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1. Introduction. The geometric maximum principle for (smooth) hypersurfaces is

a basic tool in Riemannian geometry. A corresponding maximum principle for spacelike

hypersurfaces has become a useful tool in Lorentzian geometry, as well. These geometric

maximum principles are consequences of the analytic maximum principle for second order

linear elliptic PDE’s (see e.g., [GT]). More closely related to the considerations of this

paper is Calabi’s [C] extension of the Hopf maximum principle to C0 functions which are

sub or super solutions in the sense of support functions. In recent joint work with Lars An-

dersson and Ralph Howard [AGH], we established a strong maximum principle for weak

(in the sense of support functions) sub and super solutions of second order quasi-linear el-

liptic PDE’s (such as the mean curvature equation). This generalizes Calabi’s result and

yields, as a geometric consequence, a maximum principle for rough (nonsmooth) spacelike

hypersurfaces in Lorentzian manifolds. Such hypersurfaces arise naturally in applications

as level sets of certain distance functions or Busemann functions, etc.

The maximum principle for rough spacelike hypersurfaces obtained in [AGH] has been

applied to a number of situations ([AGH], [AH]). In particular, it provides an especially

natural and conceptually transparent proof of the Lorentzian splitting theorem ([E2],

[G2], [N]). In this paper we discuss a specialized version of the geometric maximum

principle obtained in [AGH], in which one hypersurface is smooth and the other is rough.

Some applications of the standard geometric maximum principle and this rough version

are considered. In particular, we obtain a rigidity result for rough spacelike hypersurfaces

that generalizes a result of Gerhardt ([GC], see also Eschenburg [E3]) concerning the

uniqueness of compact maximal (i.e., mean curvature zero) spacelike hypersurfaces in

globally hyperbolic spacetimes. We establish a connection between this rigidity result

and a well-known splitting conjecture for spatially closed spacetimes (cf., Bartnik [B2,
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Conjecture 2]). We give a proof of this conjecture subject to an additional assumption

which is weaker than other such assumptions considered previously in the literature (cf.,

[G1], [B2], [EG]). In fact, we present two proofs, one based on the aforementioned rigidity

result, and the other based on the Lorentzian splitting theorem. The latter proof involves

a generalization of the main result in [EG].

In Section 2 we discuss the maximum principle for smooth spacelike hypersurfaces

and consider some consequences. In Section 3 we present the rough - smooth version of

the maximum principle and prove the rigidity result for rough spacelike hypersurfaces

mentioned above. The connection with the splitting conjecture is presented in Section 4.

2. Hypersurface rigidity - the smooth case. We begin by fixing some notation

and terminology. By a spacetime we mean a connected time orientable Lorentzian man-

ifold (M, g), with dimM ≥ 2. For causal theoretic notions such as I±, J±, D±, H±, we

refer the reader to Hawking and Ellis [HE]. (Unless otherwise stated, we adhere to the

conventions of [HE].) Although it is not required for some of the results we consider, for

convenience we will restrict attention to globally hyperbolic spacetimes.

Let Σ be a smooth spacelike hypersurface in a spacetimeM , i.e., a smooth codimension

one submanifold ofM with everywhere timelike normal. LetH denote the mean curvature

of Σ. Hence, H = tr bN = gijbij , where bN is the second fundamental form of Σ with

respect to the future pointing unit normal vector field N along Σ. We choose our sign

convention so that H = + divΣN . With respect to these conventions, the hyperboloid

x0 = +
√

1 +
∑

(xα)2 in Minkowski space has positive mean curvature.

Below, in the statement of the geometric maximum principle for spacelike hypersur-

faces, we adopt the following terminology. Let Σ1 and Σ2 be smooth spacelike hyper-

surfaces in a spacetime M that meet at a point p ∈ M . We say that Σ2 is locally to

the future of Σ1 near p provided for some neighborhood U of p in which Σ1 is a partial

Cauchy surface (i.e., acausal and edgeless), Σ2 ∩ U ⊂ J+(Σ1, U).

Theorem 2.1 (The Maximum Principle for Spacelike Hypersurfaces). Let Σ1 and Σ2

be smooth spacelike hypersurfaces in a spacetime M which meet at a point p ∈ M , such

that Σ2 is locally to the future of Σ1 near p. Suppose that the mean curvature of Σ1 and

the mean curvature of Σ2 satisfy , HΣ2 ≤ a ≤ HΣ1 , for some constant a. Then Σ1 and

Σ2 agree in a neighborhood of p.

By introducing special coordinates and using the fact that the mean curvature opera-

tor is elliptic, the proof can be reduced to an application of the Hopf maximum principle

(or a slight variant, thereof; see e.g., [GT, p. 35]). A proof by this approach in the case

of minimal hypersurfaces in Euclidean space may be found in [S]. An alternative proof of

Theorem 2.1, which uses more directly the geometry of spacetime, is given in [E3].

