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1. Introduction. In this paper we will give an exposition of the ideas and techniques

involved in proving well posedness and regularity of solutions to the Cauchy problem of

semilinear wave equations. Our starting point is based on the treatment of the Cauchy

problem

utt −∆u+ g(u) = 0, x ∈ R3,

u(x, 0) = u0(x), ut(x, 0) = u1(x),

by Jörgens [11] and Segal [19]. Their work laid the foundation for developing energy

methods and Lp estimates to prove existence of solutions to the above equation. The work

of Strichartz [26] on estimates for the linear wave equation on Rn plays a central role in

our exposition. These estimates were used effectively to prove existence and scattering of

solutions to subcritical problems, as can be seen in the work of Brenner and von Wahl

[2], Ginibre and Velo [6], Pecher [16], and Strauss [25] to mention a few. Moreover all of

our regularity proofs for critical problems are based on energy estimates coupled with

Strichartz estimate. In addition to these estimates the Morawetz identity also plays an

important part in the regularity proof of critical problems, as was demonstrated by the

work of Struwe [27], Grillakis [7], Kapitanski [12], and Shatah and Struwe [20, 21]. The

proofs sketched in this exposition for global solvability of critical semilinear equations are

essentially those presented in [20, 21].

Another problem that we study in the manuscript is the Cauchy problem for wave

maps. These are maps from Minkowski space into a complete Riemanian manifold u :

Rn+1 −→ (N, g) that are solutions to the Cauchy problem

Dα∂αu
a = ∂α∂αu

a + Γabc(u) ∂αu
b ∂αuc = 0,

u(0, x) = U0(x), ∂tu(0, x) = U1(x).
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Based on scaling the cut off space for local well posedness in H
n
2 (Rn) (see Section 4.2).

Up to this writing there is no proof that H
n
2 is the optimal space for local existence. For

the general problem the best existence results in two space dimensions are given by

Grillakis [9] and in three space dimensions by Klainerman and Machedon [13]. Both of

these results require the data to be in the space H
n
2 +ε for arbitrarily small ε. The proof of

this fact utilizes very different estimates based on null forms. These null forms estimates

are better suited to handle derivative nonlinearities than the Strichartz estimates. Here

we will give a simple proof based on energy estimates and the geometric nature of the

equations that the problem is well posed in H
n+1
2 (Rn).

Using energy estimates and Strichartz estimates we will show that for equivariant

maps the problem is well posed in H
n
2 (Rn) for n ≥ 2. For n = 2 we use a variant of

the Morawetz identity to prove that with a certain condition on the metric the problem

is globally well posed in H1(R2). This condition was given by Grillakis [8] and is an

improvement over the convexity condition given by Tahvildar-Zadeh and the author in

[22]. The proof that we will present here was given in [23].

For space dimensions n ≥ 3 we will show that for some target manifolds N there are

smooth initial data such that the corresponding Cauchy problem develops a singularity

in finite time. The conditions on N in three space dimensions are geometric while for

five space dimensions the conditions are analytic. In particular there are manifolds with

negative sectional curvature such that the Cauchy problem develops singularities in finite

time. These singular solutions lead to the existence of initial data in Hs(Rn) ∀s < n
2 such

that the Cauchy problem has more than one weak solution. Thus we prove that for equ-

ivariant maps, in space dimensions n ≥ 3, H
n
2 (Rn) is the optimal space for existence and

uniqueness. These results were proved by Cazenave, Tahvildar-Zadeh and the author [3].

Notation. We use standard notations to denote function spaces. Besides the usual

Lebesgue spaces Lp, Sobolev spaces W s,p and Hs = W s,2, we denote Besov spaces by

Bsq . A thorough treatment of these spaces can be found in Triebel [10] and Bergh and

Löfström [1]. For a definition of the local version of the homogenous spaces

Ḣs(K) = Homogenous Sobolev space,

Ḃsq(K) = Homogenous Besov space,

the reader is referred to [20], page 508. For functions defined on space time, Lq(Lp)

denotes the space of functions that are Lp in space and Lq in time. The same notation is

also used for other space time norms.

