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1. Introduction. The Vlasov equation arises in kinetic theory. It gives a statistical

description of a collection of particles. It is distinguished from other equations of kinetic

theory by the fact that there is no direct interaction between particles. In particular, no

collisions are included in the model. Each particle is acted on only by fields which are

generated collectively by all particles together. The fields which are taken into account

depend on the physical situation being modelled. In plasma physics, where this equation

is very important, the interaction is electromagnetic and the fields are described either by

the Maxwell equations or, in a quasi-static approximation, by the Poisson equation [26]. In

gravitational physics, which is the subject of the following, the fields are described by the

Einstein equations or, in the Newtonian approximation, by the Poisson equation. (There

is a sign difference in the Poisson equation in comparison with the electromagnetic case

due to the replacement of a repulsive by an attractive force.) The best known applications

of the Vlasov equation to self-gravitating systems are to stellar dynamics [3]. It can also

be applied to cosmology. In the first case the systems considered are galaxies or parts of

galaxies where there is not too much dust or gas which would require a hydrodynamical

treatment. Possible applications are to globular clusters, elliptical galaxies and the central

bulge of spiral galaxies. The ‘particles’ in all these cases are stars. In the cosmological

case they are galaxies or even clusters of galaxies. The fact that they are modelled as

particles reflects the fact that their internal structure is believed to be irrelevant for the

dynamics of the system as a whole.

These lectures are concerned not with the above physical applications but with some

basic mathematical aspects of the Einstein–Vlasov system. First the definition and gen-

eral mathematical properties of this system of partial differential equations are discussed

and then the Cauchy problem for this system is formulated. The central theme in what

follows is the global Cauchy problem, where ‘global’ means global in time. Up to now
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global results have only been obtained in very special cases and one of these, the case

of spherically symmetric asymptotically flat solutions, is discussed in detail. The global

existence results presented depend on having a suitable local existence result. At first the

necessary local existence theorem is stated without proof and used in obtaining global

theorems. The proof of the local existence theorem is discussed in some detail afterwards.

Further information on kinetic theory in general relativity may be found in [10].

Let (M, gαβ) be a spacetime, i.e. M is a four-dimensional manifold and gαβ is a metric

of Lorentz signature (−,+,+,+). Note that gαβ denotes a geometric object here and not

the components of the geometric object in a particular coordinate system. In other words

the indices are abstract indices. (See [28], section 2.4 for a discussion of this notation.) It

is always assumed that the metric is time-orientable, i.e. that the two halves of the light

cone at each point of M can be labelled past and future in a way which varies continuously

from point to point. With this global direction of time, it is possible to distinguish between

future-pointing and past-pointing timelike vectors. The worldline of a particle of non-zero

rest mass m is a timelike curve in spacetime. The unit future-pointing tangent vector to

this curve is the 4-velocity vα of the particle. Its 4-momentum pα is given by mvα. There

are different variants of the Vlasov equation depending on the assumptions made. Here

it is assumed that all particles have the same mass m but it would also be possible to

allow a continuous range of masses. When all the masses are equal, units can be chosen

so that m = 1 and no distinction need be made between 4-velocity and 4-momentum.

There is also the possibility of considering massless particles, whose wordlines are null

curves. In the case m = 1 the possible values of the four-momentum are precisely all

future-pointing unit timelike vectors. These form a hypersurface P in the tangent bundle

TM called the mass shell. The distribution function f , which represents the density of

particles with given spacetime position and four-momentum, is a non-negative real-valued

function on P . A basic postulate in general relativity is that a free particle travels along

a geodesic. Consider a future-directed timelike geodesic parametrized by proper time.

Then its tangent vector at any time is future-pointing unit timelike. Thus this geodesic

has a natural lift to a curve on P , by taking its position and tangent vector together.

This defines a flow on P . Denote the vector field which generates this flow by X. (This

vector field is what is sometimes called the geodesic spray in the mathematics literature.)

The condition that f represents the distribution of a collection of particles moving freely

in the given spacetime is that it should be constant along the flow, i.e. that Xf = 0. This

equation is the Vlasov equation, sometimes also known as the Liouville or collisionless

Boltzmann equation.

To get an explicit expression for the Vlasov equation, it is necessary to introduce

local coordinates on the mass shell. In the following local coordinates xα on spacetime

are always chosen such that the hypersurfaces x0=const. are spacelike. (Greek and

Roman indices take the values 0, 1, 2, 3 and 1, 2, 3 respectively.) Intuitively this means

that x0, which may also be denoted by t, is a time coordinate and that the xa are spatial

coordinates. A timelike vector is future-pointing if and only if its zero component in a

coordinate system of this type is positive. It is not assumed that the vector ∂/∂x0 is

timelike. One way of defining local coordinates on P is to take the spacetime coordinates

xα together with the spatial components pa of the four-momentum in these coordinates.
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Then the explicit form of the Vlasov equation is:

∂f/∂t+ (pa/p0)∂f/∂xa − (Γaβγp
βpγ/p0)∂f/∂pa = 0 (1.1)

where Γαβγ are the Christoffel symbols associated to the metric gαβ . Here it is understood

that p0 is to be expressed in terms of pa and the metric using the relation gαβp
αpβ = −1.

An alternative way of coordinatizing the mass shell which is often useful is to use the

components of the four-momentum in an orthormal frame, which has a priori nothing to

do with the frame defined by the coordinates. It should be chosen so that the first vector

is future-pointing timelike. Here only the case where the first vector is the unit normal

to the hypersurfaces of constant time will be considered. The explicit form of the Vlasov

equation in these coordinates is similar to (1.1), with the Christoffel symbols replaced by

the Ricci rotation coefficients γµνρ of the frame. Explicitly, it is given by:

e00∂f/∂t+ (vµ/v0)eaµ∂f/∂x
a − (γiµνv

µvν/v0)∂f/∂vi = 0 (1.2)

The convention is used that frame indices are denoted by letters from the middle of the

alphabet, while coordinate indices are taken from the beginning of the alphabet. The

components of the frame vectors are denoted by eαµ and pα and vµ are related by the

equation pα = eαµv
µ. Since the frame is orthonormal v0 =

√
1 + δijvivj , where δij is the

Kronecker delta.

The Vlasov equation can be coupled to the Einstein equations as follows, giving rise

to the Einstein–Vlasov system. The unknowns are a 4-manifold M , a (time orientable)

Lorentz metric gαβ on M and a non-negative real-valued function f on the mass shell

defined by gαβ . The field equations consist of the Vlasov equation defined by the metric

gαβ for f and the Einstein equation Gαβ = 8πTαβ . (Units are chosen here so that the

speed of light and the gravitational constant both have the numerical value unity.) To

obtain a complete system of equations it remains to define Tαβ in terms of f and gαβ .

It is defined as an integral over the part of the mass shell over a given spacetime point

with respect to a measure which will now be defined. The metric at a given point of

spacetime defines in a tautological way a metric on the tangent space at that point. The

part of the mass shell over that point is a submanifold of the tangent space and as such

has an induced metric, which is Riemannian. The associated measure is the one which

we are seeking. It is evidently invariant under Lorentz transformations of the tangent

space, a fact which may be used to simplify computations in concrete situations. In the

coordinates (xα, pa) on P the explicit form of the energy-momentum tensor is:

Tαβ = −
∫
fpαpβ |g|1/2/p0dp1dp2dp3 (1.3)

A simple computation in normal coordinates based at a given point shows that Tαβ
defined by (1.3) is divergence-free, independently of the Einstein equations being satisfied.

This is of course a necessary compatibility condition in order for the Einstein–Vlasov

system to be a reasonable set of equations. Another important quantity is the particle

current density, defined by:

Nα = −
∫
fpα|g|1/2/p0dp1dp2dp3 (1.4)
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A computation in normal coordinates shows that ∇αNα = 0. This equation is an expres-

sion of the conservation of the number of particles. There are some inequalities which

follow immediately from the definitions (1.3) and (1.4). Firstly NαV
α ≤ 0 for any future-

pointing timelike or null vector V α, with equality only if f = 0 at the given point. Hence

unless there are no particles at some point, the vector Nα is future-pointing timelike.

Next, if V α and Wα are any two future-pointing timelike vectors then TαβV
αW β ≥ 0.

This is the dominant energy condition ([12], p. 91). Finally, if Xα is a spacelike vector

then TαβX
αXβ ≥ 0. This is the non-negative pressures condition. This condition, the

dominant energy condition and the Einstein equations together imply that the Ricci ten-

sor satisfies the inequality RαβV
αV β ≥ 0 for any timelike vector V α. The last inequality

is called the strong energy condition. These inequalities constitute one of the reasons

which mean that the Vlasov equation defines a well-behaved matter model in general

relativity. However this is not the only reason. A perfect fluid with a reasonable equation

of state or matter described by the Boltzmann equation also have energy-momentum

tensors which satisfy these inequalities.

The Vlasov equation in a fixed spacetime is a linear hyperbolic equation for a scalar

function and hence solving it is equivalent to solving the equations for its characteristics.

In coordinate components these are:

dXa/ds = P a

dP a/ds = −ΓaβγP
βP γ/P 0

(1.5)

Let Xa(s, xα, pa), P a(s, xα, pa) be the unique solution of (1.5) with initial conditions

Xa(t, xα, pa) = xa and P a(t, xα, pa) = pa. Then the solution of the Vlasov equation can

be written as:

f(xα, pa) = f0(Xa(0, xα, pa), P a(0, xα, pa)) (1.6)

where f0 is the restriction of f to the hypersurface t = 0. This function f0 serves as initial

datum for the Vlasov equation. It follows immediately from this that if f0 is bounded

by some constant C, the same is true of f . This obvious but important property of the

solutions of the Vlasov equation is used frequently without comment in the study of this

equation.

The above calculations involving Tαβ and Nα were only formal. In order that they

have a precise meaning it is necessary to impose some fall-off in the momentum variables

on f so that the integrals occurring exist. The simplest condition to impose is that f

has compact support for each fixed t. This property holds if the initial datum f0 has

compact support and if each hypersurface t = t0 is a Cauchy hypersurface. For by the

definition of a Cauchy hypersurface, each timelike curve which starts at t = 0 hits the

hypersurface t = t0 at a unique point. Hence the geodesic flow defines a continuous

mapping from the part of the mass shell over the initial hypersurface t = 0 to the

part over the hypersurface t = t0. The support of f(t0), the restriction of f to the

hypersurface t = t0 is the image of the support of f0 under this continuous mapping and

so is compact. Let P (t) be the supremum of the values of |pa| attained on the support

of f(t). It turns out that in many cases controlling the solution of the Vlasov equation

coupled to some field equation in the case of compactly supported initial data for the
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distribution function can be reduced to obtaining a bound for P (t). An example of this

is given below.

The data in the Cauchy problem for the Einstein equations coupled to any matter

source consist of the induced metric gab on the initial hypersurface, the second funda-

mental form kab of this hypersurface and some matter data. In fact these objects should

be thought of as objects on an abstract 3-dimensional manifold S. Thus the data con-

sist of a Riemannian metric gab, a symmetric tensor kab and appropriate matter data,

all defined intrinsically on S. The nature of the initial data for the matter will now be

examined in the case of the Einstein–Vlasov system. It is not quite obvious what to do,

since the distribution function f is defined on the mass shell and so the obvious choice

of initial data, namely the restriction of f to the initial hypersurface, is not appropriate.