We consider an application of Theorem 2.1. Cosmological models based on classical

general relativity typically begin with a big bang, and either expand indefinitely, or reach

a point of maximum expansion and then evolve to a big crunch. Provided appropriate

energy conditions are satisfied, one cannot have models which initially contract and then

later expand. Such behavior is ruled out by the following well-known result of Brill and

Flaherty [BF].
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Theorem 2.2. Let M be a globally hyperbolic spacetime which satisfies the energy

condition, Ric(X,X) = RijX
iXj > 0 for all timelike vectors X. Suppose Σ1 and Σ2 are

compact smooth spacelike hypersurfaces in M such that HΣ1 ≤ 0 ≤ HΣ2 . Then Σ2 cannot

enter the timelike future of Σ1, Σ2 ∩ I+(Σ1) = ∅, i.e., Σ2 ⊂ J+(Σ1).

R e m a r k. Σ1 and Σ2 are necessarily Cauchy hypersurfaces (cf. [B+]).

This theorem says, in particular, that M cannot contain two distinct compact maxi-

mal, i.e., mean curvature zero, spacelike hypersurfaces. The proof uses a variation of arc

length argument: Assuming Σ2∩I+(Σ1) 6= ∅, one constructs a longest timelike geodesic γ

from Σ1 to Σ2. By “averaging” the second variations of arc length with respect to certain

variations of γ with end points on Σ1 and Σ2, a contradiction to the maximality of γ is

obtained. A related result and argument in the Riemannian setting had previously been

considered by Frankel [F].

If the strict curvature inequality in Theorem 2.2 is replaced by the weak inequality:

Ric(X,X) ≥ 0 for all timelike vectors X, then, of course, the conclusion need not hold.

Consider, for example, the Einstein static spacetime (R× S3,−dt2 ⊕ h), where (S3, h) is

the standard round sphere. This spacetime is foliated by totally geodesic spacelike three

spheres. However, Theorem 2.2 admits a rigid generalization, which we refer to here as

the hypersurface rigidity theorem.

Theorem 2.3 (The Hypersurface Rigidity Theorem). Let M be a globally hyperbolic

spacetime which satisfies the strong energy condition, Ric(X,X) ≥ 0 for all timelike

vectors X. Suppose Σ1 and Σ2 are compact connected smooth spacelike hypersurfaces in

M such that HΣ1
≤ 0 ≤ HΣ2

. If Σ2 enters the timelike future of Σ1, Σ2 ∩ I+(Σ1) 6= ∅,
then the region “between” Σ1 and Σ2, J+(Σ1) ∩ J−(Σ2), is isometric to the Lorentzian

product ([0, `]× Σ1,−dt2 ⊕ h), where h is the induced metric on Σ1 and ` = d(Σ1,Σ2).

Gerhardt [GC, Theorem 7.4] gave a proof of Theorem 2.3 in the case that Σ1 and Σ2

are maximal, with the additional assumption that there is a “barrier hypersurface”. In

[E3, Theorem 3] Eschenburg used the maximum principle for spacelike hypersurfaces to

obtain a local version of Theorem 2.3: He considers a longest timelike geodesic segment γ

from Σ1 to Σ2 and obtains a splitting of a tubular neighborhood of γ. The idea of the proof

is roughly as follows. Assume γ extends from p ∈ Σ1 to q ∈ Σ2. By the maximality of γ,

there are no focal points to Σ1 along γ, (except possibly for the point q, a technicality that

we shall overlook). One can then push a small piece W1 of Σ1 about p along the normal

geodesics to Σ1 a distance d(Σ1,Σ2) to obtain a spacelike hypersurface W2 which passes

through q and is locally to the future of Σ2 near q. The curvature assumption and the

Raychaudhuri equation associated with the normal geodesic congruence (which governs

the mean curvature of the hypersurfaces orthogonal to this congruence) imply that the

mean curvature of W2 is nonpositive. The maximum principle for spacelike hypersurfaces

then implies that W2 is actually contained in Σ2, and has zero mean curvature. It now

follows easily from the curvature assumption and the Raychaudhuri equation that all

of the orthogonal hypersurfaces are totally geodesic. This gives a splitting of a tubular

neigborhood of γ. A straightforward continuation argument yields the global splitting

claimed in Theorem 2.3.
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R e m a r k s. The assumption in Theorem 2.3 that Σ1 and Σ2 are compact can be

weakened. It is sufficient to require that Σ1 and Σ2 be acausal spacelike hypersurfaces

such that J+(Σ1) ∩ J−(Σ2) is compact. Results for Riemannian manifolds related to

Theorem 2.3 have been obtained by Ichida [I] and Kasue [K].

In the next section we obtain a version of Theorem 2.3 that holds for rough (nons-

mooth) spacelike hypersurfaces.

3. Hypersurface rigidity - the rough case. We begin by weakening the definition

of a spacelike hypersurface to allow for C0 hypersurfaces. We adopt the definition used

in [EG], [GH] and [AGH].

Definition 3.1. A subset S ⊂M is called a C0 spacelike hypersurface provided for

each point p ∈ S there is a neighborhood U of p in M such that S ∩ U is acausal and

edgeless in U .