2. Estimates for the linear wave equation. In this section we will discuss energy

and Lp estimates for solutions of the linear wave equation. These estimates lead us to

the Strichartz estimates which we will use extensively to prove existence and regularity

of solutions to nonlinear problems.

Energy estimates. The basic estimate for solutions of the linear wave equation

utt −∆u = 0, u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Rn,(2.1)
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is conservation of energy. To obtain local conservation of energy multiply (2.1) by ut,

∂t

(
1

2
u2t +

1

2
|∇u|2

)
− ∂i(utui) = 0,(2.2)

and integrate on a truncated backward light cone1,

Kb
a

def
=
{

(x, t) ∈ R3 × [a, b]; a ≤ t ≤ b ≤ 0, |x| ≤ −t
}
,

to obtain

E(u, b) +
1√
2

flux(u, a, b) = E(u, a),(2.3)

where

E(u, b)
def
=

∫
|x|≤−b

e(u)(x, b) dx, e(u)
def
=

1

2

(
|ut|2 + |∇xu|2

)
,

flux(u, a, b)
def
=

∫
Ma

b

{
1

2

∣∣∣∣ x|x|ut +∇u
∣∣∣∣2
}
dσ, M b

a
def
=
{

(x, t) ∈ R3 × [a, b] ; |x| = −t
}
.

Integrating equation (2.2) on Rn × [0, t] we obtain global energy conservation

||u||2e
def
=

∫
1

2
u2t (t) +

1

2
|∇u(t)|2 =

∫
1

2
u21 +

1

2
|∇u0|2 .(2.4)

Higher energy identities can be derived in the same manner:

E(∂ku, b) +
1√
2

flux(∂ku, a, b) = E(∂ku, a), ||u(t)||2k,e
def
=

∑
0≤i≤k

||∂iu(t)||2e = constant.

Another basic estimate is the L∞ decay estimate,

|u(x, t)| ≤ c

t
n−1
2

(|u0|Wk+1,1 + |u1|Wk,1) , k =

[
n− 1

2

]
.(2.5)

In three space dimensions it is easy to derive (2.5) using the explicit form of the solution:

u(x, t) = ∂t
1

4πt

∫
|x−y|=t

u0(y) dSy +
1

4πt

∫
|x−y|=t

u1(y) dSy.(2.6)

By Gauss’s theorem:

1

4πt

∫
|x−y|=t

u1(y) dSy=
1

4πt

∫
|x−y|=t

[n(y)u1(y)] · n(y) dSy

=
1

4πt

∫
|x−y|≤t

div (n(y)u1(y)) dSy,

where n(y) is the unit outward normal. The divergence term can be estimated by

|div (n(y)u1(y)| ≤ |∇u1|+
2

|x− y|
|u1(y)|,

and integration by parts gives∫
Rn

1

|x− y|
|u1(y)| dy ≤ (n− 1)

∫
Rn

|∇u1(y)| dy.

1We always write local estimates on cones or truncated cones with vertex at the origin. By

space time translation these estimates hold on arbitrary cones or truncated cones.



72 J. SHATAH

This implies ∣∣∣∣∣ 1

4πt

∫
|x−y|=t

u1(y) dSy

∣∣∣∣∣ ≤ c

t

∫
Rn

|∇u1(y)| dy.

Similar estimates for the term involving u0 yield equation (2.5) with n = 3. For general

n the reader is referred to [15].

Lp estimates. Heuristically, if we interpolate between the L∞ estimate and the energy

estimate for the problem,

utt −∆u = 0, x ∈ Rn,
u(0) = 0, ∂tu(0) = u1,

we obtain that the map R(t) : u1 → u maps Lp into Lq provided p = 2(n + 1)/(n + 3),

and q = 2(n+ 1)/(n− 1). The norm of the map R(t) is given by ct−(n−1)/(n+1)[15].

Strichartz estimates. These are estimates involving space-time norms of the solution

[26]. They can be derived from the Lp bounds given above and a duality argument [5].