For it is defined on the part of the mass shell over the initial hypersurface and this is not

intrinsic to S. This difficulty can be overcome as follows. Let φ be the mapping which

sends a point of the mass shell over the initial hypersurface to its orthogonal projection

onto the tangent space to the initial hypersurface. The map φ is a diffeomorphism. The

abstract initial datum f0 for f is taken to be a function on the tangent bundle of S. The

initial condition imposed is that the restriction of f to the part of the mass shell over

the initial hypersurface should be equal to f0 composed with φ. An initial data set for

the Einstein equations must satisfy the constraints and in order that the definition of an

abstract initial data set for the Einstein equations be adequate it is necessary that the

constraints be expressible purely in terms of the abstract initial data. The constraint

equations are:

R− kabkab + (trk)2 = 16πρ (1.7)

∇akab −∇b(trk) = 8πjb (1.8)

Here R denotes the scalar curvature of the metric gab. If nα denotes the future-pointing

unit normal vector to the initial hypersurface and hαβ = gαβ + nαnβ is the orthogonal

projection onto the tangent space to the initial hypersurface then ρ = Tαβn
αnβ and

jα = −hαβTβγnγ . The vector jα satisfies jαnα = 0 and so can be naturally identified

with a vector intrinsic to the initial hypersurface, denoted here by ja. What needs to be

done is to express ρ and ja in terms of the intrinsic initial data. They are given by the

following expressions:

ρ =

∫
f0(pa)papa/(1 + papa)1/2((3)g)1/2dp1dp2dp3 (1.9)

ja =

∫
f0(pa)pa((3)g)1/2dp1dp2dp3 (1.10)

If a three-dimensional manifold on which an initial data set for the Einstein–Vlasov

system is defined is mapped into a spacetime by an embedding ψ then the embedding is

said to induce the given initial data on S if the induced metric and second fundamental

form of ψ(S) coincide with the results of transporting gab and kab with ψ and the relation

f = f0 ◦ φ holds, as above. A form of the local existence and uniqueness theorem can

now be stated. This will only be done for the case of smooth (i.e. infinitely differentiable)

initial data although versions of the theorem exist for data of finite differentiability.
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Theorem 1.1. Let S be a 3-dimensional manifold , gab a smooth Riemannian metric

on S, kab a smooth symmetric tensor on S and f0 a smooth non-negative function of

compact support on the tangent bundle TS of S. Suppose further that these objects satisfy

the constraint equations (1.7 )-(1.8 ). Then there exists a smooth spacetime (M, gαβ), a

smooth distribution function f on the mass shell of this spacetime and a smooth embedding

ψ of S into M which induces the given initial data on S such that gαβ and f satisfy

the Einstein–Vlasov system and ψ(S) is a Cauchy hypersurface. Moreover , given any

other spacetime (M ′, g′αβ), distribution function f ′ and embedding ψ′ satisfying these

conditions, there exists a diffeomorphism χ from an open neighbourhood of ψ(S) in M

to an open neighbourhood of ψ′(S) in M ′ which satisfies χ ◦ ψ = ψ′ and carries gαβ and

f to g′αβ and f ′ respectively.

The formal statement of this theorem is rather complicated, but its essential meaning

is as follows. Given an initial data set (satisfying the constraints) there exists a corre-

sponding solution of the Einstein–Vlasov system and this solution is locally unique up to

diffeomorphism. There also exists a global uniqueness statement which uses the notion

of the maximal Cauchy development of an initial data set, but this is not required in the

following. The first proof of a theorem of this kind for the Einstein–Vlasov system is due

to Choquet-Bruhat [7].

In the following we are mainly concerned with asymptotically flat spacetimes. These

are the spacetimes which are appropriate for describing isolated systems in general relativ-

ity. It is assumed that these spacetimes admit a Cauchy hypersurface with topology R3,

although more general cases could also be considered. The smooth data set (gab, kab, f0)

on R3 is said to be asymptotically flat if there exist global coordinates xa such that as |x|
tends to infinity the components gab in these coordinates tend to δab, the components kab
tend to zero, f0 has compact support and certain norms are finite. These are weighted

Sobolev norms. If u is a smooth function on R3 define

‖u‖Hs
δ

=

[
s∑
i=0

∫
(1 + |x|2)(δ+i)|Diu|2dx

]1/2
(1.11)

where |Diu| denotes the maximum modulus of any partial derivative of order i of the

function u. If the quantity (1.11) is finite then u is said to belong to the weighted Sobolev

space Hs
δ . Assume for asymptotic flatness that gab − δab ∈ Hs

δ and that kab ∈ Hs−1
δ+1

for s sufficiently large and −3/2 < δ < −1/2. If a spacetime is asymptotically flat then

Theorem 1.1 can be sharpened to say that there exists a local solution corresponding to

the given initial data and coordinates defined for that solution such that the solution exists

on R3×[0, T ) for some T > 0 and the data induced on the hypersurfaces t =const. satisfy

the same type of asymptotic flatness conditions as the initial data on the hypersurface

t = 0. More precisely, there exist coordinates so that the data induced by the solution

on each hypersurface of constant time belongs to the same weighted Sobolev space as

the initial data. Moreover the restrictions of the functions g00 + 1 and g0a of the metric

components to any hypersurface of constant time belong to weighted Sobolev spaces. A

proof of this is sketched in Section 4.

The local existence theorem can be supplemented by a statement that the solution

depends continuously on the data. This is not stated in full generality here; only some



EINSTEIN–VLASOV SYSTEM 41

statements for asymptotically flat data are given. Given a family of initial data which is

bounded in a weighted Sobolev space with s sufficiently large and is such that the metric

is uniformly positive definite, the coordinates above can be chosen so that the solutions

corresponding to all data in the family exist on the same time interval [0, T ), the weighted

Sobolev norm of the data induced by these solutions on a hypersurface of constant time

is uniformly bounded and the induced metric on one of these hypersurfaces is uniformly

positive definite. Moreover, the restrictions of g00 + 1 and g0a to each hypersurface of

constant time are uniformly bounded in a weighted Sobolev space for all data in the

family and g00 is uniformly bounded away from zero. See Section 4.

Suppose now that an asymptotically flat initial data set admits a group G of sym-

metries, i.e. that a Lie group G acts on the manifold S in such a way that gab, kab and

f0 are preserved. Then the spacetime in Theorem 1.1 can be chosen so that it admits

G as a symmetry group. More precisely, there exists an action of G on M by isometries

which preserves f and which restricts to the original action on S. To prove this, consider

the geodesic γ(p) through a point p ∈ S orthogonal to S in a spacetime with the given

initial data. Let t(p) denote the largest number such that, when γ(p) is parametrized by

proper time, with p corresponding to the parameter value zero, this geodesic is defined

on the interval (−t(p), t(p)). By what has been said above, the spacetime can be chosen

so that there exists a number T > 0 which is smaller than t(p) for each p ∈ S. Since the

spacetime is globally hyperbolic, each point can be joined to the initial hypersurface by

a timelike geodesic of maximal length. If T is chosen sufficiently small then the geodesic

is unique. A new spacetime can be defined as the open subset of the original spacetime

where this distance is less than T . It will now be shown that the action of G on S extends

to an action on this new spacetime, whose underlying manifold will be denoted by M .

Given a point q ∈ M , let p be the point where the unique geodesic γ of maximal length

from q to the initial hypersurface S meets S. Let φ : G×S→S denote the action of G on

S. For g ∈ G and q ∈M , let φ̃g(q) be the point which lies the same distance to the future

of φg(p) along the future-directed geodesic starting orthogonal to S at φg(p) as q lies to

the future of p along γ(p). This defines a mapping φ̃ : G ×M → M by φ̃(g, q) = φ̃g(q).

This mapping φ̃ is an action of G on M which restricts to φ. By the uniqueness part of

Theorem 1.1, it must preserve gαβ and f .

The global theorems to be proved later make use of the concept of maximal hypersur-

faces. A spacelike hypersurface in a spacetime is called maximal if its mean curvature trk

is zero. If an initial data set is given which is maximal in this sense and asymptotically flat

it is of interest to know whether the corresponding local solution of the Einstein–Vlasov

system, whose existence is guaranteed by the above theorem, can be foliated by maximal

hypersurfaces in a neighbourhood of the initial hypersurface. Given what has already

been said about the local existence of asymptotically flat spacetimes, this can be proved

using the implicit function theorem (cf. [16]). The time coordinate t above can be cho-

sen so that its level hypersurfaces are maximal hypersurfaces and it can also be arranged

that as |x| → ∞ the coordinate t agrees asymptotically with proper time along a geodesic

which starts normal to the initial hypersurface. (This implies that g00 tends to unity as |x|
tends to infinity.) When this has been imposed the foliation by maximal hypersurfaces is

unique and so this construction gives a unique preferred time coordinate. The restriction
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of the solution to any of the maximal hypersurfaces is asymptotically flat. Once again

there is a statement of uniformity. For a family of maximal initial data which is bounded

in a suitable weighted Sobolev space the maximal foliation can be assumed to exist on

a time interval which is uniform for all data in the family. These statements about the

existence of maximal foliations are not too dependent on the fact that the matter is de-

scribed by the Vlasov equation. The essential property which is needed for the existence

and uniqueness theorems is the strong energy condition.

The approach to studying the global structure of asymptotically flat solutions of the

Einstein–Vlasov system presented in these lectures is closely related to work which has

been done in the spatially compact case [25, 4]. The main difference is that in a non-flat

spacetime satisfying the strong energy condition with a compact Cauchy hypersurface

there exists at most one maximal hypersurface [16]. In this case the maximal foliation

of the asymptotically flat case can be replaced by a constant mean curvature (CMC)

foliation. This means that each leaf of the foliation has constant mean curvature, while

the value of the mean curvature varies monotonically from one leaf to the next.

2. Spherical symmetry. Investigating the global properties of general solutions of

the Einstein–Vlasov system is beyond the scope of existing mathematical techniques.

For comparison, note that the same comment applies to the Vlasov–Maxwell system (cf.

[19] for the most general known results) while general global existence results have been

obtained for the simpler Vlasov–Poisson system ([17], [13], [21]). When a system of partial

differential equations appears inaccessible to direct attack, a natural strategy is to study

the simpler equations obtained by imposing symmetry conditions on the solutions of the

original equations. In the case of asymptotically flat solutions of the Einstein–Vlasov

system, it seems that there are only two possible symmetry assumptions: spherical and

rotational symmetry. In the latter case, where the symmetry group is one-dimensional

and has fixed points (on the axis of rotation), the simplification obtained is not sufficient

to bring the problem within range of present techniques. Thus in the following treatment

of global questions we consider only the spherically symmetric case. Note for comparison

that in the spatially compact case a wider variety of tractable symmetry types exists.

A solution (M, gαβ , f) of the Einstein–Vlasov system is said to be spherically sym-

metric if there exists an action of SO(3) on M by isometries whose generic orbits are

two-dimensional such that the natural lift of this action to the mass shell preserves f .

There is of course an analogous definition of a spherically symmetric initial data set.

Consider now a spherically symmetric asymptotically flat maximal initial data set. From

the last section we know that there exists a corresponding local solution of the Einstein–

Vlasov system. Moreover, it can be assumed without loss of generality that SO(3) acts on

this local solution as a symmetry group so that it is spherically symmetric. Furthermore,

there exists a neighbourhood U of the initial hypersurface which can be foliated by max-

imal hypersurfaces whose intrinsic geometry is asymptotically flat and this foliation is

unique. It follows from the latter fact that each maximal hypersurface is invariant under

the action of SO(3). In other words, it is a union of orbits of the action of SO(3) on

spacetime. Let r, the area radius, be defined by the condition that on any orbit it takes

the constant value
√
A/4π, where A is the area of the given orbit. Consider now a fixed
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spacelike hypersurface S0 which is invariant under the action of SO(3). A geodesic of the

induced metric on S0 which starts orthogonal to the orbits remains orthogonal to them.

These geodesics will be called radial geodesics. Let θ, φ be standard spherical coordinates

on one of the orbits. Extend them to be constant along the radial geodesics. Since radial

geodesics can never intersect except at the centre this prescription is globally well de-

fined. In the coordinates (r, θ, φ) the metric components g12 and g13 vanish. The metric

intrinsic to the orbits takes the standard form r2(dθ2 + sin2 θdφ2). Hence, provided the

gradient of r does not vanish anywhere, the induced metric on S0 can be written in the

form

e2λ(r)dr2 + r2(dθ2 + sin2 θdφ2) (2.1)

This way of defining spatial coordinates was used in [20]. It cannot be used if the restric-

tion of r to the hypersurfaces of constant time has a vanishing gradient somewhere. A

point where the gradient vanishes corresponds to a minimal surface. Here we use another

type of coordinate system which does not suffer from this difficulty. First note that it is

possible to write the metric in the form

B2(x)dx2 + r2(x)(dθ2 + sin2 θdφ2) (2.2)

without restriction, for some function B. Since there is always a neighbourhood of the

origin without minimal surfaces it can be assumed without loss of generality that r(x) = x

near the origin. Since B is smooth when considered as a function on spacetime, it must

be a smooth function of x2. Furthermore, in order that the spacetime be regular at x = 0

and not have a conical singularity, B(0) must be equal to unity. This means in particular

that it is possible to write B(x) = 1 + x2D(x), where D(x) is a smooth function of x2.