A C0 spacelike hypersurface is necessarily an imbedded topological submanifold of

codimension one. A smooth spacelike hypersurface, as defined in the previous section, is

a C0 spacelike hypersurface. A C0 spacelike hypersurface which is globally acausal and

edgeless is called a partial Cauchy surface.

C0 spacelike hypersurfaces arise from natural constructions, as is illustrated in the

following example.

Example 3.2. Let S be an acausal C0 spacelike hypersurface in a spacetime M . Let

ρ : intD+(S)→ R denote Lorentzian distance to S,

ρ(q) = sup{L(γ) : γ a future directed causal curve from S to q} ,

where L(γ) denotes the length of γ. It follows by standard arguments that ρ is a contin-

uous time function on intD+(S). Hence, the (nonempty) level sets of ρ,

Sτ = {q ∈ intD+(S) : ρ(q) = τ} ,

are easily seen to be acausal C0 spacelike hypersurfaces. Note that, even when S is a

smooth spacelike hypersurface, the Sτ ’s will, in general, only be C0, due to the occurence

of focal points, etc.

We now extend the meaning of mean curvature inequalities to C0 spacelike hypersur-

faces. Consider two C0 spacelike hypersurfaces Σ1 and Σ2 which meet at a point p. As in

the smooth case, we say that Σ2 is locally to the future of Σ1 near p provided for some

neighborhood U of p in which Σ1 is acausal and edgeless, Σ2 ∩ U ⊂ J+(Σ1, U).

Definition 3.3. Let S be a C0 spacelike hypersurface in a spacetime M , and let

a be a constant. We say that S has mean curvature H ≤ a in the sense of support

hypersurfaces provided for each p ∈ S and for each ε > 0 there exists a smooth (at least

C2) spacelike hypersurface Wp,ε such that

(1) Wp,ε is a future support hypersurface for S at p, i.e., Wp,ε passes through p and

is locally to the future of S near p, and

(2) the mean curvature of Wp,ε at p satisfies, HWp,ε
(p) ≤ a+ ε.
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As a simple illustration of the definition, consider Minkowski 2-space, M = R2 with

metric ds2 =dx2− dy2. Then S={(x, y) : y=− 1
2 |x| } is a C0 spacelike hypersurface with

mean curvature H ≤ 0. The line y = 0 may be used as the future support hypersurface

at (0, 0).

In an analogous fashion, one can define what it means for a C0 spacelike hypersurface

to have mean curvature H ≥ a.

R e m a r k. Eschenburg [E3] has introduced a related definition (which requires, in

addition, a one-sided local bound on the second fundamental forms of the support hy-

persurfaces) in the Riemannian setting.

In [AGH] a maximum principle for C0 spacelike hypersurfaces is obtained (cf., Theo-

rem 3.6). When one of the hypersurfaces is smooth, this maximum principle specializes,

as follows.

Theorem 3.4 (The Maximum Principle for Spacelike Hypersurfaces - the rough-

smooth case). Let Σ1 be a smooth spacelike hypersurface and Σ2 be a C0 spacelike hy-

persurface. Suppose that Σ1 and Σ2 meet at a point p ∈ M , such that Σ2 is locally to

the future of Σ1 near p. Suppose, further , that the mean curvature of Σ1 and the mean

curvature of Σ2 satisfy , HΣ2
≤ a ≤ HΣ1

, for some constant a, where the first inequality

is meant in the sense of support hypersurfaces. Then Σ1 and Σ2 agree in a neighborhood

of p.

The proof of Theorem 3.4 above (or, more generally, Theorem 3.6 in [AGH]) involves

a melding of the proof of the maximum principle for smooth spacelike hypersurfaces and

the arguments of Calabi [C], together with certain a priori zero, first, and second order

estimates.

R e m a r k. In [G2], an ad hoc maximum principle for the level sets of the Lorentzian

Busemann function was obtained and used to prove the Lorentzian splitting theorem. In

[E3], Eschenburg established, by methods different from those used in [AGH], a rough-

smooth maximum principle for hypersurfaces in Riemannian manifolds.

We now use Theorem 3.4 to establish a certain convexity property for the C0 spacelike

hypersurfaces Sτ = {ρ = τ} introduced in Example 3.2. This result will, in turn, be used

to obtain a rough version of the hypersurface rigidity theorem discussed in Section 2.

Theorem 3.5. Let M be a spacetime which obeys the strong energy condition,

Ric(X,X) ≥ 0 for all timelike vectors X. Let S be an acausal C0 spacelike hypersurface

with mean curvature HS ≤ 0 in the sense of support hypersurfaces. Let Σ be a connected

maximal (smooth with H = 0) spacelike hypersurface such that Σ (the closure of Σ) is

compact , acausal and contained in intD+(S). If edge(Σ) ⊂ {ρ ≤ τ} then Σ ⊂ {ρ ≤ τ}.

In particular, if edge(Σ) ⊂ Sτ then Σ lies in the causal past of Sτ . Related results

have been obtained in [E3] and [G2]. The proof of Theorem 3.5 makes use of the following

lemma.