Specifically, for the Cauchy problem (2.1) we have

|u|Lq(Rn+1) ≤ C
(
|u0|

H
1
2 (Rn)

+ |u1|
H−

1
2 (Rn)

)
for q = 2(n+ 1)/(n− 1). The above estimate also holds in the interior of a light cone Kb

a.

This follows from finite speed of propagation and extension theorems.

A variant of the above inequality involves homogeneous Besov spaces and is obtained

by applying fractional derivatives to the above [5],

|u|
Ḃ

1
2
q (Rn+1)

≤ C||u||e.

Nonhomogeneous equations. For the nonhomogeneous equation,

utt −∆u = h,(2.7)

solutions can be expressed by the variation of parameters formula

u = ulin +

∫ t

0

R(t− z)h(z) dz.(2.8)

Estimates can be derived from the previous bounds and Duhamel’s principle:√
E(u, b) ≤ C

(√
E(u, a) +

∫ b

a

|h(t)|L2(D(t)) dt

)
,

|u|
Ḃ

1/2
q (Kb

a)
≤ C

(√
E(u, a) + |h|

Ḃ
1/2
p (Kb

a)

)
,

(2.9)

where D(s) = {x ∈ Rn; |x| ≤ |s|}.
We can combine the energy estimate and the Strichartz estimate by observing that in

deriving the energy estimate the space time integral of h∂tu can be estimated by duality

|〈h, ∂tu〉 ≤ C|u|Ḃ1/2
q
|h|

Ḃ
1/2
p
,

to obtain √
E(u, b) ≤ C

(√
E(u, a) + |h|

Ḃ
1/2
p (Kb

a)

)
.(2.10)
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3. Semilinear problems. In this section we will establish the existence and unique-

ness of smooth solutions and finite energy solutions to the Cauchy problem

utt −∆u+ g(u) = 0, x ∈ Rn,
u(x, 0) = u0(x), ut(x, 0) = u1(x).

3.1. Subcritical case. To prove existence and uniqueness of solutions to nonlinear

problems we need to obtain a priori estimates. We’ll start by considering a pure power

nonlinearity in three space dimensions:

utt −∆u+ |u|p−1u = 0, x ∈ R3,

u(x, 0) = u0(x), ut(x, 0) = u1(x),
(3.1)

and first consider the case 1 ≤ p ≤ 3. The simplest way to obtain a priori estimates

for (3.1) is to rewrite it using the variation of parameters formula and then apply the

standard energy estimate

||u(t)||e ≤ ||ulin||e +

∫ t

0

|up(z)|2dz = ||ulin||e +

∫ t

0

|u(z)|p2pdz.(3.2)

For the case p = 3 we can use Sobolev embedding,(∫
|u|6
) 1

6

≤ C
(∫
|∇u|2

) 1
2

,

to rewrite the energy estimate,

||u(t)||e ≤ ||ulin||e +

∫ t

0

C||u(z)||3e dz.(3.3)

If we denote y(t) = sup0≤z≤t ||u(z)||e, the above equation implies

y(t) ≤ ||ulin||e + Cty(t)3.

Define T∗ = 1
8C3||u2

lin
||2e

, we obtain

y(t) ≤ 2||ulin||e 0 ≤ t ≤ T∗ .(3.4)

The above estimate is sufficient to prove local existence of solutions with finite energy

initial data using a standard contraction mapping argument. The same is true for 1 ≤
p ≤ 3 since we can bound |u|L2p by the energy norm.

To obtain an a priori bound on solution to equation (3.1) that hold for all time

multiply the equation by ut,

∂t

(
1

2
|ut|2 +

1

2
∇u|2 +

1

p+ 1
|u|p+1

)
− ∂i(uiut) = 0,(3.5)

and integrate on R3 × [0, t] to obtain∫
1

2
|ut|2 +

1

2
|∇u|2 +

1

p+ 1
|u|p+1d = E0.(3.6)

This bound on ||u(t)||e, for all t, coupled with a continuation argument proves global

existence [24].

Theorem 3.1 (1 ≤ p ≤ 3). Given initial data in Ḣ1×L2, equation (3.1) has a unique

global solution u ∈ C(R, Ḣ1) and ∂tu ∈ C(R, L2).
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If the initial data is smooth, then so is the solution. The proof of this fact is Gronwall’s

inequality applied to higher energy estimates.