A new coordinate R will be sought which is a function of x and has the property that,

when expressed in terms of the coordinate R, the metric takes the form:

A2(R)(dR2 +R2(dθ2 + sin2 θdφ2)) (2.3)

Coordinates of this sort, or more precisely the Cartesian coordinates corresponding to

these polar coordinates, are often known as isotropic coordinates. Writing down the coor-

dinate transformation shows that R(x) is a solution of the equation dR/dx = RB(x)/r(x).

This equation has a solution which is unique up to a constant scaling. To see this, note

first that this is a first order homogeneous linear ordinary differential equation. Hence

it has a one-parameter family of solutions which can all be got by multiplying one par-

ticular solution by an arbitrary constant. If we know the existence of the solution near

the origin then the existence for all values of R follows by the standard existence and

uniqueness theorem for ordinary differential equations. Near the origin the equation can

be solved, giving R = Cx exp
∫ x
0
x′D(x′)dx′. Near infinity, the asymptotic flatness of

the metric implies that A tends to a constant value. The scaling can be chosen so that

limR→∞A(R) = 1 and then the solution is determined uniquely. Now let t be a time

coordinate which is constant on each leaf of the preferred foliation by maximal hypersur-

faces and which agrees asymptotically with proper time. Introducing a coordinate R as

above on each leaf puts the metric in the form:

−α2(t, R)dt2 +A2(t, R)[(dR+ β(t, R)dt)2 +R2(dθ2 + sin2 θdφ2)] (2.4)
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As a consequence of the choice of coordinates the functions A and α tend to unity as

R → ∞ for each fixed t while β → 0. The smoothness of the spacetime metric together

with spherical symmetry implies that α, A, and R−1β are smooth functions of R2.

For a metric of the form (2.4) which satisfies the extra condition that the hypersurfaces

of constant time are maximal hypersurfaces the field equations and coordinate conditions

take the following form:

(R2(A1/2)′)′ = − 1
8A

5/2R2( 3
2K

2 + 16πρ) (2.5)

α′′ + 2α′/R+A−1A′α′ = αA2[ 32K
2 + 4π(ρ+ trS)] (2.6)

K ′ + 3(A−1A′ + 1/R)K = 8πAj (2.7)

β′ −R−1β = 3
2αK (2.8)

∂tA = −αKA+ (βA)′ (2.9)

∂tK = −A−2α′′ +A−3A′α′ + α[−2A−3A′′ + 2A−4A′
2 − 2A−3A′/R− 8πSR

+ 4πtrS − 4πρ] + βK ′ (2.10)

The notation used in these equations will now be explained. A prime denotes a deriva-

tive with respect to R. The quantity K is that obtained by contracting the second

fundamental form of the hypersurface t =const. twice with the unit vector A−1∂/∂R

while SR is obtained in the corresponding way from the energy-momentum tensor. The

quantity trS is the trace of the spatial part of the energy-momentum tensor, i.e. if nα

is the unit future-pointing normal vector to the hypersurfaces of constant time, then

trS = Tαβ(gαβ +nαnβ). The quantity j is obtained by contracting Tαβ once with nα and

once with the vector A−1∂/∂R and ρ is the energy density Tαβn
αnβ . In the standard

terminology of the 3 + 1-decomposition of Einstein’s equations, α is the lapse function

and β is the one non-trivial component of the shift vector. Equation (2.5) is the ex-

plicit form of the Hamiltonian constraint (1.7) in this class of spacetimes with this kind

of coordinate condition. The maximal slicing condition is expressed by the lapse equa-

tion (2.6). The one non-trivial component of the momentum constraint (1.8) in these

spacetimes is (2.7). Equation (2.8) is a consequence of the coordinate condition chosen

while (2.9) follows from the definition of the second fundamental form. Finally, (2.10) is

the one non-trivial Einstein evolution equation in this class of spacetimes. This form of

the field equations has been used by Shapiro and Teukolsky for numerical calculations

(see [27]).

What has been shown above implies that given asymptotically flat spherically symmet-

ric maximal initial data for the Einstein–Vlasov system, there exists a corresponding local

solution and some T1 > 0 such that this spacetime can be covered by coordinates which

cast it in the form (2.4) and for which the time coordinate ranges in the interval (−T1, T1)

and the initial hypersurface is given by t = 0. In fact we are only interested in evolution to

the future and hence only consider the part of spacetime on the interval [0, T1). The quan-

tities describing the metric and matter then satisfy the equations (2.5)-(2.10). The Vlasov

equation is of course also satisfied. It turns out to be useful for some purposes to write

it in Cartesian coordinates. Let xa be the coordinates (R sin θ cosφ,R sin θ sinφ,R cos θ).

Define a related orthonormal frame by ei = A−1∂/∂xi. Then if the mass shell is coordina-

tized by (t, xa, vi) , where vi denote the components of a vector in the given orthonormal
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frame the Vlasov equation takes the explicit form:

∂f

∂t
+

(
αA−1

v√
1 + |v|2

− β x
R

)
· ∂f
∂x

+

[
−A−1α′

√
1 + |v|2 x

R
− 1

2
αK

(
v − 3vr

x

R

)
−αA−2A′

(
vvr − |v|2

x

R

) 1√
1 + |v|2

]
· ∂f
∂v

= 0 (2.11)

Here a dot denotes the usual inner product in R3, |v| =
√
v · v and vr = (v · x)/R. For

given initial data there exists a solution on an interval [0, T1) of the equations (2.5)-(2.11)

supplemented by the definitions of the matter quantities. The whole system of equations

will be referred to as the ‘reduced Einstein–Vlasov system’. This solution of the reduced

system is uniquely determined by its restriction to t = 0, as follows easily from the general

uniqueness theorem for solutions of the Einstein–Vlasov system and the uniqueness of

the coordinate system used. As a consequence there exists a greatest value of T1 (finite

or infinite, call it T∗) for which a solution of the reduced equations with the given initial

data exists on the time interval [0, T1). The interval [0, T∗) is called the maximal interval

of existence. The global existence question, which is the main theme of these lectures, is

the question under what circumstances T∗ =∞.

One possible strategy for proving global existence theorems will now be outlined.

Suppose that in some way it were possible to show for given initial data that for any

corresponding solution on a finite interval [0, T1) the metric components, the distribution

function and all their derivatives of all orders with respect to t and x were bounded.

Then global existence for these initial data would follow. For the metric components, the

distribution function and all their derivatives of all orders would be uniformly continuous.

By a standard theorem on metric spaces they would all extend to continuous functions

on the closed interval [0, T1]. By another standard theorem, this time of real analysis, the

extensions are C∞ and each derivative of each extension is equal to the extension of the

corresponding derivative. In this way smooth initial data are defined on the hypersurface

t=T1. Provided these new initial data are asymptotically flat, the local existence theorem

can be applied again to show that the original solution has an extension to an interval

[0, T2) with T2 > T1. Hence T1 6= T∗. But since T1 was an arbitrary positive number this

only leaves the possibility that T∗ =∞ and global existence is proved. In the following a

situation is exhibited where bounds similar to those which are assumed in this argument

can actually be obtained.

To get closer to the situation which has just been described, consider a solution of

the reduced equations defined on some interval [0, T1). It will now be shown that many

quantities can be bounded by using the Einstein–Vlasov system. By the dominant energy

condition ρ ≥ 0. Hence equation (2.5) shows that R2(A1/2)′ is a non-increasing function

of R for each fixed t. When R = 0 it is zero and hence R2(A1/2)′ ≤ 0. It follows that

A′ ≤ 0. The boundary condition that A → 1 as R → ∞ then gives A ≥ 1. Next, from

(2.6),

(R2Aα′)′ = αA3R2[ 32K
2 + 4π(ρ+ trS)] ≥ 0 (2.12)

The expression on the right hand side of (2.12) is non-negative, as follows from the

dominant energy and non-negative pressures conditions. Since R2Aα′ vanishes for R = 0
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it can be seen that R2Aα′ ≥ 0 and α′ ≥ 0. Using the boundary condition that α→ 1 as

R→∞ gives α ≤ 1.

Next an estimate of Malec and Ó Murchadha [15] will be used. The expansions of the

null geodesics which start normal to the orbits are given by

θ = 2(A−2A′ + (AR)−1) +K θ′ = 2(A−2A′ + (AR)−1)−K (2.13)

The area radius is given by r = AR. The theorem of [15] states that, if the dominant

energy condition holds, the quantities rθ and rθ′ are bounded in modulus by two. Adding

and subtracting these estimates and using the explicit expressions in (2.13) gives the

inequalities RA|K| ≤ 2 and |RA−1A′ + 1| ≤ 1. Since A ≥ 1 it can be concluded from

the first of these inequalities that |K| ≤ 2R−1. The second inequality gives |A−1A′| ≤
2R−1. In particular this gives pointwise bounds for K and A−1A′ away from the centre.

Integrating (2.8) gives

R−12 β(R2)−R−11 β(R1) = 3
2

∫ R2

R1

(αK/s)ds (2.14)

Asymptotic flatness implies that K = O(R−1) as R→∞. Hence it is possible to let R2

tend to infinity in this equation to get an expression for R−1β(R) as an integral from R

to ∞. Using the bounds already obtained for K and α shows that

|β| ≤ 3
2R

∫ ∞
R

(2/s2)ds ≤ 3 (2.15)

and so β is bounded. A bound for α′ can be obtained by analysing the inequality

(R2Aα′)′ ≥ 0, which was already used to show that α ≤ 1. Integrating this between

the radii R1 and R2 with R1 < R2 gives:

α′(R2) ≥ (R1/R2)2(A(R1)/A(R2))α′(R1) (2.16)

Integrating again then gives:

α(R2) ≥ α′(R1)(R2
1A(R1))

∫ R2

R1

R−2(A(R))−1dR (2.17)

Now use the facts that α(R2) ≤ 1 and that A(R) ≤ A(R1) for R ≥ R1 to see that:

1 ≥ α′(R1)R2
1

∫ R2

R1

R−2dR (2.18)

This holds for all R2 ≥ R1 and so it is permissible to replace the upper limit in the

integral by infinity. Evaluating the integral gives α′(R) ≤ R−1 for all R > 0. Note

that in deriving all these estimates, the only properties of the matter fields used were

the dominant energy condition and the inequality ρ + trS ≥ 0. The latter follows from

the strong energy condition. Thus all these estimates hold not only for the Einstein–

Vlasov system, but also for the Einstein equations coupled to any matter model which

satisfies the dominant and strong energy conditions. This includes perfect fluids with

reasonable equations of state, matter described by the Boltzmann equation, the massless

scalar field (or more generally wave maps), any of these matter models combined with

an electromagnetic field in such a way that the total energy-momentum tensor is the

sum of the individual energy-momentum tensors, and the Yang-Mills equations for any

semi-simple gauge group.
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These estimates give good information on the solution away from the centre but,

except in the case of the estimate for β, give no control at the centre. Pointwise estimates

for α′, A′ and K which also give useful information at the centre can be obtained by

optimization arguments. For any fixed radius R0 we have

|K(R)| ≤ 4πA4(0)‖ρ‖∞R0 (2.19)

for any R ≤ R0. Here ‖ ‖∞ denotes the L∞ norm in space, i.e. the maximum value of a

function on a hypersurface of constant time. This inequality is obtained by integrating

equation (2.7) and using the dominant energy condition to bound the modulus of j by ρ.

On the other hand, if R ≥ R0 then |K(R)| ≤ 2R−10 . Thus for any value of R it is true

that

|K(R)| ≤ 4πA4(0)‖ρ‖∞R0 + 2R−10 (2.20)

This can be optimized by choosing R0 so that the function of R0 occurring on the right

hand side of this last inequality has a critical point. This occurs when R0 is equal to

[2πA4(0)‖ρ‖∞]−1/2. It follows that ‖K‖∞≤CA2(0)‖ρ‖1/2∞ for some constant C. A similar

procedure can be used to estimate α′.

α′(R) = A−1R−2
∫ R

0

αA3s2( 3
2K

2 + 4πρ+ 4πtrS)ds ≤ CA7(0)‖ρ‖∞R0 (2.21)

for R ≤ R0. Combining this with the previous pointwise estimate for α′ gives

α′ ≤ C(A7(0)‖ρ‖∞R0 +R−10 ) (2.22)

Doing an optimization as above leads to an estimate of the form α′ ≤ CA7/2(0)‖ρ‖1/2∞ .

