instance, in (Kriele 1996) we have shown that the Cauchy problem for

hypersurface-orthogonal (2+1)-dimensional dust spacetimes is well posed even though timelike

singularities develop.
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Figure 1: An example where strong cosmic censorship is satisfied. The set N is a globally hy-

perbolic neighbourhood of the future endpiece γ̃f of the timelike geodesic γ̃.

orems are of physical concern. With this in mind, the following conjecture captures the

essence of geometric strong cosmic censorship.

Conjecture 1 (geometric strong cosmic censorship). Let (M, g) be a Lorentzian ma-

nifold and assume that

(i) (M, g) is chronological,

(ii) the strong energy condition holds,

(iii) the dominant energy condition holds,

(iv) there exists a closed trapped surface T .

Then in each τ-neighbourhood U of g in Lor(M), there is a metric g̃ satisfying (i)–(iii)

such that each future inextensible, incomplete causal geodesic γ̃ ⊂ I+(T ) has a future

endpiece γ̃f which is contained in some globally hyperbolic set.

If conditions (i), (ii), (iv) are satisfied and in addition we have the genericity condition,

then the theorem of Hawking & Penrose (1970) implies the existence of a causal incom-

plete geodesic γ in I+(T )∪I−(T ). It would be natural to require the existence of a metric

g̃ satisfying (i)–(iii) such that (M, g̃) is globally hyperbolic in each τ -neighbourhood U

of g in Lor(M). However, this would be a global requirement whereas the restriction to

singularities produced by closed trapped surfaces would be quasi-local. Hence conjecture

1 only requires that (M, g̃) is globally hyperbolic near the singularities (cf. Figure 1). It

is physically plausible to expect γ to be future incomplete and to be located in I+(T ).

Condition (iii) restricts the possible matter models to physically reasonable ones. Clearly,

the validity of the conjecture depends crucially on the chosen topology τ . In section 2

we will give an example of a spacetime which satisfies the dominant energy condition,

contains a closed trapped surface, and has a timelike (in a well defined sense) singularity.

In section 3 we will show that this is a counterexample to conjecture 1, when taken with

respect to several topologies for Lor(M).
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2. Examples. In the following we concentrate on (2+1)-dimensional spacetimes

which can be easily extended to obtain (3+1)-dimensional examples (cf. remark 2 be-

low).

We need to recall the construction and some properties of irrotational 3-dimensional

dust spacetimes (M̂, ĝ) (for details see (Kriele 1996)). Let u be the spacetime velocity

of the dust particles and for any vector v denote the 1-form ĝ(v, ·) by v♭. (M̂, ĝ) is an

irrotational dust spacetime if du♭ ∧ u♭ = 0 and in addition we have a function ǫ such

that the energy momentum tensor reads T̂ = ǫ u♭ ⊗ u♭. It is possible to find (essentially

unique) coordinates (t, x, y) such that the metric ĝ is given by

ĝ = −dt2 + (V0(x, y) + tq(x, y))2dx2 +W 2
0 (x, y)

(

1 + t

(

∂V0(x, y)

∂y

)−1
∂q(x, y)

∂y

)2

dy2,

(1)

where V0, W0 are arbitrary functions and q is a solution of the linear pde

∂2q

∂x∂y
+

(

W−1
0

∂W0

∂x
−

(

∂V0

∂y

)−1
∂2V0

∂x∂y

)

∂q

∂y
−

(

V −1
0

∂V0

∂y
W−1

0

∂W0

∂x

)

q = 0. (2)

Denote the second fundamental form of the spacelike hypersurface {t = 0} by k(X,Y ) =

−g(∇XY, ∂t) and observe that the principal curvatures of the hypersurface {t = 0} are

given by k1 = q/V0 and k2 = ∂yq/∂yV0. For any p ∈ {t = 0} let k−(p) = min(k1(p), k2(p))

and k+(p) = max(k1(p), k2(p)). The world line of the dust particle through p ends in a

curvature singularity

– at finite proper times −1
k
−
(p) ,

−1
k+(p) if k+(p) > 0 > k−(p),

– at finite proper time −1
k
−
(p) if k−(p) > 0,

– and at finite proper time −1
k+(p) if k+(p) < 0.