Theorem 3.2 (1 ≤ p ≤ 3). Given smooth initial data, equation (3.1) has a unique glo-

bal smooth solution u.

For p > 3 we cannot prove existence and uniqueness using energy estimates alone.

However we can prove existence of smooth solutions using the pointwise estimate (2.5).

We’ll present here an argument that is due to Jörgens [11]. The variation of parameter

formula (2.8) in three space dimensions is given by

u(x, t) = ulin(x, t) +
1

4π

∫ t

0

∫
|x−y|=t−s

−|u(y, s)p−1|
t− s

u(y, s) dyds,(3.7)

where ulin(x, t) is the solution of the linear equation with the given initial data. The

nonlinear term in (3.7) can be estimated by∫
M

|u|p

ζ
dσ≤

(∫
M

|u|2(p−1)dσ
) 1

2
(∫

M

u2

ζ2
dσ

) 1
2

(3.8)

≤ C
(∫

M

|u|2(p−1)dσ
) 1

2

[(∫
M

|∇tanu|2
) 1

2

+ boundary term

]
,

where M is the mantel of the cone with vertex (x, t) and base t = 0, ζ is the distance

on the surface of the cone measured from the vertex, and where ∇tan are the tangen-

tial derivatives to the mantel M . The boundary term depends on the initial data only.

Integrating the energy identity (3.5) on the solid cone K we obtain∫
M

|∇tanu|2dσ ≤ CE0.(3.9)

Thus from equations (3.7) and (3.8), the solution u satisfies

|u(x, t)| ≤ |ulin(x, t)|+ C(E0)|up−1|L2(M).

Since the initial data are smooth we have

|ulin(x, t)| ≤ C||ulin||1,e,

and this implies

|u(x, t)| ≤ C||ulin||1,e + C(E0)|up−1|L2(M).(3.10)

For p < 4 the right hand side of the above inequality is bounded by the energy of the

initial data, while for 4 ≤ p < 5 we can bound the right hand side by

|u(x, t)| ≤ C||ulin||1,e + C(E0)|u|p−4L∞ .(3.11)

Thus for 1 ≤ p < 5 inequality implies a pointwise bound on solutions

|u|∞ ≤ C(||ulin||1,e).

Once we have a pointwise bound on the solution we can estimate the solution in any Hk

space by using higher energy estimates.

Theorem 3.3 (1 ≤ p < 5). Given smooth initial data, equation (3.1) has a unique glo-

bal smooth solution u.
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For finite energy initial data, or for smooth initial data in dimension n > 3, we can

not obtain pointwise bounds directly for the energy bound because of the large number

of derivatives needed for such an estimate, i.e. [(n−1)/2]. An alternative approach to the

L∞ estimate is to control Besov norms [5]. We will consider a pure power nonlinearity

utt −∆u+ |u|p−1u = 0, x ∈ Rn,
u(0) = u0, ∂tu(0) = u, p < 2∗ − 1 = (n+ 2)/(n− 2).

By Duhamel’s principle

u(t) = ulin(t) +

∫ t

0

R(t− s)|u(s)|p−1u(s) ds,

where R is the fundamental solution in n space dimensions. Applying Strichartz estimates

to the above equation we obtain

|u|
Ḃ

1
2
q (Rn+1)

≤||ulin||e + | |u|p−1u|
Ḃ

1
2
q′
(Rn+1)

≤ Eo + |u|p−1Lr(Rn+1)|u|Ḃ
1
2
q (Rn+1)

,

where q = 2(n+ 1)/(n− 1) and r = (n+ 1)(p− 1)/2. We can estimate |u|Lr(Rn+1) by the

embedding Ḃ
1
2
q (Rn+1) ⊂ Lr(Rn+1) provided r = 2(n+ 1)/(n− 2), i.e. p = 2∗ − 1. In this

case we have

|u|
Ḃ

1
2
q

≤ Eo + c|u|p
Ḃ

1
2
q

.