From the equation for A:

A′(R) = 1
4R
−2A1/2

∫ R

0

A5/2s2( 3
2K

2 + 16πρ)ds (2.23)

Thus

|A′| ≤ CA(0)[ 14A
6(0)‖ρ‖∞R0 + 2R−10 ] (2.24)

Optimizing gives ‖A′‖∞ ≤ CA4(0)‖ρ‖1/2∞ . Starting from the same equations we can also

bound R−1K, R−1α′ and R−1A′ pointwise in terms of ‖ρ‖∞ and A(0). In particular

R−1K can be bounded by a constant multiple of A4(0)‖ρ‖. Equations (2.6) and (2.7) then

allow α′′ and K ′ to be bounded. Solving (2.5) for A′′ shows that it too can be bounded.

Equation (2.14) and the bounds for β and R−1K imply that R−1β can be bounded by a

constant multiple of A2(0)‖ρ‖1/2∞ . Using equation (2.8) then gives a similar bound for β′.

In the proof of variants of these estimates discussed in the next section, the con-

servation of the total (ADM) mass plays a role and it is convenient to say something

about this conservation law at this point. It is a quite general property of asymptotically

flat spacetimes. It is particularly easy to see in the situation considered here, where

outside a compact set the spacetime is vacuum and spherically symmetric. Equation

(2.7) can be rearranged to give (A3R3K)′ = 8πR3A4j. In vacuum this integrates to give

K = K0(t)R−3A−3 for some function K0(t). Putting this in (2.5) and using the vacuum

condition again gives (R2(A1/2)′)′ = O(R−4). This can be integrated to give:

A(t, R) = (1 +A0(t)R−1)2 +O(R−4) (2.25)
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It follows from (2.8) that (R−1β)′ = 3
2R
−1αK = O(R−4). Hence β = O(R−2) and

β′ = O(R−3). It then follows from (2.9) that ∂tA = O(R−3). Integrating this last

equation in time from 0 to t shows that A(t, R) = A(0, R) +O(R−3), so that A0(t) is in

fact independent of t. The ADM mass is given by limR→∞(−R2A′) and so is also time

independent. From (2.5) we can calculate that the ADM mass is equal to

mADM = 1
8

∫ ∞
0

A5/2R2( 3
2K

2 + 16πρ)dR (2.26)

In all these estimates only the dominant and strong energy condtions have been used.

To go beyond the results of the last paragraphs it is necessary to use the specific

nature of the matter model. For the Einstein–Vlasov system a continuation criterion will

be proved. It is formulated in terms of a quantity P (t), which is defined to be the largest

momentum of any particle at time t. In other words

P (t) = sup{|v| : f(t, x, v) 6= 0 for some x} (2.27)

Before stating the continuation criterion it is necessary to take some time to discuss the

relation between the differentiability of the functions of R describing the spacetime and

the differentiability of the corresponding objects in spacetime. The simplest case is that

of the scalar functions α and A. They are C∞ in the spacetime sense if and only if they

are C∞ as functions of R and all the derivatives of odd order vanish at the origin. This

follows from Lemma A1 of the appendix with m = 0. There is also a quantitative version

of this, which follows from Lemma A2. Consider next β. By definition β = βaxa/R and

βa = βxa/R, where βa is the shift vector. Because of spherical symmetry β must vanish

at the origin. Hence we can apply Lemma A3 to βa. Lemma A4 gives quantitative results

for βa. Consider next K. By definition A2K = kabx
axb/R2. The maximal hypersurface

condition and spherical symmetry together imply that kab vanishes at the origin. Hence

Lemma A2 can be applied with m = 2. Similar considerations apply to the matter

quantities j and SR, whereby in the latter case it is necessary to write SR = S̃R + 1
3 trS,

with S̃R being the contribution to SR of the trace free part of Tab. Because of spherical

symmetry S̃R vanishes at R = 0. The following expressions for some of the quantities

occurring in the Vlasov equation are also significant:

βxa/R = βa kab = − 1
2KA

2(δab − 3xaxb/R
2)

α′xa/R = ∇aα
A′xa/R = ∇aA

(2.28)

Theorem 2.1. If a solution of the reduced Einstein–Vlasov system on the interval

[0, T ) for some positive real number T is such that P (t) and A(t, 0) are bounded then the

solution extends to an interval [0, T1) with T1 > T . In particular , if the maximal interval

of existence [0, T∗) is finite then either P (t) or A(t, 0) is unbounded there.

P r o o f. Suppose that P (t) is bounded on the interval [0, T ). Then the matter quanti-

ties ρ, trS and SR are bounded there. It has been shown above that this, together with the

boundedness of A(t, 0), implies that the quantities A, A′, A′′, R−1A′, α, α′, α′′, R−1α′,

K, K ′, R−1K. β, β′, and R−1β are bounded. It remains to show that all higher spacetime

derivatives of all these quantities are bounded. We have a C2 bound for α and A and a
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C1 bound for K and β when these are considered as functions of R. These imply a C2

bound for A, α and a C1 bound for βa and kab in the three dimensional sense, using the

results of the appendix. It follows that a C1 bound for all the coefficients of the Vlasov

equation on the support of f is obtained. The equations obtained by differentiating the

Vlasov equation with respect to x and v then give the boundedness of the first derivatives

of f with respect to x and v. Using the definition of the energy-momentum tensor gives

a C1 bound for its Cartesian components. The results of the appendix then imply a C1

bound for ρ, j and trS.

Higher derivatives can now be bounded inductively. Assume that a solution of the

reduced equations on a given time interval is such that the Ck+1 norms of α and A and the

Ck norms of K, β, f , ρ, j, trS and SR are bounded and that A−1 is also bounded. Note

that it has already been shown that under the hypotheses of the theorem this statement

holds for k = 1 and this suffices to start the induction. Now consider the case of general

k. It is convenient to rewrite some of the reduced equations in the following form:

(A1/2)′(R) = − 1
8R
−2
∫ R

0

s2[A5/2( 3
2K

2 + 16πρ)](s)ds (2.29)

A(R)α′(R) = R−2
∫ R

0

s2[A2( 3
2K

2 + 4π(ρ+ trS))](s)ds (2.30)

A3(R)K(R) = R−3
∫ R

0

s3[4πA4j](s)ds (2.31)

β′(R) = β′(0) +R

∫ R

0

s−1[ 32αK](s)ds (2.32)

Applying Lemma A5 to (2.29) and (2.30) gives Ck+1 bounds for (A1/2)′ and Aα′, consid-

ered as functions of R. Combining this with the information already available gives Ck+2

bounds for A and α, considered as functions of R. In a similar way, (2.31) and Lemma

A5 give a Ck+1 bound for K. The quantity β′(0) is already known to be bounded. Hence

(2.32) and Lemma A6 imply a Ck+1 bound for β. (In fact it implies a Ck+3 bound,

but that is not relevant here.) Moreover, it can be checked that the derivatives of these

functions which are required to vanish in order that the functions have the correspond-

ing differentiability when considered as functions of three variables, according to the

results of the appendix, do so. For the same reason bounds for the derivatives of these

functions of three variables are obtained. It follows in particular that the coefficients of

the Vlasov equation are Ck+1. Hence the solution of the Vlasov equation is bounded

in the Ck+1 norm. An immediate consequence is that the Cartesian components of the

energy-momentum tensor are bounded in the Ck+1 norm. Finally, applying the results

of the appendix again shows that the Ck+1 norms of ρ, j and trS are bounded and this

completes the inductive step.

It was mentioned earlier that in order to prove global existence it would suffice to

bound the derivatives of all orders of all quantities of interest with respect to t and R.

Here only the derivatives with respect to R have been bounded and it turns out to be

difficult to bound the time derivatives of the lapse function directly. Fortunately it is

enough, in the present context, to bound the spatial derivatives, as will now be shown.
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Let tn be a sequence of times with tn < T for each n and limn→∞ tn = T . The initial

data induced by the given solution on the hypersurfaces t = tn define a sequence of

initial data which are bounded in the C∞ topology. In fact they are also bounded in the

topology of a weighted Sobolev space. To prove this it suffices to obtain some estimates

on an exterior region, say that defined by R ≥ 1. Equation (2.29) and the conservation

of ADM mass shows that A′ is O(R−2), uniformly in t. Equation (2.31) and the fact that

the support of the matter is contained in a region of the form R ≤ R0 for all t in the

interval [0, T1) shows that K = O(R−3), uniformly in t. Using (2.25) and the fact that

under the given circumstances the O(R−4) error term there is uniform in t shows that

A − 1 = O(R−1), uniformly in t. Thus gab − δab is bounded in H1
δ and kab is bounded

in H0
δ+1 for −3/2 < δ < −1/2. To apply the more precise version of the local existence

theorem for asymptotically flat spacetimes it is necessary to have a similar statement

for weighted Sobolev spaces of higher order. This can be proved straightforwardly by

induction using the equations (2.5) and (2.7). It follows that the solutions of the Einstein–

Vlasov system corresponding to the data on each of the hypersurfaces of constant t exist

on some time interval of length ε about the initial time where data are given, with ε

independent of n. Hence the solution extends to the interval [0, T + ε).

With this result in hand, it is easy to show that the first singularity, if one exists,

must occur in the centre.

Theorem 2.2. If a solution of the reduced Einstein–Vlasov system on the interval

[0, T ) for some positive real number T is such that it has a smooth extension to an open

neighbourhood of the point with coordinates (T, 0) then the solution extends to an interval

[0, T1) with T1 > T . In particular , if the maximal interval of existence [0, T∗) is finite

then the solution has a singularity at the point (T∗, 0)

P r o o f. The neighbourhood occurring in the hypotheses of the theorem contains all

points with t > T1 and R ≤ R1 for some T1 < T and some R1 > 0. Since the solution

is smooth for t < T1 it follows that all unknowns in the reduced system are bounded on

the region R ≤ R1, 0 ≤ t < T . The value of A at any point of a hypersurface of constant

time can be bounded by its value at the centre at the given time and so A is bounded

on the interval [0, T ). It was shown earlier that on any region of the form R ≥ R1 the

quantities A−1A′ K and α′ are uniformly bounded. Hence under the present assumptions

the quantities A′, K and α′ are bounded on the interval [0, T1). It was also shown that

β is always bounded everywhere. It can be concluded that all the functions of t and x

occurring as coefficients in the Vlasov equation are bounded. The characteristic system of

the Vlasov equation then implies an inequality of the form P (t) ≤ P (0)+C
∫ t
0

1+P (s)ds.

By Gronwall’s lemma P (t) is bounded on the interval [0, T1), and applying Theorem 2.1

completes the proof.

R e m a r k. It is clear from the proof that the existence of an extension could be

replaced by the assumption that there exists some R1 > 0 such that ρ and A are bounded

on the region R ≤ R1.

Theorems 2.1 and 2.2 are analogues of Theorem 3.2 of [20] and Theorem 4.1 of [22]

respectively. It is instructive to compare the theorems involving maximal-isotropic coor-
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dinates proved here with those involving Schwarzschild coordinates proved in [20] and

[22]. The continuation criterion of Theorem 2.1 appears at first sight weaker than that of

[20] since it is assumed that not only P (t) but also A(t, 0) is bounded. However, it is much

easier to pass from Theorem 2.1 to Theorem 2.2 than it is to pass from the continuation

criterion of [20] to the regularity theorem of [22]. Moreover, the passage from Theorem

2.1 to Theorem 2.2 does not involve any deep analysis of the Vlasov equation, which

the proof of Theorem 4.1 of [22] does. Thus it is reasonable to hope that the method

of proof used here can more easily be adapted to matter models other than the Vlasov

equation than the approach using Schwarzschild coordinates. In the next section it will be

seen that the apparently weaker continuation criterion given by Theorem 2.1 is also good

enough to be applied in the proof of a global existence theorem for small initial data.

At this point some further remarks on the notion of ‘well-behaved’ matter models are

in order. Consider the case of dust, i.e. a perfect fluid without pressure. In fact (see [24]),

smooth solutions of the Einstein-dust equations can be considered as distributional solu-

tions of the Einstein–Vlasov system. Dust satisfies the dominant energy and non-negative

pressures conditions. However it cannot be expected that an analogue of Theorem 2.2

holds for dust. The reason is the occurrence of so-called shell-crossing singularities, which

do not occur at the centre. As has been discussed in [24] and [23] this is of significance

for the formulation of the cosmic censorship hypothesis and Theorem 2 can be taken as

an indication that the Einstein–Vlasov system is a good starting point for studying the

cosmic censorship hypothesis and has advantages over other, superficially simpler matter

models, such as a perfect fluid. This is one of the main motivations for investigating the

global properties of solutions of these differential equations.