There are no other singularities. Since the light cones degenerate at the singularities, it

is easy to see that geodesics ending in these singularities are future incomplete and do

not lie in any globally hyperbolic subset. All singularities are weak in the sense that for

all open sets U with bounded volume, vol(U) =
∫

U

√

det(gab) dt ∧ dx ∧ dy < ∞, the

spacetime average of the energy density,

1

vol(U)

∫

U

ǫ(t, x, y)
√

det(gab) dt ∧ dx ∧ dy,

is also bounded. In fact, this follows immediately since ǫ is given by

ǫ(t, x, y, z) =
E(x, y)

(V0 + tq)
(

∂V0

∂y
+ t ∂q

∂y

) , (3)

where

E(x, y) =
∂q

∂y
q +

(

∂V0

∂y

)2
∂W0

∂y
W0

−3 −
∂V0

∂y

∂2V0

∂y2
W0

−2 (4)

−
∂V0

∂y

∂2W0

∂x2
V0

−1W0
−1 +

∂V0

∂y

∂W0

∂x

∂V0

∂x
V0

−2W0
−1.

A specialization of these spacetimes will provide us with counterexamples to conjec-

ture 1. Let M̂ = R× S1 ×R where x ≡ x+1 is a cyclic coordinate. It is immediate from
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Figure 2: The singularity structure of (M̂, ĝ). The light cone is degenerated in y-directions at

gyy = 0 and degenerated in x-direction at gxx = 0. Both singularities are locally naked.

equation (2) that any pair of smooth, x-independent functions (y 7→ V0(y), y 7→ q(y)) de-

termines a solution with W0 ≡ 1. We will choose these functions such that the compact

submanifold T̂ = {p ∈ M̂ |y = t = 0} is a closed trapped surface. Choose two linearly

independent, future directed, null vector fields along T̂ which are orthogonal to T̂ and

whose orthogonal projections to {t = 0} result in unit vectors. Denote the corresponding

null expansions by θ±. T̂ is a closed trapped surface if both, θ− and θ+ are negative

everywhere on T̂ . The second fundamental form of T̂ (considered as a submanifold of

the spacelike hypersurface {t = 0}) is then given by S(ξ, η) = −g({t=0}∇ξη, V
−1
0 ∂y). A

straight forward calculation yields

θ± = tr{t=0}(k)− V −2
0 k(∂y, ∂y)∓ trT̂ (S) (5)

and it follows immediately that T̂ is a closed trapped surface if V0, ∂yV0 are positive

and q, qy sufficiently negative at T̂ . Observe that E(x, y) = q∂yq − ∂yV0∂y∂yV0 can be

guaranteed to be positive if V0 and q are suitably chosen. These spacetimes (M̂, ĝ) satisfy

assumptions (i)–(iv) in conjecture 1 and and in addition we know that no future endpiece

γf of any future inextensible, incomplete geodesic γ lies in any globally hyperbolic subset.

R ema r k 2. Each solution (M̂, ĝ) determines a 4-dimensional spacetime (M, g) which

can be determined by setting M = M̂ × S1 and g = ĝ + dz2 where z is a standard

coordinate of S1. Since ĝ is a dust metric, the energy density and principal pressures of

the 4-dimensional spacetime (M, g) are given by ǫ and 0, 0, −ǫ, respectively. This implies

that (M, g) also satisfies assumptions (i)–(iv) of conjecture 1. In addition, no future

endpiece of any future inextensible, incomplete geodesic lies in any globally hyperbolic

subset.

3. Several candidates for the topology τ of Lor(M). The discussions in this

section are equally applicable to both the 4-dimensional example (M, g) and to the 3-

dimensional example (M̂, ĝ). For definiteness, we will refer only to (M, g).
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It is clear that the validity of conjecture 1 depends crucially on the chosen topology

τ . For instance, if τ is the ultra-coarse topology τcoarse = {Lor(M), ∅} then the conjec-

ture holds trivially since there exist globally hyperbolic spacetimes satisfying the energy

conditions. On the other hand conjecture 1 does not hold if τ is the ultra-fine topology

in which all subsets of Lor(M̂) are open. A physically meaningful topology should be

invariantly defined and should have the property that differentiable perturbations (with

compact support) are continuous. This guarantees that our intuitive notion of “being

close” is respected by this topology. At first glance, two families of topologies seem to

be especially natural, the Whitney Ck-topologies (Lerner 1973) and the compact-open

Ck-topologies for k ≥ 0.