Clearly the above inequality doesn’t give an a priori bound on u. However if we consider

the case p < 2∗ − 1 and use the local version of Strichartz’s estimate we’ll obtain

|u|
Ḃ

1
2
q (Kb

a)
≤ C(E(u, a) + |u|p−1

Lr(Kb
a)
|u|

Ḃ
1
2
q (Kb

a)
) ≤ C(E(u, a) + |m|α|u|p

Ḃ
1
2
q (Kb

a)
),(3.12)

where m = volume of Kb
a and α = (n− 2)/2(n+ 1)− 2/(p− 1)(n+ 1). This inequality

leads to an estimate on the local Ḃ
1
2
q norm of the solution provided we take the cone to

have sufficiently small volume.

Therefore to prove existence of solutions to subcritical problems in Rn, we set up a

contraction mapping argument in the space Ḃ
1
2
q on small cones and prove local existence

of solutions with finite energy initial data. These solutions satisfy the energy identity

which can be derived by multiplying the equation by ∂tu and bounding the nonlinear

term by ∣∣〈|u|p−1u, ut〉∣∣ ≤ |∂tu|
Ḃ
− 1

2
q

||u|p−1u|
Ḃ

1
2
q′

≤ c|∂tu|
Ḃ

1
2
q

|u|p
Ḃ

1
2
q

,

where 〈 , 〉 denotes space time duality. The energy identity implies a global bound on

E(u, a) which allows us to use a continuation argument to obtain global existence.

Theorem 3.4 (1 ≤ p < 2∗ − 1). Given finite energy initial data there exists a unique

finite energy solution with the added regularity u ∈ Ḃ
1
2
q and ∂tu ∈ Ḃ

1
2
q .

3.2. Critical problems. To solve the wave equation with critical exponent nonlinearity

p = 2∗ − 1,

utt −∆u+ |u|p−1u = 0, x ∈ Rn,(3.13)
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the Strichartz and the energy estimates (2.9) (2.10) applied to the above equation,

|u|
Ḃ

1
2
q (Kb

a)
≤ C

(√
E(u, a) + |u|p

Ḃ
1
2
q (Kb

a)

)
,(3.14)

√
E(u, b) ≤ C

(√
E(u, a) + |u|p

Ḃ
1
2
q (Kb

a)

)
,(3.15)

fail to give a bound on the Besov space norm unless E(u, a) is sufficiently small. The best

bound we have is the total energy bound E(u, a) ≤ E0. Therefore if the total energy is

small the above inequality implies a bound on the Besov norm of u.

R e m a r k 3.1. For smooth initial data in three space dimensions equation (3.11) im-

plies a pointwise bound on solutions provided the initial energy is small. This is the basis

of the proof that small energy implies regularity [18]. Moreover on a closer examination

of Jörgens proof for the subcritical problem (equations (3.10) and (3.11)) we note that

it is sufficient for the nonlinear part of the energy, i.e. |u(t)|L6 , to be small to obtain a

pointwise bound on u.

Local existence. Inequalities (3.14) and (3.15) are sufficient to prove local existence

and uniqueness of solutions with finite energy initial data. To accomplish this we first

start by partitioning R3 into small balls so that on each ball the initial data has small

energy. Next we set up a contraction argument on cones K (whose base is one of these

balls) in the space

u ∈ Ḃ
1
2
q (K) ∩ L∞(Ḣ1), ∂tu ∈ Ḃ

− 1
2

q (K) ∩ L∞(L2).(3.16)

By finite propagation speed we can put these solutions together to generate a local

solution for the given initial data [12, 21] .

Theorem 3.5. Given finite energy initial data equation (3.13) has a unique local

solution in the space given by (3.16).

Global existence. In order to prove that the local solutions can be extended globally

we have to show that the nonlinear part of the energy can’t concentrate at a point.

Without loss of generality we consider the point (0, 0) and use the local conservation of

energy and the Morawetz identity.

Lemma 3.1. Given a finite energy solution u ∈ Ḃ
1
2
q

(
Kb
a

)
∀b > a, then

(a) flux(u, 0, a)→ 0 as a→ 0,

(b)
∫
D(a)
|u(a)|2∗ → 0 as a→ 0.