3. Global existence for small data. In the last section a continuation criterion

was given for solutions of the reduced equations. Now it will be applied to obtain a global

existence theorem in a particular situation, namely that of small data. The notion of

smallness of initial data is defined in the present context in terms of three quantities

which characterize the size of the data. Let F0 = ‖f(0)‖∞, P0 = P (0) and let R0 be the

smallest value of R such that f(0, R) vanishes for R > R0.

Theorem 3.1. Let K be a fixed positive constant and consider initial data for the

reduced equations with R0 ≤ K and P0 ≤ K. Then there exists an ε > 0 such that

for all data of this type which, in addition, satisfy F0 < ε the corresponding solution

exists globally in time and the spacetime which it defines is timelike and null geodesically

complete.

R e m a r k s 1. The spacetimes of the theorem are also spacelike geodesically complete

but this will not be proved here. It is the completeness of timelike and null geodesics which

is most interesting physically, since these represent the wordlines of particles.

2. The statement on geodesic completeness is an important part of the theorem since

a theorem on global existence in some coordinate time does not necessarily imply any

interesting invariant information.

In fact more detailed information concerning the asymptotic behaviour of the space-

times covered by the theorem will be obtained. In particular, information will be obtained
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on the decay of the curvature as t→∞. A good understanding of the decay properties

of the curvature is also important for the proof of the theorem and for this reason the

curvature components in a Cartesian frame will now be examined in some detail. The

curvature can be computed using the following relations (which are independent of sym-

metry assumptions):

(4)Rabcd = Rabcd + kackbd − kadkbc
(4)Rσabcn

σ = −∇ckab +∇bkac
(4)Rσaτbn

σnτ = −8π[Sab + 1
2 (ρ− trS)gab] +Rab + trkkab − kackcb

(3.1)

The first of these equations is the Gauss equation, the second the Codazzi equation and

the third the Einstein evolution equation. It turns out that the frame components of the

curvature tensor which are purely spatial are linear combinations of the quantities A−3A′′,

A−4A′
2

and K2, with coefficients which are homogeneous functions of the Cartesian coor-

dinates. The frame components with two indices corresponding to the time direction are

linear combinations of these quantities and frame components of the energy-momentum

tensor. The frame components with precisely one index corresponding to the time direc-

tion need to be calculated explicitly. They are given by:

R̂0ijk = 1
2R
−1(xjδik − xkδij)(K ′ + 3KR−1 + 3A−1A′K) (3.2)

The combination of metric coefficients which occurs is precisely that which is familiar

from the momentum constraint.

The idea behind the proof is as follows. In flat space free particles which start in a

compact set spread out linearly with time. This causes the associated density to decay.

In fact it decays uniformly in space like t−3 as t → ∞. It is reasonable to suppose that

a spacetime which evolves from ‘small data’ (i.e. data which are ‘close’ to data for flat

space) has small curvature, so that the behaviour of solutions of the Vlasov equation is

similar to that in flat space. Thus, with luck, the density will fall off at the same rate as in

flat space. Conversely, it is this fall off of the density which ensures decay of the curvature.

The proof which follows makes these intuitive considerations precise and quantitative. It

is broken up into a number of lemmas which are arranged in a way which parallels as

closely as possible the proof of the analogous theorem in [20].

Lemma 3.1. Consider a spherically symmetric solution of the reduced equations on a

time interval [0, T ) with the property that the support of the restriction of Tαβ to each

hypersurface t =const. is contained in the ball of radius R0 + t about the centre and

A(t, 0) ≤ 3 and suppose that :

‖ρ‖∞(1 + t)2+δ ≤ K1 (3.3)

for some constants K1 > 0 and δ ∈ (0, 1]. Then there exists a constant C, only depending

on K1, δ and the restriction of the solution to the initial hypersurface, such that :

‖A′′‖∞(1 + t)2+δ + ‖A′‖∞(1 + t)1+δ + ‖α′‖∞(1 + t)1+δ + ‖K‖∞(1 + t)1+δ ≤ C (3.4)

Moreover the L∞ norm of the frame components of the curvature tensor can be bounded

by a constant times (1 + t)−2−δ. This constant and that in (3.4 ) can be made as small

as desired by choosing a sufficiently small value of K1.
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P r o o f. Equation (2.29) and the conservation of the ADM mass (2.20) imply that

A′(R) can be bounded by an expression of the form CR−20 for some constant C for all

R > R0. The constant depends a priori on a pointwise bound for A(t, 0) but this is

taken care of by the assumption on A(t, 0) occurring in the hypotheses of the lemma.

An analogous estimate holds for α′, as a consequence of (2.30). In the case of K it is

necessary, in order to get an estimate which holds inside the matter, to cancel one power

of R with a power of s in (2.31). Thus once again the estimate obtained involves R−20 .

In the last section estimates in terms of R−10 were used in an optimization argument to

bound A′, α′ and K by ‖ρ‖1/2∞ . If they are replaced by the estimates in terms of R−20 just

discussed, then the optimization argument allows the L∞ norms of A′, α′ and K to be

bounded by a constant multiple of ‖ρ‖2/3∞ . This is enough to take care of the last three

terms in (3.4). It was remarked in the last section that R−1A′ can be bounded pointwise

by a constant times ‖ρ‖∞ if A(t, 0) is known to be bounded. Putting this into equation

(2.5) together with the information just obtained gives the desired estimate for the first

term in (3.4). The estimate for the components of the curvature tensor follows from the

expressions for these components given above.

R e m a r k. The estimates obtained by optimization in the proof of this lemma could

have been used in Section 2 instead of the other estimates obtained by the same method

which were actually used there. The reason for presenting both types of estimates is

that while the estimates in the proof of the lemma are stronger in situations where the

solutions are small, the estimates of Section 2 are stronger where the solutions are large.

Thus they might be important in other contexts.

The following simple lemma is taken directly from [20].

Lemma 3.2. Consider the ordinary differential equation du/dt = F (t, u) for a C1

function F satisfying the inequality |F (t, u)| ≤ η(1 + t)−1−δ(1 + |u|) for some constants

δ > 0 and η > 0. Then given any initial datum at t = 0 the corresponding solution exists

on the whole of [0,∞) and satisfies the inequality |u(t)− u(0)| ≤ η
δ exp η

δ (1 + |u(0)|).

This lemma is used to control the behaviour of timelike geodesics in a spacetime

satisfying certain inequalities. Consider a timelike geodesic γ passing through a point

with coordinates (t, xa) and suppose that it intersects the initial hypersurface t = 0. Let

τ be proper time measured along γ, starting at t = 0. Let {e′σ} be an orthonormal frame

which is parallelly transported and is such that e′0 is the tangent vector to γ. Let θ′σ be

the dual coframe. A Jacobi field along γ is the derivative with respect to the parameter

of a one-parameter family of geodesics in which γ is embedded. If it is expressed as a

linear combination Zse′s of e′1, e′2 and e′3 then Zs satisfies the equation (see [12], p.96):

d2Zs/dτ2 = (Rαβγδθ
′s
α e
′β
0 e
′γ
t e
′δ
0 )Zt (3.5)

It turns out to be crucial for the global existence theorem to estimate the Jacobian

determinant of the mapping

vi → Xa(0, t, xa, vi) (3.6)

for fixed values of t and xa, where Xa(s, t, xa, vi) is part of the solution of the character-

istic system, as discussed in Section 1. Note that, as indicated by the use of the notation
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vi, the characteristic system which is of interest here is that of the Vlasov equation writ-

ten in terms of frame components. This mapping can be described in words as follows.

Follow the geodesic γ through (t, xa) with initial tangent vector vµeµ backwards until it

meets the hypersurface t = 0. The derivative of this mapping takes vectors tangent to the

mass shell at the point with coordinates vi to vectors tangent to the initial hypersurface.

A vector tangent to P at e′0 can be identified with a vector in the tangent space to M

at (t, xa) which is orthogonal to e′0. This can then be expressed as a linear combination

Y se′s. The frame vectors e′s can be fixed uniquely by requiring that they be obtained from

the coordinate vectors ∂/∂vi by means of the Gram–Schmidt process. The Jacobian of

the mapping which transforms from the basis ∂/∂vi to the basis e′s and that of its inverse

can be bounded in terms of |v|. The derivative of the mapping (3.6) can conveniently be

written as a composition of three linear mappings from R3 to itself. The first mapping

L1 is the one sending the components of a vector tangent to the mass shell in the basis

{∂/∂va} to the components Y s. Let L2(Y s) be the value at t = 0 of the solution of

(3.5) with the initial data Zs = 0 and dZs/dτ = Y s at the point (t, xa). Let L3(Zs) be

the Cartesian components of the vector obtained by projecting the vector Zse′s onto the

hypersurface t = 0 along the vector e′0. The components of this vector are given explicitly

by:

W a = Zs[e′as − (e′0s /e
′0
0 )e′a0 ] (3.7)

the derivative of (3.6) at the point of interest is L3L2L1.

Lemma 3.3. Consider spherically symmetric solutions of the Einstein–Vlasov system

on intervals [0, T ) satisfying the following conditions:

‖f0‖∞ ≤ ε,
P0 ≤ K2,

R0 ≤ K3,

 (3.8)

the inequality (3.3 ) and the condition that A ≤ 3. Then if ε and K1 are sufficiently small

there exists a constant K4, depending only on ε, K1, K2 and K3, such that α ≥ 1/2 and :

‖Tαβ‖∞ ≤ K4(1 + t)−3 (3.9)

P r o o f. Lemma 3.1 provides a lot of information on the decay of geometric quantities

as t → ∞. In particular the estimate (3.4) can be combined with Lemma 3.2 to show

that if K1 is small enough

P (t) ≤ P0 + 1 (3.10)

It follows that α′(R)≤Cεmin{R,R−2}. If ε is small enough then this can be integrated to

show that α ≥ 1−3Cε/2. This implies the first statement of the theorem. The inequality

(3.10) implies a uniform bound for the Cartesian components of e′0 if the tangent vector

to the geodesic γ is contained in the support of the distribution function. (Only geodesics

of this kind are of interest here.) In order to estimate the Cartesian components of the

remaining frame vectors e′s, note that it suffices, under the assumptions of the lemma, to

estimate their components in the frame eµ. Let these components be denoted by Uµs so
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that e′s = Uµs eµ. These components satisfy:

Uµs,βe
′β
0 + γµνλU

ν
s U

λ
0 = 0 (3.11)

The spatial components of (3.11) can be written as

d

dτ
(U is) = −γiνλUνs Uλ0 (3.12)

To profit from this it is necessary to have some information about the relation between

proper time and coordinate time along γ. In fact

dτ/dt = α(1 + |v|2)−1/2 (3.13)

Since α ≤ 1 the relations (3.12) and (3.13) imply that∣∣∣∣ ddt (U is)
∣∣∣∣ ≤ C(|U is|+ |U0

s |)(1 + t)−1−δ (3.14)

On the other hand, since e′s is a unit vector, |U0
s | ≤ C|U is|. Consider now the vectors e′s

along all geodesics contained in the support of f . We have a uniform bound for the initial

data for equation (3.12) and so (3.14) and Lemma 3.2 imply the global boundedness of

U is and hence of U0
s . (Global boundedness means by definition that they can be bounded

by a constant which is independent of T .) As indicated above, this implies a global bound

for the Cartesian coordinate components of the frame vectors e′s. The detour through the

quantities Uµs is necessitated by the fact that while good bounds are available for the

rotation coefficients, it is not obvious that the Christoffel symbols, which contain time

derivatives of lapse and shift, satisfy analogous bounds.