3.1. The Whitney Ck-topology, τkWhit. The Whitney Ck-topologies are defined as fol-

lows (Beem & Ehrlich 1981, p. 28). Let (Uℓ, ϕℓ)ℓ∈N be a countable fixed atlas such that

each compact subset of M intersects only finitely many of the Ul. A neighbourhood of

h ∈ Lor(M) is then given by the set U(h) of all metrics h̃ such that

∑

0≤l≤|α|≤k
1≤i1≤...≤il≤dim(M)

1≤a,b≤dim(M)

∣

∣

∣

∣

∂|α|

∂xi1
αi1 . . . ∂xil

αil

(

(ϕ∗
ℓ h̃)ab − (ϕ∗

ℓh)ab

)

∣

∣

∣

∣

x

< ηℓ(x) ∀ℓ ∈ N (6)

where ηℓ:Uℓ → R
+ \ {0} are continuous functions. These open sets form a sub-basis of

the Whitney Ck-topology which is independent of the atlas chosen.

Proposition 3. Conjecture 1 does not hold with respect to the Whitney Ck-topology

τkWhit.

P r o o f. Without loss of generality we can restrict our attention to the case where M

is an open submanifold of a smooth manifold M̄ and is covered by a single chart which

extends to a neighbourhood of M ∪ ∂M in M̄ . Choose compact subsets Kn (n ∈ N) with

Kn ⊂ int(Kn+1), ∪∞
n=1Kn = M and choose η:M → R

+ such that η(p) < 1/n for all

p ∈ M \Kn. Let

U =







h ∈ Lor(M̂)

∣

∣

∣

∣

∣

∑

1≤a,b≤dim(M)

|(ϕ∗g)ab − (ϕ∗h)ab|x < η(x)







It follows that each h ∈ U has a continuous extension to M̄ and is degenerate at ∂M .

Further, this singular set is timelike and therefore conjecture 1 does not hold for any

τkWhit.

One possible objection to the use of the Whitney Ck-topologies may be that these

topologies allow for arbitrarily good control of the metric near the singularities.

3.2. The compact-open Ck-topology, τkc−o. The compact-open Ck-topology is another

intrinsically defined topology. A sub-basis {U(h, (U,ϕ),K, n)} is determined by a collec-

tion of symmetric tensor fields h, charts (U,ϕ), compact subsets K ⊂ U and natural

numbers n. We have ĥ ∈ {U(h, (U,ϕ),K, n)} if and only if
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∑

0≤l≤|α|≤k
1≤i1≤...≤il≤dim(M)

1≤a,b≤dim(M)

∣

∣

∣

∣

∂|α|

∂xi1
αi1 . . . ∂xil

αil

(

(ϕ∗h̃)ab − (ϕ∗h)ab

)

∣

∣

∣

∣

x

< 1/n

for all x ∈ K. This topology is invariantly defined but has the disadvantage that it does

not allow for any control near the singularity. To see this note that any neighbourhood

of h contains the intersection of finitely many sets {U(hl, (Ul, ϕl),Kl, nl)}l=1,...ℓ and that

this can only restrict the metric in the compact subset K1 ∪ . . .∪Kℓ. Such a topology is

too coarse since with respect to this topology there are metrics with diverging curvature

in any neighbourhood of Minkowski half space.

Example 4. Let M = {(t, x, y, z)|y < 0} and let

fn(y) =

{

1 for y ≤ − 1
ln(n)

1− ne
−1

y+1/ ln(n) for y > − 1
ln(n) .

It is easy to see that for each neighbourhood of the standard Minkowski metric there

is an n0 ∈ N such that for all n ≥ n0 the metric gn = −dt2 + fn(y)dx
2 + dy2 + dz2

is contained in this neighbourhood. Further all gn satisfy the strong and the dominant

energy conditions and have a curvature singularity at y = 0.