Lemma 3.6. Let M be a spacetime which obeys the strong energy condition, Ric(X,X)

≥ 0 for all timelike vectors X. Let S be an acausal C0 spacelike hypersurface with mean
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curvature HS ≤ a in the sense of support hypersurfaces. Then Sτ = {ρ = τ} has mean

curvature HSτ ≤ a in the sense of support hypersurfaces.

P r o o f o f L e m m a 3.6. The idea is to transport the support hypersurfaces of S

to Sτ . Fix q ∈ Sτ . Let γ : [0, `]→ M be a unit speed timelike geodesic that realizes the

Lorentzian distance from S to q, L(γ|[0,t]) = t = d(S, γ(t)) for all t ∈ [0, `].

For any ε > 0, let W = Wp, ε2
be a future support hypersurface for S at p = γ(0), whose

mean curvature at p satisfies HW (p) ≤ a+ ε
2 . Since W is a future support hypersurface,

γ realizes the distance from W to q. It follows that for each t ∈ (0, `), γ(t) is not a focal

point to W along γ. It is possible, though, that q = γ(`) is a focal point to W along γ.

This technical point may be handled as follows. Bend W slightly towards the future to

obtain a future support hypersurface W ′ for S at p such that

(1) the second fundamental form of W ′ at p is strictly greater than that of W (i.e.,

the difference of second fundamental forms is positive definite), and

(2) the mean curvature of W ′ at p satisfies, HW ′(p) ≤ a+ ε.

It then follows by elementary index formula techniques (or see [E1, Lemma 3.1]) that

for each t ∈ (0, `], γ(t) is not a focal point to W ′ along γ. This implies that the normal

exponential map along W ′ acts as a diffeomorphism on a neighborhood of the preimage

of γ. Hence, by shrinking W ′, if necessary, we can push W ′ along the normal geodesics to

W ′ at unit speed a proper time ` to obtain a smooth spacelike hypersurface Vq,ε, which

will be locally to the future of Sτ at q.

Let H(t) be the mean curvature at γ(t) of the smooth spacelike hypersurface passing

through γ(t) and orthogonal to the normal geodesics of W ′. The Raychaudhuri equation

with respect to this congruence of normal geodesics and the curvature assumption imply

that H = H(t) satisfies, H ′(t) ≤ 0 for all t ∈ [0, `]. It follows that the mean curvature of

Vq,ε at q satisfies, HVq,ε(q) ≤ a + ε. Since q ∈ Sτ and ε > 0 were chosen arbitrarily, this

shows that Sτ has mean curvature HSτ ≤ a in the sense of support hypersurfaces.

P r o o f o f T h e o r e m 3.5. Suppose the conclusion does not hold. Then ρ|Σ achieves

an interior maximum τ0 = ρ(x0) > τ at some point x0 ∈ Σ. By Lemma 3.6, Sτ0 has mean

curvature HSτ0
≤ 0 in the sense of support hypersurfaces. Moreover, Sτ0 is locally to the

future of Σ near x0. Theorem 3.4 then implies that Σ and Sτ0 agree in a neighborhood

of x0. By a straightforward continuation argument, Σ ⊂ Sτ0 . But, since τ0 > τ , this

contradicts the assumption edge(Σ) ⊂ {ρ ≤ τ}.

Theorem 3.5 is now used to prove a rough version of the hypersurface rigidity theorem.

Theorem 3.7 (The Hypersurface Rigidity Theorem - the rough case). Let M be a

globally hyperbolic spacetime which satisfies the strong energy condition, Ric(X,X) ≥ 0

for all timelike vectors X. Suppose Σ1 and Σ2 are acausal C0 spacelike hypersurfaces in M

such that J+(Σ1)∩J−(Σ2) is compact. Suppose further that HΣ1 ≤ 0 ≤ HΣ2 in the sense

of support hypersurfaces. If Σ2 enters the timelike future of Σ1, Σ2 ∩ I+(Σ1) 6= ∅, then

Σ1 and Σ2 are smooth and compact , and J+(Σ1)∩J−(Σ2) is isometric to the Lorentzian

product ([0, `]× Σ1,−dt2 ⊕ h), where h is the induced metric on Σ1 and ` = d(Σ1,Σ2).
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P r o o f. Since J+(Σ1) ∩ J−(Σ2) is compact, we can find points p ∈ Σ1 and q ∈ Σ2

such that d(p, q) = d(Σ1,Σ2) = sup{d(x, y) : x ∈ Σ1, y ∈ Σ2}. Let γ : [0, `] → M be a

maximal unit speed timelike geodesic from p to q.

Using the global hyperbolicity of M and the compactness of J+(Σ1) ∩ J−(Σ2), one

checks that J+(Σ1) ∩ J−(Σ2) = D+(Σ1) ∩D−(Σ2). Consider the distance functions ρ1

and ρ2 to Σ1 and Σ2, respectively, defined as follows:

ρ1 : intD+(Σ1) ∩D−(Σ2)→ R, ρ1(x) = d(Σ1, x),

and

ρ2 : intD+(Σ1) ∩D−(Σ2)→ R, ρ2(x) = d(x,Σ2).

The reverse triangle inequality and the maximality of γ imply

(3.1) ρ1 + ρ2 ≤ ` and ρ1 + ρ2 = ` along γ.