Consider now once again a timelike geodesic γ whose tangent vector is contained in

the support of the distribution function. As a consequence of (3.13) there are positive

constants C1, C2 such that

C1t ≤ τ ≤ C2t (3.15)

along γ. We can assume without loss of generality that C2 ≥ 1 and then

(1 + t)−2−δ ≤ C2+δ
2 (1 + τ)−2−δ (3.16)

Thus if Ks
t = Rαβγδθ

′s
α e
′β
0 e
′γ
t e
′δ
0 , an estimate of the form

|Ks
t (τ)| ≤ C(1 + τ)−2−δ (3.17)

holds along γ. Let τ0 be the value of τ at the point (t, xa) and let Zs(τ) be the solution

of (3.5) with Zs(τ0) = 0 and dZs/dτ(τ0) = Y s. Let

Es(τ) = Zs(τ)− (τ − τ0)Y s (3.18)

Then by Taylor’s theorem with integral remainder

Es(τ) =

∫ τ

τ0

(τ0 − σ)(σ − τ)Ks
t (σ)Y tdσ +

∫ τ

τ0

(τ − σ)Ks
t (σ)Et(σ)dσ (3.19)

The first integral can be estimated as follows:∣∣∣∣∫ τ0

τ

(τ − σ)(σ − τ0)Ks
t (σ)Y tdσ

∣∣∣∣ ≤ (τ0 − τ)|Y t|
∫ τ0

τ

Cσ(1 + σ)−2−δdσ

≤ C(τ0 − τ)|Y t|
(3.20)
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since
∫∞
0
σ(1 + σ)−2−δdσ < ∞. Combining (3.19) and (3.20) and applying Gronwall’s

inequality gives

|Es(τ)| ≤ C(τ0 − τ)|Y t| exp

∫ τ0

τ

C(σ − τ)(1 + σ)−2−δdσ (3.21)

Hence

|Es(τ)| ≤ C(τ0 − τ)|Y t| (3.22)

If K1 is chosen small enough then C< 1
2 and using (3.22) and the definition of Es shows

that |detL2| ≥ Cτ30 . As a consequence of (3.15) τ0 can be replaced by t in this inequality.

The determinant of L1 can be bounded from below uniformly for all geodesics whose

tangent vectors are contained in the support of the distribution function. The same is

true of the determinant of L3, as can be seen from (3.7). Thus the statement is obtained

that ∣∣∣∣det

(
∂Xa

∂vb

)
(0, t, xa, ·)

∣∣∣∣ ≥ Ct3 (3.23)

This has been shown for all va in the support of the distribution function. If we knew that

the mapping (3.6) was injective on the support of f then we could change variables from

vi to Xa in the definition of the energy-momentum tensor. As a consequence of (3.23)

and the boundedness of P this would give an estimate of the form (3.9), completing the

proof of the lemma.

It will now be shown that for K1 sufficiently small this mapping is indeed injective.

Suppose that, on the contrary, there are two distinct geodesics γ0 and γ1 starting at

the point with coordinates (t, xa) which meet the initial hypersurface at the same point.

Let vi0 and vi1 be the components of their initial tangent vectors on the mass shell. For

l ∈ [0, 1] let vil = (1 − l)vi0 + lvi1. Let γl be the geodesic with initial tangent vector

corresponding to vil . Denote the spatial coordinates of the point of intersection of γl with

the initial hypersurface t = 0 by ξa(l). Then ξa(0) = ξa(1) and ξa(l) is a closed curve.

Let wi = vi1 − vi0. The tangent vector to the curve ξa(l) is the image under the mapping

L3L2L1 of wi. It can be concluded from (3.23) that the tangent vector to the curve ξa(l)

can never vanish. It is convenient at this point to make a different choice of the frame e′i.

The change is that instead of the basis {∂/∂vi} of the tangent space to the mass shell

as above, a basis is chosen which consists of vectors which are linear combinations of the

vectors ∂/∂vi with constant coefficients with the first vector of the basis being wi∂/∂vi.

The vector L1(w) is proportional to (1, 0, 0). Using the smallness assumption on the data

shows that the components e′a1 (0) are close to the components e′a1 (τ0). More precisely, for

K1 small enough

|e′a1 (0)− e′a1 (τ0)| ≤ η|e′a1 (τ0)| (3.24)

for any given η > 0. Similarly

|e′a0 (0)− e′a0 (τ0)| ≤ η|e′a0 (τ0)| (3.25)

In the same sense L2L1(w) is close to a vector of the form (Z1, 0, 0). For Zs is close to

W s and the frame vectors have also only changed a little between τ = τ0 and τ = 0. The

tangent vector to the curve ξa(l) is given by the projection of L2L1(w) on the hypersurface

t = 0 along the vector e′0(0). The explicit form of this projection is displayed in equation
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(3.7). It will now be shown that, for K1 sufficiently small the second term in the square

brackets in (3.7), with s = 1, can be bounded in modulus by a constant k < 1 times

the modulus of the first term. Before proving this statement it will be shown that it

implies the desired result. Zs is as close as desired to a vector of the form (Z1, 0, 0)

and so W a is as close as desired to the projection of a vector proportional to e′1(0).

The estimate for the terms in (3.7) with s = 1 implies that the projection of a vector

proportional to e′1 is contained in a convex cone about e′s1 . Hence W a is contained in a

convex cone about a vector proportional to wa. This is inconsistent with the fact that

ξa(l) returns to its starting point. Thus it only remains to prove the above statement

about the relative sizes of the terms in (3.7). Now e′a1 is close to A−1Bwa for a certain

quantity B, e′01 is close to Bα−1(w·vl)(1+|vl|2)−1/2, e′a0 is close to A−1val and e′00 is close to

α−1(1+ |vl|2)1/2. Thus the two terms are close to Bwa and B(w ·vl)(1+ |vl|2)−1val . Using

the Cauchy–Schwarz inequality the modulus of the second expression can be bounded by

|B||w||vl|2(1 + |vl|2)−1 while the modulus of the first is |B||w|. Using the fact that

|vl| ≤ P , so that |vl|2/(1 + |vl|)2 ≤ P 2/(1 + P 2) ≤ k < 1 completes the argument.

Lemma 3.4. Suppose that initial data for the reduced system satisfy the inequalities

(3.8 ) and let T0 be a fixed positive number. Then for fixed K2, K3 there exists ε > 0 such

that the solution corresponding to this data exists on the interval [0, T0], and P (t)≤2P (0),

A(t, 0) ≤ 2 and ‖ρ‖∞ is as small as desired there.

P r o o f. First a system of integral inequalities for P (t) and Q(t) = A(t, 0) will be

derived. It is elementary that ‖ρ‖∞ ≤ C‖f‖∞(1 +P (t))4 with a constant C independent

of the initial data. It was shown in the last section that the coefficients in the part of the

characteristic system controlling the velocities can be bounded by C‖ρ‖1/2∞ (1 + Q(t))q,

for some positive integer q. Hence

P (t) ≤ P (0) + Cε1/2
∫ t

0

P (s)(1 + P (s))2(1 +Q(s))qds (3.26)

Equation (2.9) and the estimates obtained above imply that

Q(t) ≤ Q(0) + Cε1/2
∫ t

0

P (s)(1 + P (s))p(1 +Q(s))qds (3.27)

for some positive integer p. Let z1 and z2 be the unique solutions of the system of integral

equations obtained by replacing the inequalities in (3.26) and (3.27) by equalities and P

and Q by z1 and z2 respectively, with initial data z1(0) = P (0) and z2(0) = Q(0). When

ε is zero the solution of the integral equations is constant. In particular, it is global in

time. Moreover the initial data z1(0) and z2(0) can be bounded in terms of K2, K3 and ε.

It follows that for ε sufficiently small the solution of these integral equations exists on a

time interval [0, T1) with T1 > T0 and, by making ε smaller if necessary, it can be assumed

that z1(t) ≤ 2P (0) and z2(t) ≤ 2 for 0 ≤ t ≤ T1. Comparing the integral inequalities with

the integral equations shows that P (t) ≤ z1(t) on any interval where both are defined

and similarly Q(t) ≤ z2(t). By the above estimates ‖ρ‖∞ will be as small as desired if

ε is chosen sufficiently small. The continuation criterion given by Theorem 2.1 implies

that the solution can be extended to any time interval where the solution (z1, z2) of the

integral equations exists and this completes the proof of the lemma.
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Theorem 3.2. Let a non-negative C∞ compactly supported spherically symmetric

maximal initial datum f0 for the Einstein–Vlasov system be given which satisfies the

inequalities (3.8 ) for some positive constants ε, K2 and K3. Then if ε is small enough

the corresponding solution of the reduced system exists globally in time. Moreover , for

this solution

‖Tαβ‖∞ ≤ C(1 + t)−3 (3.28)

the metric coefficients α−1 and A are bounded and the estimates (3.4 ) hold with δ = 1.

P r o o f. Let K1 and ε be positive constants which are small enough so that the

conclusions of Lemma 3.3 hold for some δ < 1. Let T1 be a positive number satisfying

K4(1 + T1)δ−1 < K1. By Lemma 3.4 the constant ε can be chosen so small that the

solution exists on the time interval [0, T1). Moreover, it can be arranged that on this

interval the solution is as small as desired. In particular, ε can be chosen so that (3.3) is

satisfied on the interval [0, T1) and A ≤ 2 there. Consider a fixed initial datum satisfying

(3.8). Define T∗ to be the supremum of those positive numbers T such that the solution of

the reduced equations corresponding to the given initial data exists on [0, T ), and A ≤ 2

for the solution on this interval and it satifies (3.3) there. Here T∗ =∞ is possible. In fact

we will show that it is the only possibility. For suppose that T∗ < ∞. The assumptions

already made ensure that T∗ > T1. The definitions of T1 and T∗ and Lemma 3.3 then

show that the continuation criterion is satisfied on [0, T∗) and that

‖Tαβ(T∗)‖∞ ≤ K1(1 + T∗)
−2−δ (3.29)

This means that the solution can be extended to an interval [0, T2) with T2 > T∗. Also

T2 can be chosen so that (3.3) is satisfied there. This contradicts the definition of T∗ and

so in fact it must be the case that T∗ =∞. The inequality (3.3) holds on [0,∞) for some

δ < 1. Applying Lemma 3.1 shows that an inequality of this form also holds for δ = 1.

The remaining conclusions of the theorem then follow from Lemma 3.1.

The statement of Theorem 3.2 includes all the conclusions of Theorem 3.1 except that

concerning geodesic completeness. Equation (3.15) shows that along a timelike geodesic

proper time and coordinate time are equivalent. This, together with global existence in

coordinate time shows that timelike geodesics are complete. Similarly, the information

which we have on the geometry is more than enough to show that an affine parameter

along a null geodesic is equivalent to coordinate time.

At the end of the last section some remarks were made about the relation of the

Vlasov equation with dust. For the Einstein-dust system there is no reasonable smallness

assumption on initial data which ensures geodesic completeness of the corresponding

solutions, as follows from the work of Christodoulou [5]. The only other matter model for

which a global existence theorem for spherically symmetric asymptotically flat solutions

of the Einstein-matter equations with small initial data has been proved is the massless

scalar field [6]. The method of proof used here in the case of the Vlasov equation can

not be applied directly to the case of matter models with radiation such as the massless

scalar field, since there the flat space fall-off rates for the matter only make the energy-

momentum tensor fall off like t−2 and do not furnish the faster decay rates used in the

above.
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4. Local existence in general. The purpose of this section is to present some

aspects of the local existence theorem for the Einstein–Vlasov system, without any sym-

metry assumptions. The standard method for proving such theorems proceeds in several

steps. First, some coordinate conditions are imposed, leading to a system of ‘reduced

equations’. This is similar to what was done in Section 2 in the spherically symmetric

case. In the general case different coordinate conditions are used and hence the reduced

system is also different. The second step is to prove a local existence theorem for the

reduced equations. The third step is to establish the connection between the reduced

equations and the full equations. This means showing that if the data for the reduced

system satisfies certain gauge conditions, if the constraints are satisfied on the initial

hypersurface and if the reduced equations are satisfied everywhere, then the coordinate

condition and the constraints are satisfied everywhere. This then implies that the solution

of the reduced equations is actually a solution of the Einstein equations. The first and

third steps are not discussed further here; the reader is referred to [8] for details. (The

treatment which follows uses the harmonic coordinate condition, which is that discussed

in [8].)

The reduced equations in harmonic coordinates constitute a system of nonlinear wave

equations for the metric coupled to the Vlasov equation for the distribution function f .

Solutions of this system have a domain of dependence determined by the light cone and

so when proving a local existence theorem spatial boundary conditions play no role. For

this reason it is sufficient to consider data of compact support on R3. The data for the

reduced system consists of all components of the metric and their first time derivatives

together with the distribution function. It is assumed that gαβ − ηαβ , ∂tgαβ and f have

compact support on the initial hypersurface. Such data can never satisfy the constraints

globally on R3 except in the case of data for flat space but this is not a problem, because

of the possibility of using the domain of dependence to localize. To start with only the

case of C∞ data is treated but it will be shown later that it is easy to extend the argument

to data of finite differentiability.