3.3. An intermediate Ck-topology τkint for a subset of metrics. The idea is to define

a topology analogous to the Whitney Ck-topology where the functions ηℓ are replaced

by constants. This would make the new topology much coarser near the singularity. By

naively replacing ηℓ by constants we would obtain a topology which depends on the

system of charts (Ul, ϕl). Recall that M is a manifold with boundary ∂M which can be

identified with the singularities. We demand that {(Uℓ, ϕℓ)} represents a countable atlas

for the manifold with boundary such that for each p ∈ M ∪ ∂M there are only finitely

many Ul which cover p. We can now replace the function ηℓ by constants arriving at a

well defined topology τkint for Lor(M). Observe that in each neighbourhood of g there

are metrics which can be smoothly extended beyond ∂M as Lorentzian metrics. Hence

with respect to this topology, the singularity itself does not appear to be stable. This is

due to the fact that the topology measures “closeness” in terms of symmetric bilinear

forms and their derivatives and not in terms of curvature. In fact, the energy density

of g diverges while the energy density of those “nearby” bilinear forms is bounded. We

could add C0-conditions to curvature invariants such as the energy density ǫ. It is less

of a restriction to consider only the set Lor∂M (M) of those bilinear forms h such that,

given any open set U ⊂ M ∪ ∂M , h|U∩M cannot be locally extended to ∂M ∩ U as a

Lorentzian metric.

Proposition 5. Conjecture 1 does not hold with respect to the intermediate Ck-

topology τkint of Lor∂M (M).

P r o o f. The singularity is fixed and (with respect to any continuous metric extension)

timelike. The claim follows since “timelike” is a stable property with respect to the

intermediate Ck-topologies.



176 M. KRIELE

gij

gij

g

g

M̄ \M

M̄ \M

M

M

Figure 3: A typical neighbourhood of the metric g in a Whitney topology (section 3.1) and a

typical neighbourhood with respect to the topology τ (U) introduced in section 3.4

An objection may be that our topologies do not allow for the singularity to be shifted.

While the concept of a fixed singularity is chart dependent, in what follows we will give

an example of a topology where the location of the singularity can be shifted with respect

to a fixed coordinate system.

3.4. A topology τ(U) where the singular set is not fixed. Observe that (M, g) is

isometrically embedded into a generalized pseudo Riemannian manifold (M̄, ḡ), where

M̄ is a manifold and ḡ a smooth symmetric
(

0
2

)

-tensor field. ∂M ⊂ M̄ consists of

the set of points where ḡ is degenerate. Let U be a neighbourhood of M ∪ ∂M in

M̄ and consider the set S2(U) of all smooth, symmetric
(

0
2

)

-tensor fields on U to-

gether with the corresponding Whitney C2-topology. Let p ∈ M be a fixed point and

Lorp(U) ⊂ S2(U) be the subspace of all bilinear forms on U which are Lorentzian in a

neighbourhood of p. For each h ∈ Lorp(U) we can assign the connected component U(p, h)

of {q ∈ U |h is Lorentzian at q} which contains the point p. Denote the restriction of h to

U(p, h) by fp(h). We can now equip fp(Lorp(U)) with the identification topology τ(U)

induced by fp. Observe that fp(h) contains the set of all Lorentzian metrics on M which

can be smoothly extended to U as bilinear forms. Through this somewhat roundabout

method we have defined a topology for which the location of the singularity is no longer

fixed (by an open neighbourhood).

Let Un ⊂ M̄ be a sequence of open sets Un+1 ⊂ Un such that M ∪ ∂M ⊂ Un and
⋂∞

n=1 Un = M ∪ ∂M . Denote by Domp(Un) the set of all g ∈ fp(Lorp(Un)) for which the

dominant energy condition holds. The following lemma implies that all metrics close to

g satisfying the dominant energy condition have a singularity close to the singularity of

the original metric.