Consider the C0 spacelike hypersurfaces, S1 = {ρ1 = `
2} and S2 = {ρ2 = `

2}. By (3.1),

S1 and S2 pass through the point p = γ( `2 ), and S1 is locally to the future of S2 near p.

Lemma 3.6 and its time dual imply that HS1
≤ 0 and HS2

≥ 0 in the sense of support

hypersurfaces.

By an argument similar to that used in [G2], we show that S1 and S2 agree near

p along a maximal (smooth with H = 0) spacelike hypersurface. Let B be a small

coordinate ball in S1 centered at p. Then, by a basic existence result of Bartnik [B1,

Theorem 4.1], provided B is sufficiently small, ∂B can be spanned by a maximal spacelike

hypersurface. More precisely, there exists an acausal maximal spacelike hypersurface

Σ ⊂ intD+(Σ1)∩D−(Σ2) intersecting γ, such that Σ is compact and edge(Σ) = ∂B. By

Theorem 3.5 and its time dual, Σ ⊂ {ρ1 ≤ `
2} ∩ {ρ2 ≤ `

2}. In particular, this forces Σ to

meet γ at p. Hence, S1 is locally to the future of Σ near p and S2 is locally to the past

of Σ near p. By Theorem 3.4 and its time dual, S1, S2 and Σ agree in a neighborhood of

p. Reducing the size of Σ if necessary, we conclude that

(3.2) ρ1 = ρ2 =
`

2
along Σ .

We now show that the normal exponential map along Σ provides a splitting of a

tubular neighborhood of γ. For each x ∈ Σ, there exists a future directed unit speed

timelike geodesic γx : [0, `2 ]→ M which realizes the distance from x to Σ2, L(γx|[t, `2 ]) =
`
2−t=ρ2(γx(t)), for all t∈ [0, `2 ]. It then follows that each initial segment of γx maximizes

to Σ, L(γx|[0,t]) = t = d(Σ, γx(t)) for all t ∈ [0, `2 ] (otherwise, there would exist a timelike

curve from Σ to Σ2 with length greater than `
2 , contradicting (3.2)). This implies the

following:

(1) γx meets Σ orthogonally.

(2) For each t ∈ [0, `2 ), γx(t) is not a focal point to Σ along γx.

(3) If x 6= y then γx|[0, `2 ) and γy|[0, `2 ) do not intersect.

Consider the normal exponential map Φ : [0, `2 ) × Σ → M , Φ(t, x) = expx(tN) =

γx(t), where N is the future pointing timelike unit normal vector field along Σ. The

properties (1) - (3) above guarantee that Φ is a diffeomorphism onto its image. For

each t ∈ [0, `2 ), Σ(t) = Φ({t} × Σ) is a smooth spacelike hypersurface orthogonal to the
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normal geodesics of Σ. Let B(t) and H(t) denote the second fundamental form and mean

curvature, respectively, of Σ(t). Extend N to be the future pointing unit normal vector

field to the Σ(t)’s.

The mean curvature function H = H(t) of the foliation {Σ(t)} obeys the following

evolution equation (essentially the Raychaudhuri equation associated to the congruence

of normal geodesics):

(3.3)
∂H

∂t
= −Ric(N,N)− |B|2 .

The curvature assumption and (3.3) imply that ∂H
∂t ≤ 0. Since H(0) = 0, we conclude

that H(t) ≤ 0 for all t ∈ [0, `2 ). On the other hand, since Σ(t) ⊂ {ρ2 = `
2 − t}, the time

dual of Lemma 3.6 implies that H(t) ≥ 0. Thus, H(t) = 0 for all t ∈ [0, `2 ). Substitution

into (3.3) then gives, B(t) = 0 for all t ∈ [0, `2 ) (i.e., each Σ(t) is totally geodesic). Hence,

N is a parallel vector field and Φ : [0, `2 )× Σ→M is an isometry onto its image.

We now observe that this isometry extends to t = `
2 . The vanishing of the second

fundamental forms of the Σ(t)’s implies that for each x ∈ Σ, the point Φ( `2 , x) = γx( `2 )

cannot be a focal point to Σ along γx (for if it were, one would have lim inft→ `
2
H(t) =

−∞). Thus for each x ∈ Σ, there exists a neighborhood Wx ⊂ Σ of x such that y ∈
Wx 7→ Φ( `2 , y) ∈ M is a smooth spacelike imbedding. It follows that Φ({ `2} × Σ) ⊂ Σ2

is a smooth spacelike hypersurface containing the point q. Hence, each γx meets Σ2

orthogonally, from which it follows that if x 6= y then γx( `2 ) 6= γy( `2 ). These observations

imply that Φ : [0, `2 ]×Σ→M is an isometry onto its image. Finally, by considering the

time-dual of the above arguments (e.g., by considering maximal segments from x ∈ Σ to

Σ1) we conclude that the normal exponential map along Σ, Φ : [− `
2 ,

`
2 ]× Σ → M , is an

isometry onto its image, such that Φ({− `
2} × Σ) ⊂ Σ1 and Φ({ `2} × Σ) ⊂ Σ2.