Before going further some remarks will be made on the various notations used for

derivatives in this section. This is intended to avoid confusion which might arise from

the mixture of notation from differential geometry and from analysis which occurs. As in

previous sections Greek or Roman indices attached to geometric objects are usually to be

thought of as abstract indices although they may also occasionally denote components in

a coordinate system. No confusion should arise from this dual role. Indices of this kind

are also used to label the coordinate functions themselves and the partial derivatives with

respect to the coordinates, denoted by ∂. The ranges of the indices are as before. On the

other hand the indices on the operator D denoting differentiation are of a different kind.

Here use is made of the multi-index notation which is very effective in handling expressions

containing high order derivatives of functions of several variables. These multi-indices

always refer to derivatives with respect to the spatial coordinates xa. The expression Dαu

denotes a particular higher order partial derivative of the function u with repect to the

spatial variables. The order of this derivative is denoted by |α|. Roman indices on D are

used in connection with norms as in equation (1.11). We have ‖Diu‖ = max|α|=i ‖Dαu‖.
This notation may be applied to any norm.
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In order to have a suitable framework for proving a local existence theorem it is

necessary to work with function spaces which are well adapted to the equation being

studied. The natural spaces for hyperbolic equations are the Sobolev spaces. In the present

context, where the asymptotic behaviour plays no role, it is possible (and convenient) to

use Sobolev spaces without weights. If u is a smooth function on R3 define:

‖u‖Hs =

[
s∑
i=0

∫
|Diu|2dx

]1/2
(4.1)

Compare this with the weighted Sobolev norms defined in (1.11).

The reduced Einstein equations take the form:

gγδ∂γ∂δgαβ = Fαβ(gγδ, ∂εgγδ) + 8π[Tαβ − 1
2g
γδTγδgαβ ] (4.2)

It is convenient (although not essential) to write this in first order form by introducing

the first derivatives of the metric as additional variables. Let hαβγ = ∂γgαβ . Then in

terms of the unknowns gαβ and hαβγ the equations can be written as follows:

−g00∂0hαβ0 − 2g0a∂ahαβ0 = gab∂ahαβb + . . .

gab∂0hαβa = gab∂ahαβ0

∂0gαβ = hαβ0

(4.3)

The terms which are not written out explicitly are those coming from the right hand

side of (4.2). The first of these can be written as a function of gαβ and hαβγ without

using derivatives. The reason why certain linear combinations of the original equations

have been taken when writing (4.3) is to make contact with the notion of a symmetric

hyperbolic system. Let u be a function which takes values in an open set U of Rk for

some k. A differential equation for u of the form:

A0(xα, u)∂0u+Aa(xα, u)∂au+B(xα, u) = 0 (4.4)

is called symmetric hyperbolic if the matrices A0(xα, u) and Ai(xα, u) are symmetric for

all (xα, u) and if A0(xα, u) is positive definite. Here A0, Aa are functions on the product

of U with some open subset of R4 with values in the k × k matrices and B is a function

on the same domain with values in Rk. If u = (gαβ − ηαβ , hαβγ), with ηαβ denoting the

components of the Minkowski metric in standard coordinates then the equations (4.3) are

of this form, for each fixed Tαβ . Moreover the reduction process, which is not described

explicitly here, can be (and usually is) done in such a way that g00 =−1 and g0a= 0 on

the initial hypersurface. The open set U is defined by the condition that gαβ have Lorentz

signature. The Vlasov equation will be written in the form (1.1). Note that the Christoffel

symbols are rational functions of the unknowns u. The full system of reduced equations

consists of (4.3), (1.1) (with the Christoffel symbols expressed algebraically in terms of

u) and the definition (1.3) of Tαβ . The Vlasov equation itself is a symmetric hyperbolic

equation of a particularly simple type, with only one unknown. This symmetric hyperbolic

equation is defined on R6 rather than R3. The main theorem can now be stated:

Theorem 4.1. Let (u0, f0) be C∞ compactly supported initial data for the reduced

Einstein–Vlasov system written in first order form. Then there exists a T > 0 and a C∞
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solution (u, f) of the reduced system on the interval [0, T ) which induces the given initial

data. Moreover f(t) has compact support for each fixed t.

R e m a r k s. 1. The domains of definition of the functions u0, f0, u and f are R3,

R6, R3 × [0, T ) and R6 × [0, T ) respectively.

2. The solution (u, f) is the unique solution with the properties stated in the theorem.

In proving this result an existence theorem for solutions of linear symmetric hyper-

bolic systems with C∞ initial data is assumed (see e.g. [9], p. 668). In order to prove

Theorem 4.1 a certain iteration is defined and then it is proved that this iteration con-

verges in an appropriate sense. The convergence follows from certain inequalities satisfied

by the solutions of linear symmetric hyperbolic equations. The proof makes use of the

following Moser-type inequalities [14, 1]. Here these inequalities are only needed in the

case of functions which are smooth and compactly supported. The first inequality con-

cerns products of functions and says that if f amd g are smooth functions of compact

support on Rn then

‖Ds(fg)‖2 ≤ C(‖Dsf‖2‖g‖∞ + ‖f‖∞‖Dsg‖2) (4.5)

Here ‖ ‖2 denotes the L2 norm. The second says that under the same conditions for any

derivative Dα of order s

‖Dα(fg)− fDαg‖2 ≤ C(‖Dsf‖2‖g‖∞ + ‖Df‖∞‖Ds−1g‖2) (4.6)

The last estimate concerns the composition of a smooth function F with a function in a

Sobolev space. Suppose that F is a smooth function defined on an open subset U of Rk

and that f takes values in an open set V of Rk whose closure is compact and contained

in U . Then for s ≥ 1:

‖Ds(F (f))‖2 ≤ C‖F‖Cs‖f‖s−1∞ ‖Dsf‖2 (4.7)

Here the Cs norm of F is taken over V̄ . Note that s = 0 is excluded in (4.7). An inequality

for the case s=0 can be derived as follows. Choose some fixed u0∈U . Then there exists

a smooth matrix-valued function M on U × U such that F (u) = M(u, u0)(u − u0) (cf.

[11], p. 77). It follows in an elementary way that:

‖F (u)‖2 ≤ ‖F (u0)‖2 + ‖M(u, u0)‖∞‖u− u0‖2

Now, for fixed u0, ‖M(u, u0)‖∞ can be bounded in terms of the C1 norm of F on V̄ for

‖u‖ in any open set V of the type introduced above that contains ‖u0‖. If in addition U

contains the origin and F (0) = 0 then the inequality reduces to ‖F (u)‖2 ≤ ‖F‖C1‖u‖2,

which is a rather close analogue of (4.7). The fundamental tool used in the existence

proof for the nonlinear equations is the following standard energy estimate for a linear

symmetric hyperbolic system.

Lemma 4.1. Let u be a smooth solution of the linear hyperbolic equation A0(x)∂0u+

Aa(x)∂au+B(x) = 0 whose restriction u(t) to each hypersurface t =const. has compact

support. Suppose further that the functions Aα− Āα have compact support , where Āα are
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constant matrices with Ā0 positive definite. Then:

‖u(t)‖Hs ≤ ‖u(0)‖Hs

+ C

∫ t

0

[(‖Aµ‖C1 + ‖∂tA0‖C0)‖u‖Hs + (‖Du‖∞ + ‖∂tu‖∞)‖Aµ‖Hs + ‖B‖Hs ](t′)dt′

(4.8)

where the constant C only depends on upper and lower bounds for the quadratic form

defined by A0.

P r o o f. Applying the derivative Dα to the equation gives:

A0∂0(Dαu) +Aa∂a(Dαu) +DαB

= −[Dα(A0∂0u)−A0Dα(∂0u)]− [Dα(Aa∂au)−AaDα(∂au)]

= Qα, say.

(4.9)

This can be used to compute the time derivative of the quantity
∫
〈A0Dαu,Dαu〉. Differ-

entiating under the integral and substituting in (4.9) gives a sum of terms of which only

one contains derivatives of u of order higher than that of Dα. However this derivative

can be eliminated by partial integration:∫
〈−Aa∂a(Dαu), Dαu〉 = 1

2

∫
〈∂aAaDαu,Dαu〉 (4.10)

The equation which results is:

d/dt(

∫
〈A0Dαu,Dαu〉) =

∫
〈(∂tA0 + ∂aA

a)Dαu− 2DαB − 2Qα, Dαu〉 (4.11)

Note that the inner product defined by A0 is uniformly equivalent to the standard inner

product on Rk. Hence it follows that, if Nα =
√
〈A0Dαu,Dαu〉, then

|d/dt
∫

(Nα)2| ≤
∫

[Nα(‖∂tA0 + ∂aA
a‖∞Nα + ‖DαB‖2 + ‖Qα‖2)] (4.12)

The L2 norm of Qα can be estimated with the help of the Moser estimate (4.6). Using

this fact and integrating (4.12) with repect to t gives:∫
(Nα)2(t) =

∫
(Nα)2(0)

+

∫ t

0

∫
{Nα(t′)[‖∂νAµ‖∞‖u‖Hs + ‖∂νu‖∞‖DAµ‖Hs−1 + ‖DαB‖2]}dt′

(4.13)

Formally, d/dt((Nα)2) = 2Nαd/dt(Nα), so that one factor Nα can be cancelled in this

formula. This formal calculation can be justified. Adding the inequalities (4.13) for all

derivatives Dα of order less than or equal to some fixed s completes the proof of the

lemma.

P r o o f o f T h e o r e m 4.1. Define u0 and f0 to be the time independent functions

which agree with the initial data on the hypersurface t=0. Then define an iteration recur-

sively as follows. If un and fn have been defined, substitute these for u and f in all places

in the reduced Einstein equations (including the energy-momentum tensor) except those

where derivatives of u occur. Replace these derivatives by the corresponding derivatives

of un+1. This gives a linear hyperbolic equation for un+1 on an interval [0, Tn+1) which
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can be solved with the initial datum which is to be prescribed for u. Here Tn+1 is the

largest time such that the metric defined by certain components of un is non-degenerate.

Next substitute un+1 into the Vlasov equation and replace f by fn+1. This gives a linear

hyperbolic equation on the interval [0, Tn+1) which can be solved with the initial datum

which is to be prescribed for f . This defines un+1 and fn+1 on the interval [0, Tn+1).

In this way approximate solutions (un, fn) of the reduced system are obtained. They all

induce the correct initial data on the initial hypersurface. Let Ck([0, T ], Hs(Rn)) denote

the Banach space of Ck functions on the interval [0, T ] with values in the Sobolev space

Hs(Rn). It will be shown that if s ≥ 5 and T > 0 is chosen sufficiently small then Tn ≥ T
for all n, the sequence un is bounded in the space C0([0, T ], Hs(R3)) and the sequence fn
is bounded in the space C0([0, T ], Hs(R6)). The essential point is that for s ≥ 5 we have

the Sobolev embedding theorem which says that in R3 and R6 any Hs function is C1

and there is a constant C such that ‖u‖C1 ≤ C‖u‖Hs . Hence, if the estimate of Lemma

4.1 is applied to the equation for un+1, the pointwise norms of Aa and u occurring there

can be estimated in terms of the Hs norms of the same quantities. To estimate the norm

of ∂tA
0(un) which occurs, first apply the chain rule and then substitute for the term ∂tun

which comes up using the equation. Finally, apply the Sobolev embedding theorem to

the result. The Hs norms of the coefficients A0(un), Aa(un) and the part of B(un) which

does not involve the matter quantities can be bounded by a polynomial in the Hs norms

of un, using the Moser estimate (4.7), on any interval where u takes values in a compact

subset of U . (Note that this part of B maps the origin to itself and so an estimate is

also obtained for the undifferentiated quantity, as in the discussion following (4.7).) It is

also straightforward to show that, in the presence of a bound for the maximum momen-

tum P (t) of any particle in the support of the distribution function, the Hs norm of the

energy-momentum tensor can be estimated by a constant depending on the Hs norm of

u times the Hs norm of f . The result of all this is that if Un(t) = supk≤n ‖uk(t)‖Hs and

Fn(t) = supk≤n ‖fk(t)‖Hs then inequalities are obtained of the form

Un(t) ≤ Un(0) +

∫ t

0

G(Un(t′), Fn(t′))dt′

Fn(t) ≤ Fn(0) +

∫ t

0

H(Un(t′), Fn(t′))dt′
(4.14)

where G and H are polynomials with non-negative coefficients. These inequalities are

obtained under the assumption that the uk with k ≤ n take values in a compact subset

K of U and that the Pk are all bounded by some constant P̄ . The functions F and G

may depend on K and P̄ . The inequalities are reminiscent of (3.26) and (3.27) and once

again the solutions of the integral inequalities can be compared with the solutions of the

corresponding integral equations. Choose the number T that the solution of the integral

equations with initial data (‖u‖Hs , ‖f‖Hs) exists on the interval [0, T ]. For n ≥ 1 the

validity of these inequalities for the functions un and fn depends on knowing that the uk
take values in a fixed compact set K of U for all k ≤ n. It can be proved by induction that

these inequalities are valid for T sufficiently small. Note first that they obviously hold

for n = 0. Now suppose they hold up to some given value n of the index. Then they give

a bound on ‖∂tun‖∞. This in turn can be used to show that for T small enough (with
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a smallness condition which does not depend on n) un takes values in a fixed compact

set K and Pn+1(t) is less than a fixed constant P̄ . This completes the inductive step. It

follows that Un and Fn are uniformly bounded on the interval [0, T ].