Lemma 6. For each n ∈ N there exists a neighbourhood Un of g such that all metrics

in Un ∩ Domp(Un) are inextensible as Lorentzian metrics. Further, the neighbourhoods

Un can be chosen such that Un+1 ∩ Domp(Un+1) ⊂ i∗ (Un ∩Domp(Un)) for all n, where

i:Un+1 → Un is the canonical injection.
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P r o o f. Let η0 be a positive function on U1. We will inductively construct a sequence

of positive functions {ηn}n∈N which defines a sequence of open sets {Un}n∈N as in equation

(6) (with ηℓ being replaced by ηn). Choose a neighbourhood Vn of Un+1 such that its

closure is contained in Un and denote by ∂Vn its boundary in Un. Since ǫ|∂Vn
is strictly

negative, we can find a function ηn < ηn−1 such that for all h ∈ Un the vector ∂t is

timelike and T (∂t, ∂t)|∂Vn
is negative. Consequently, no fp(h) ∈ Un ∩ Domp(U) can be

extended to ∂Vn. The second assertion follows since {ηn} is a monotonically decreasing

sequence of functions.

Lemma 6 would fail without the dominant energy condition.

Proposition 7. Conjecture 1 does not hold with respect to any topology τ(Un).

P r o o f. Let p ∈ ∂M and observe that the degenerate subspace Radp(g) = {v ∈

TpM̄ |g(v, ·) = 0} is transverse to Tp∂M . Since this property is stable with respect to the

Whitney C2-topology associated with U1, each Un can be chosen such that it holds for all

h ∈ Un. By Lemmas 13 and 14 in (Kriele & Lim 1995) the divergence of the energy density

is also stable with respect to this topology. Kriele & Lim (1995) have shown that any

Lorentzian metric which admits a smooth extension as a bilinear form and satisfies the

transverseness condition on Rad must have a timelike singularity, provided the dominant

energy condition holds and the energy density diverges. Consequently, conjecture 1 is

violated with respect to the topology τ(Un) of fp(Lorp(Un)).

Observe that the topologies τ(U) (and also the intermediate topologies τkint in section

3.3) are very coarse. Within each neighbourhood of g one can find Lorentzian metrics

for which the energy density diverges one order of magnitude faster than the energy

density of g (Kriele & Lim 1995, proposition 15). In the same neighbourhood there are

also other metrics whose energy density does not diverge at all (however the latter violate

the dominant energy condition). Hence stability with respect to these topologies is a very

strong requirement.

4. Conclusion. We have shown that in general, even when stability is accounted

for, the singularities produced by the incompleteness theorem of Hawking and Penrose

(Hawking & Ellis 1973, Theorem 2) do not satisfy strong cosmic censorship. For this it

was crucial that (unlike lightlike shell focusing singularities) our singularities are timelike.

Our aim has been to construct simple counterexamples, but in doing so we have obtained

properties which may be considered artificial. These properties are summarized by the

following.

– The closed trapped surfaces in the 4-dimensional examples have topology T
2 rather

than S2. This comes from a construction which is essentially 3-dimensional.

– Since we used (3-dimensional) dust solutions for the construction of counterexam-

ples, our singularities are not very strong. In fact, the energy density exists as a

spacetime average and they also fail to be strong in the sense of Tipler (1977) or

Królak (1987). The idea of “strong curvature singularities” was physically motivated

by the expectation that gravitational collapse (as suggested by the incompleteness

theorems) would result in strong curvature singularities. Our examples arise in exac-
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tly this way but contain only weak singularities, therefore this expectation cannot

be maintained. If our (weak) singularities are regarded as physically non-singular,

we can obtain examples of physically non-singular spacetimes satisfying the as-

sumptions of the incompleteness theorem of Hawking & Penrose. Consequently,

the physical interpretation of the incompleteness theorems would have to be re-

vised. On the other hand, it is promising to see that by perturbing our spacetimes

we can obtain strong, naked singularities which still preserve the dominant energy

condition.

– The singularities studied here require the energy density to dominate one of the

principal pressures by an order of the least one. This is always the case for sin-

gularities which can be modelled by smooth bilinear forms (Kriele & Lim 1995,

Theorem 21). It is therefore conceivable that counterexamples can be avoided by

adding the assumption that the quotient of any two eigenvalues of T a
b is bounded.

In the absence of this, it would be necessary to resort to the hyperbolic nature of

Einstein’s equations.

What we have learnt from the examples presented here is that stability and the energy

conditions alone are not sufficient to ensure cosmic censorship — more detailed assump-

tions on the matter model must be made.
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