Thus, summarizing and slightly reformulating the above, given the timelike geodesic

γ : [0, `]→M from p ∈ Σ1 to q ∈ Σ2, of length ` = d(Σ1,Σ2), there exists a neighborhood

W1 ⊂ Σ1 of p which is a smooth spacelike hypersurface such that the normal exponential

map along W1, Ψ : [0, `]×W1 → Ψ([0, `]×W1) ⊂ J+(Σ1)∩ J−(Σ2), Ψ(t, x) = expx tN1,

is an isometry. Moreover, Ψ({0} ×W1) = W1 and W2 := Ψ({`} ×W1) ⊂ Σ2 is a smooth

spacelike hypersurface containing q.

The process of extending this local splitting to the global splitting claimed in Theorem

3.7 is fairly straightforward. Let A be the component of Σ1 containing p. Let,

U = {x ∈ A : ∃ a timelike geodesic α from x to Σ2 of length ` = d(Σ1,Σ2)}.

By continuity properties of geodesics, U is closed in A, and by the local isometries estab-

lished above, U is open in A. Hence, U = A. It follows, by piecing these local isometries

together, that A is a smooth spacelike hypersurface, and the normal exponential along

A, Ψ : [0, `]× A→ Ψ([0, `]× A) ⊂ J+(Σ1) ∩ J−(Σ2), Ψ(t, x) = expx tN1, is an isometry

such that Ψ({0}×A) = A, and Ψ({`}×A) is a smooth spacelike hypersurface contained

in Σ2. The compactness of J+(Σ1)∩J−(Σ2) forces A to be edgeless, and hence closed as

a subset of M . Since A ⊂ J+(Σ1)∩J−(Σ2), A is compact and Cauchy (by [B+]). Hence,

to avoid an acausality violation, Σ1 must consist of a single component, i.e., Σ1 = A.

Theorem 3.7 now follows easily.
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4. The splitting conjecture for spatially closed spacetimes. The classical

Hawking-Penrose singularity theorems (cf., [HE]) establish the existence of singularities,

expressed in terms of incomplete causal geodesics, in large generic classes of spacetimes.

In [GR2] Geroch put forth the conjectural point of view that spatially closed spacetimes

obeying reasonable energy conditions should fail to be singular only under exceptional

circumstances. We refer especially to the discussion on p. 266 in [GR2] (in which Geroch

remarks on the existence of certain geodesically complete flat spacetimes), the figure on

p. 266, and Problem 6 posed on p. 288. In the early 80’s, Yau formulated this problem in

more differential geometric terms, by posing the problem of establishing the rigidity of the

Hawking-Penrose singularity theorems. This has led to the following explicit conjecture

(stated as Conjecture 2 in Bartnik [B2]).

Conjecture. Let M be a spacetime which contains a compact Cauchy surface and

obeys the strong energy condition, Ric(X,X) ≥ 0 for all timelike vectors X. If M is

timelike geodesically complete, then M splits isometrically into the product (R×V,−dt2⊕
h), where (V, h) is a compact Riemannian manifold.

In other words, M either is singular or exceptional (a Lorentzian product). For a

more detailed account of the background relating to this conjecture, we refer the reader

to [BEE, Chapter 14].

R e m a r k. Recall, a C0 spacelike hypersurface S in M is a Cauchy surface if and

only if D(S) = M . S is a compact Cauchy surface for M if and only if M is globally

hyperbolic and S is compact ([B+]).

There have been basically two approaches to proving the conjecture. One approach,

first considered by Geroch [GR1], is to establish the existence of a compact maximal

spacelike hypersurface; the conjecture is well-known to hold in this case (see e.g., [B2],

[G3]). The other approach, originally advocated by Yau, is to establish the existence of

a timelike line (i.e., a globally maximal inextendible timelike geodesic). The conjecture

would then follow from the Lorentzian splitting theorem (see, e.g. [BEE, Chapter 14] for

an account of this theorem). The difficulty with this latter approach is that, although

there is a standard procedure for constructing a causal (timelike or null) line in a space-

time with compact Cauchy surface, the line need not be timelike [EhG]. The conjecture

has been proved subject to the addition of various “no horizon” type conditions ([G1],

[B2], [EG]). Below we present a proof of the conjecture subject to a milder additional

condition.

Let S be a C0 spacelike hypersurface in a spacetime M . A future inextendible timelike

geodesic γ : [0, a) → M , a ∈ (0,∞], is called a future S-ray provided it maximizes

distance to S, i.e. provided, L(γ|[0,t]) = d(S, γ(t)) for all t ∈ [0, a). One defines a past

S-ray time-dually. If S is compact, it aways admits a past and future S-ray.

Theorem 4.1. Let M be a spacetime which contains a compact Cauchy surface S and

obeys the strong energy condition. If M is timelike geodesically complete, and contains a

future S-ray γ and a past S-ray η such that I−(γ) ∩ I+(η) 6= ∅ then M splits as in the

conjecture.
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We actually give two proofs of Theorem 4.1. The first proof is an application of Theo-

rem 3.7, and the second is an application of the Lorentzian splitting theorem. Both proofs

make use of the lemma presented below. Given an acausal C0 spacelike hypersurface S

in a spacetime M , let ρ : D(S)→ R, denote the signed distance function from S,

ρ(x) =

{
d(S, x), for x ∈ D+(S)
−d(x, S), for x ∈ D−(S).