Next note that if the coefficients Aα of a symmetric hyperbolic system are smooth

there exist smooth functions Aα1 such that Aα(u)−Aα(u′) = Aα1 (u, u′)(u−u′). A similar

statement applies to the function B(u). Hence the difference un+1 − un satisfies a linear

symmetric hyperbolic equation whose coefficients involve Aα1 (un, un−1). The difference

fn+1 − fn satisfies a similar equation. Using the estimate of Lemma 4.1, the uniform

bounds for Un and Fn and the fact that the initial data are the same for all iterates leads

to an estimate of the form:

‖un+1−un‖Hs−1 + ‖fn+1− fn‖Hs−1 ≤ CT (‖un−un−1‖Hs−1 + ‖fn− fn−1‖Hs−1) (4.15)

If T is chosen small enough this shows that the sequences un and fn are Cauchy sequences

in the Banach space C0([0, T ], Hs−1) and hence converge to some limits (u, f) in that

space. It should be noted that the analogue of the estimate (4.15) with Hs−1 replaced

by Hs does not follow from Lemma 4.1. The reason is that the equation satisfied by the

differences of iterates contain first derivatives of the iterates as inhomogeneous terms. To

get some statements about convergence in Hs, a little functional analysis will be used.

This uses once again the fact that the iteration is bounded in the Hs norm. The Banach–

Alaoglu theorem ([18],p.115) and the fact that L∞([0, T ], Hs) is the dual of a Banach

space implies that there is a subsequence which converges weakly in L∞([0, T ], Hs). It

can only converge to (u, f). Thus the limiting functions u and f are in L∞([0, T ], Hs). If

s is chosen to be at least seven then un and fn and their spacetime derivatives converge

uniformly and hence the limiting functions satisfy the equations. It must still be checked

that if the initial data satisfy the condition ∂γgαβ = hαβγ , then the solution also has this

property. This holds because the equations (4.3) imply the equation ∂0(hαβγ−∂γgαβ) = 0.

The time of existence depends only on the Hs norm and an argument used in the proof of

Theorem 2.1 shows that as long as the Hs norm, s ≥ 7, is bounded on some interval the

solution can be extended to a longer time interval. If, in deriving a differential inequality

for the solution, we keep the C1 norms instead of eliminating them using the Sobolev

embedding theorem, we see that the resulting inequalities are linear in the Hs norm.

What this means is the following. If any Hs norm, s ≥ 7, is bounded then the C1 norm

is bounded and then the Hs norm is bounded for every s. Hence the solution can be

extended in the space Hs for every s. This implies that a solution corresponding to C∞

initial data is itself C∞ as long as it exists in H7. The statement concerning the support

of f was already proved in Section 1 and hence the theorem is proved.

The estimates used in this proof can also be used to prove a local existence and

uniqueness theorem for data of finite differentiability. The idea is to approximate the

data of finite differentiability by a sequence of C∞ data which converge to the original

data in some Sobolev space Hs. By Theorem 4.1 there is a C∞ solution corresponding

to each of these initial data sets and it can be assumed without loss of generality that

all these solutions exist on a common time interval [0, T ], since the sequence of data is

bounded in Hs. If u and u′ are solutions of a symmetric hyperbolic system then their

difference satisfies a homogeneous linear symmetric hyperbolic system. The argument is
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the same as that used to estimate the difference of iterates above. The estimate of Lemma

4.1 can be applied to this equation to show that if u and u′ are bounded in Hs it is possible

to bound the Hs−1 norm of u−u′ by a constant multiple of the corresponding norm of the

initial data. A similar estimate can be obtained for the reduced Einstein–Vlasov system.

It follows that the sequence of C∞ solutions introduced above converges to a solution

corresponding to the initial data of finite differentiability. It may be remarked in passing

that the uniqueness of the solution whose existence is asserted by Theorem 4.1 can also

be proved by this method.

It is possible to prove energy estimates in weighted Sobolev spaces with a weight

δ > −3/2 in a way which is similar to that which has been done above for ordinary

Sobolev spaces. The weighted Moser estimates which are necessary can be obtained us-

ing the techniques of Bartnik [2] from the Moser estimates for a bounded region in

Rn. These estimates imply the boundedness of a sequence of approximating solutions in

L∞([0, T ], Hs
δ ). Applying the Banach–Alaoglu theorem once more shows that the previ-

ously obtained solution is in this space if the data are in Hs
δ . This is still not the most

precise result on the propagation of aymptotic flatness which is desirable. For it is usually

assumed that in initial data sets for the Einstein equations, the second fundamental form

falls off faster than the spatial metric and it is desirable that this property be preserved

by the time evolution. For a general symmetric hyperbolic system, there is no obvious

reason why this should be true. For if one tries to use the equation directly to prove a

property of this kind, the term B(u) intervenes and in general there is no reason that

this should fall off faster than u itself. However if B at least quadratic it is true. Here

this is only sketched briefly and we do not even give a precise definition of the phrase

‘at least quadratic’. If B is at least quadratic and u ∈ Hs
δ , and δ > −3/2, then B(u)

belongs to Hs
δ′ for some δ′ > δ. If δ′ < δ+ 1 then it follows from the equation that ∂tu is

in Hs−1
δ′ . If δ′ ≥ δ + 1 then ∂tu is in Hs−1

δ+1 . If necessary this procedure can be repeated

and after finitely many steps the result is obtained that ∂tu ∈ Hs−1
δ+1 . In the case of the

Einstein–Vlasov system, the matter term in the Einstein equations is irrelevant for this

discussion since its support is in a known compact set. On the other hand, the part of B

only involving the geometry is quadratic in the Christoffel symbols. The energy estimates

show that the time of existence of the solution in a weighted Sobolev space only depends

on a weighted Sobolev norm of the initial data.

Appendix

Lemma A1. Let f : [0,∞)→ R be a function, q a polynomial on Rn which does not

vanish identically and is homogeneous of degree 2m, where m is an integer , and let F be

the function on Rn defined by F (x) = f(|x|)q(x)/|x|2m. If m ≥ 1 suppose further that

f is C2m−2 and f (2l)(0) = 0 for all integers l with l ≤ m − 1. Then for any k ≥ 0 the

following conditions are equivalent :

(i) f is Ck and f (2l+1)(0) = 0 for all integers l such that 2l + 1 ≤ k.

(ii) F is Ck.

P r o o f. If (ii) holds consider g(x1) = F (x1, 0, . . . , 0) = f(|x1|)[q(x1, 0, . . . , 0)/(x1)2m].

The second factor is a constant. If this constant is non-zero it can be seen immediately
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that f is Ck. If the constant is zero it can be made non-zero by a rotation. Since also

g(x1) = g(−x1), the statement (i) holds. Conversely, suppose that (i) holds. Let pk be

the Taylor polynomial of order k of f at the origin. Then we can write:

F (x) = pk(|x|)q(x)/|x|2m + (f(|x|)− pk(|x|))q(x)/|x|2m (A1)

Taylor’s theorem applied to f shows that the second term is Ck with all its derivatives

up to order k vanishing at the origin. To complete the proof it only remains to show that

under the hypothesis (i) the first term is a polynomial. Under this hypothesis the first

2m− 1 derivatives of pk at zero vanish, as well as higher derivatives of odd order. Hence

pk(|x|) is a polynomial in |x|2 which is divisible by |x|2m and the first term in A1 is a

polynomial.

Lemma A2. Suppose that the hypotheses of Lemma A1 are satisfied and that the

derivatives of f of order ≤ k are bounded. Then the partial derivatives of F of order ≤ k
are bounded and there exists a constant C independent of f such that ‖F‖Ck ≤ C‖f‖Ck .

P r o o f. On the region |x| ≥ 1 the statement is obvious. To see that it holds when

r ≤ 1 is included, first split F into a sum of two terms as in A1 above. The first term

and its derivatives can easily be bounded in terms of derivatives of f . A derivative of the

second term of order ≤ k is a sum of terms, each of which is the product of a derivative

of (f −pk)(|x|) with a function which is homogeneous of degree ≥ −k and is independent

of f . The derivative of (f − pk)(|x|) of order l ≤ k can be bounded on the region |x| ≤ 1

in terms of the ‖f‖Cl |x|l. The resulting powers of |x| are sufficient to compensate the

functions which are homogeneous of negative degree and this gives the desired estimate.

Lemma A3. Let f : [0,∞)→ R be a function with f(0) = 0 and let F a be the vector

field on Rn defined by F a(x) = f(|x|)xa/|x| for x 6= 0 and F (0) = 0. Then for any k ≥ 0

the following conditions are equivalent :

(i) f is Ck and f (2l)(0) = 0 for all l such that 2l ≤ k.

(ii) F a is Ck.

P r o o f. F 1(x1, 0, . . . , 0) = f(x1) for x1 ≥ 0 and this immediately shows that (ii)

implies that f is Ck. Then the relation F 1(−x1) = −F 1(x1) shows that the derivatives

of even order vanish, proving (i). Conversely, suppose that (i) holds. The vector field F a

can be written as a sum of two terms, as in the proof of Lemma A1, and the second of

these terms can be handled just as in the proof of that lemma. As for the first term, it is

the product of xa/|x| with a polynomial in |x| where only the coefficients of odd powers

are non-zero. Hence it can be written in the form xaq(|x|2), for some polynomial q.

Lemma A4. Suppose that the hypotheses of Lemma A3 are satisfied and that the

derivatives of f of order ≤ k are bounded. Then the partial derivatives of F a of order ≤ k
are bounded and there exists a constant C independent of f such that ‖F a‖Ck ≤ C‖f‖Ck .

P r o o f. The method used in the proof of Lemma A2 also applies in this case.

Lemma A5. Let f : [0,∞)→ R be a measurable function and define

gv,w(r) = r−v
∫ r

0

swf(s)ds
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If w and v are integers with w ≥ 0 and v ≤ w and f is Ck then gv,w is Ck+1. Moreover ,

on any interval of the form [0, R] there exists a constant C, independent of f , such that

‖gp,q‖Ck+1 ≤ C‖f‖Ck .

P r o o f. Write f = pk + (f −pk), where pk is the Taylor polynomial of f of order k at

the origin. Now r−v
∫ r
0
swpk(s)ds can be bounded by a constant times ‖f‖Ck under the

given assumptions. Thus it can be assumed that without loss of generality that pk = 0.

Now:

dlgv,w/dx
l = dl(r−v)/dxl

∫ r

0

swf(s)ds+
∑

hjd
j−1f/dxj−1

where hj is homogeneous of degree −v + w + j. Under the assumption that pk = 0 the

integral in the first term is bounded by Crk+w+1, where the constant C only depends

on the Ck norm of f . Since the other factor is O(r−v−l) this suffices to bound the first

term. The other terms can be bounded using the fact that dj−1f/dxj−1 is bounded by

an expression of the form C|x|k−j+1.

Lemma A6. Let f : [0,∞)→ R be a continuous function with f(0) = 0 and define

h(r) = r

∫ r

0

s−1f(s)ds

If f is Ck for some k ≥ 1 then h is Ck+1. Moreover , on any interval of the form [0, R]

there exists a constant C, independent of f , such that ‖h‖Ck+1 ≤ C‖f‖Ck .

P r o o f. Since f(0) = 0 and f is Ck for some k ≥ 1 it is possible to write f(r) = rf1(r)

for some Ck−1 function f1. Then h(r)=r
∫ r
0
f1(s)ds. Clearly r−1h is Ck and its Ck norm

can be estimated by the Ck norm of f . It follows that h itself is Ck+1 and that its Ck+1

norm can be bounded by the Ck norm of f .
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