We note that ρ is a continuous time function on D(S).

Lemma 4.2. Let M be a timelike geodesically complete spacetime with compact Cauchy

surface S. Then for each c ∈ R, Sc = {ρ = c} is a compact Cauchy surface for M .

P r o o f. We prove the lemma for c ≥ 0; the proof for c ≤ 0 follows by time-dual

arguments. Since D(S) = M , ρ is a continuous time function on M , and hence Sc, c ≥ 0,

is a partial Cauchy surface contained in J+(S). (Note that the future completeness of M

guarantees that Sc 6= ∅.)
Let x be any point in J+(Sc), and let η : [0,∞)→M be any past inextendible causal

curve in M starting at x. Since S is Cauchy, η enters I−(S). Hence, ρ◦η(t) is a continuous

decreasing function such that ρ ◦ η(0) ≥ c and ρ ◦ η(t) < 0 for t sufficiently large. Thus,

ρ ◦ η(t0) = c for some t0, i.e., η meets Σc.

Now, let x be any point in J−(Sc), and let η : [0,∞)→M be any future inextendible

causal curve in M starting at x. η either starts in or eventually enters J+(S). Let γj
be a longest timelike geodesic segment from S to qj = η(tj) ∈ J+(S), tj → ∞. By a

standard limit curve argument, a subsequence {γjk} converges to a future inextendible,

and hence, by assumption, future complete timelike geodesic S-ray γ. Parameterizing

γ : [0,∞) → M with respect arc length, we have ρ(γ(t)) = t for all t ∈ [0,∞), which

implies that γ meets Sc. It follows that for jk sufficiently large, γjk meets Sc, which can

happen only if η meets Sc. We conclude from these arguments that Sc is Cauchy surface.

Since all Cauchy surfaces of M are homeomorphic, Sc is compact.

The first proof of Theorem 4.1 we give makes use of certain properties of Lorentzian

Busemann functions established in [GH]. Let γ : [0,∞) → M be a future complete

unit speed timelike geodesic ray starting at p = γ(0), L(γ|[0,t]) = t = d(p, γ(t)), for all

t ∈ [0,∞). The Lorentzian Busemann function b : M → [0,∞] associated to γ is defined

as follows

b(x) = lim
r→∞

r − d(x, γ(r)) ,

where d is the Lorentzian distance function. (For a nice introduction to Lorentzian Buse-

mann functions, see [BEE, Chapter 14].) The regularity of the Lorentzian Busemann

function is more complicated than that of its Riemannian counterpart. For instance, b

need not be continuous, in general. However, it will always be continuous near its asso-

ciated ray. Along the ray we have b(γ(t)) = t.

We now summarize some facts concerning the regularity of Lorentzian Busemann

functions established in [GH] (see especially, Lemma 5.4, Corollary 5.6, Lemma 2.5, and

Inequality (4-6)).
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Theorem 4.3. Let M be a future timelike geodesically complete spacetime with com-

pact Cauchy surface S. Let γ : [0,∞) → M be a future S-ray , and let b = bγ be the

associated Busemann function. Then the following statements hold.

(1) b is finite valued and continuous on I−(γ).

(2) The level sets Σc = {b = c}, c ≥ 0, are partial Cauchy surfaces (i.e., acausal

edgeless C0 spacelike hypersurfaces) in M .

(3) If M obeys the strong energy condition then Σc has mean curvature HΣc ≥ 0 in

the sense of support hypersurfaces.

F i r s t p r o o f o f T h e o r e m 4.1. This proof is an application of Theorem 3.7. Fix

p= η(c1) and q= γ(c2) such that p∈ I−(q). Consider the level sets Σ1 = {bη = c1} and

Σ2 = {bγ = c2}. By Theorem 4.3 and its time-dual, Σ1 and Σ2 are partial Cauchy surfaces

such that HΣ1
≤ 0 ≤ HΣ2

in the sense of support hypersurfaces. To apply Theorem 3.7

we need to show that J+(Σ1) ∩ J−(Σ2) is compact.

Let S1 = {ρ=−c1} and S2 = {ρ= c2}. Lemma 4.2 implies that S1 and S2 are com-

pact Cauchy surfaces. By an elementary triangle inequality argument (see e.g., [BEE]),

bγ(x) ≥ ρ(x) for all x ∈ J+(S). This implies that ρ|Σ2
≤ c2, and hence that Σ2 ⊂ J−(S2).

Similarly, Σ1 ⊂ J+(S1). It follows that J+(Σ1) ∩ J−(Σ2) is a subset of the compact set

K = J+(S1) ∩ J−(S2). The equality J+(Σ1) ∩ J−(Σ2) = J+(Σ1 ∩K) ∩ J−(Σ2 ∩K) is

easily verified and shows that J+(Σ1) ∩ J−(Σ2) is compact.

Theorem 3.7 now implies that J+(Σ1)∩ J−(Σ2) is isometric to a Lorentzian product

([−c1, c2]×Σ,−dt2⊕ h). By letting c1, c2 →∞, we obtain the splitting of M asserted in

Theorem 4.1.

S e c o n d p r o o f o f T h e o r e m 4.1. This is an application of the Lorentzian split-

ting theorem. It is sufficient to establish the existence of a timelike line under appropriate

circumstances. Theorem 4.1 is an immediate consequence of the Lorentzian splitting the-

orem and the following theorem.

Theorem 4.4. Let M be a timelike geodesically complete spacetime with compact

Cauchy surface S. Suppose there exists a future S-ray γ and a past S-ray η such that

I−(γ) ∩ I+(η) 6= ∅. Then M contains a timelike line.

P r o o f. We fix a complete Riemannian metric h on M . With the exception of certain

limit curves which inherit a limit parameter, it will be convenient to parameterize all

causal curves by arc length with respect to h.

We construct a causal (timelike or null) line in the most obvious way and show that

it must be timelike. Choose qn = γ(tn), tn →∞ and pn = η(sn), sn → ∞ such that

pn ∈ I−(qn) for all n. Let σn : [−an, bn] → M be a maximal timelike geodesic segment

from pn to qn, parameterized with respect to h-arc length so that σn(0) ∈ S. Since

pn and qn diverge to infinity, and S is compact, we have that an, bn → ∞. By using an

appropriate version of the limit curve lemma (see e.g., [GH]), and passing to a subsequence

if necessary, we may assume that {σn} converges uniformly on compact subsets to an

inextendible causal curve σ : (−∞,∞) → M . By the usual arguments, the maximality

of the σn’s guarantees that σ is a timelike or null line. We show that σ is timelike.
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Let αn = σn|[0,bn], βn = −σn|[0,an], α = σ|[0,∞), and β = −σ|[0,∞). We have that

αn → α uniformly on compact subsets. We now establish the following length estimate.

Claim. For each t ∈ [0, bn],

(4.1) L(αn|[0,t]) ≥ ρ(αn(t))− δ ,

where L is Lorentzian arc length and δ = ρ(p1) + ρ(q1).

P r o o f o f t h e c l a i m. Using the maximality of σn, and the fact that γ and η are

S-rays, we obtain

L(αn) = L(σn)− L(βn)(4.2)

≥ L(γ|[t1,tn]) + L(η|[s1,sn])− L(βn)

= ρ(qn) + ρ(pn)− δ − L(βn)

≥ ρ(qn)− δ

which proves (4.1) for t = bn.

Now, for t ∈ [0, bn), we have by (4.2),

L(αn|[0,t]) = L(αn)− L(αn|[t,bn])

≥ ρ(qn)− d(αn(t), qn)− δ
≥ (ρ(αn(t)) + d(αn(t), qn))− d(αn(t), qn)− δ
= ρ(αn(t))− δ ,

which establishes the claim.

Letting n→∞ in (4.1) we obtain

(4.3) L(α|[0,t]) ≥ ρ(α(t))− δ for all t ∈ [0,∞) .

Lemma 4.2 implies that α must meet Sc={ρ=c} for all c≥0. It follows that ρ(α(t))→
∞ as t → ∞. Thus, for t sufficiently large, the right hand side of (4.3) is positive. This

implies that α, and, hence, σ are timelike.

R e m a r k s. Theorem 4.4 generalizes, in the globally hyperbolic setting, the main

result in [EG]. Moreover, as in [EG], the assumption of global hyperbolicity in Theorem

4.4 can be substantially weakened. It is sufficient to assume that S is a compact acausal

C0 spacelike hypersurface. Thus, Theorem 4.1 remains valid under the weaker assumption

that S is compact and acausal.

The following corollary to Theorem 4.1 addresses the problem of Geroch alluded to

above [GR2, Problem 6, p.288].

Corollary 4.5. Let M be a 4-dimensional spacetime with compact Cauchy sur-

face S, which obeys the following energy condition: For each timelike vector X ∈ TpM ,

Ric(X,X) ≥ 0 and = 0 if and only if Ric = 0 at p. If M is timelike geodesically complete,

and contains a future S-ray γ and a past S-ray η such that I−(γ)∩ I+(η) 6= ∅ then M is

flat.
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R e m a r k. By the Einstein equation (with zero cosmological constant), the energy

condition will be satisfied for Type I energy-momentum tensors [HE, p. 89], provided the

energy density µ and the principal pressures pα, α = 1, 2, 3, are nonnegative.

P r o o f. By Theorem 4.1, M splits as in the conjecture, (M4, g) = (R×V 3,−dt2⊕h).

The product structure implies that Ric( ∂∂t ,
∂
∂t ) ≡ 0, and hence, by the energy condition,

M is Ricci flat. The product structure then also implies that V is Ricci flat. Since dimV =

3, V is flat.

Although the Bartnik conjecture remains open, it has stimulated the development of

some interesting mathematics which may ultimately play a role in its final resolution.
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