One of the difficulties in proving this lemma is the derivation of the energy and the

Morawetz identities. Since the solution is assumed to be of finite energy only, some care

has to be taken in multiplying equation (3.13) by derivatives of u, as required in deriving

these identities. The linear part of the equation can be dealt with in a standard manner

such as smoothing the solution by an approximate identity uj = ϕj ∗ u. Moreover since

u is assumed to be in Ḃ
1
2
q

(
Kb
a

)
we have the nonlinear term |u|p−1u ∈ Ḃ

1
2

q′

(
Kb
a

)
. Therefore

multiplying the nonlinear term by derivatives of u and integrating over space time regions

is admissible by duality. To localize the identities we multiply by the cutoff function η on
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the cone K

η =


1, t+ x ≤ −ε, to + ε < t < 0,

1− t+ |x|+ ε

ε
, −ε ≤ t+ |x| ≤ 0,

1

2
to ≤ t+

1

2
|x|,

1 +
t− to − ε

ε
, to ≤ t ≤ to + ε, t+

1

2
|x| ≤ 1

2
to.

For example to derive the energy identity we multiply equation (3.13) by η∂tuj . Integra-

ting by parts and letting j →∞ we obtain

g(ε) =

∫ ∫ {
ηt

(
1

2
|ut|2 +

1

2
|∇u|2 +

1

2∗
|u|2

∗
)
−∇η · (∇u ut)

}
dx dt = 0 ,

Computing d(εg)/dε we obtain local energy conservation

E(u, b) +
1√
2

flux(u, a, b) = E(u, a),(3.17)

where

e(u)
def
=

1

2

(
|ut|2 + |∇xu|2

)
+

1

2∗
|u|2

∗
,

flux(u, a, b)
def
=

∫
Ma

b

{
1

2

∣∣∣∣ x|x|ut +∇u
∣∣∣∣2 +

1

2∗
|u|2

∗

}
dσ.

The boundedness of the flux in equation (3.17) implies part a) of the lemma.

The Morawetz identity can be derived in a similar fashion using the multiplier

η (t∂tuj + x · ∇uj + (n− 2)uj/2)

and integrating over Kb
a, letting b→ 0 we obtain

−
∫
D(a)

aQ0 + (n− 1)uut/2 +

∫
K

R0 +
1√
2

∫
C

{
tQ0 +

n− 1

2
utu+ x · P0

}
= 0.

After some algebraic manipulation and integration by parts the above equation yields

[20]

−a
∫
D(a)

|u|2
∗
≤ c|a|flux(u, 0, a).

Dividing by −a and letting a→ 0 proves part b) of the lemma.

To obtain bounds on the Ḃ
1
2

(
Kb
a

)
norm of the solution u in inequality (3.12)

|u|
Ḃ

1
2
q (Kb

a)
≤ E(u, a) + |u|p−1

Lr(Kb
a)
|u|

Ḃ
1
2 (Kb

a)
, q = 2(n+ 1)/(n− 1), r = 2(n+ 1)/(n− 2).

we estimate the Lr
(
Kb
a

)
norm of u as follows: By Hölder’s inequality and the embedding

Ḃ
1
2
q (Rn) ⊂ Ls(Rn) we can estimate the spatial norm of u,

(3.18) |u(t)|r ≤ |u(t)|αL2∗ (D(t))|u(t)|1−αLs(D(t)) ≤ c|u(t)|αL2∗ (D(t))|u(t)|1−α
Ḃ

1
2
q

,

α = 1/(n− 1), 1/s = (n− 1)/2(n+ 1)− 1/2n.
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The space time norm of u can be now estimated by

|u|rLr(Kb
a)
≤ C

∫ b

a

|u(t)|αrL2∗ (D(t))|u(t)|(1−α)r
Ḃ

1
2
q (D(t))

dt ≤ c|u|αrL∞(L2∗ )|u|
q

Ḃ
1
2
q (Kb

a)
,

since (1− α)r = q. This leads to the inequality

|u|
Ḃ

1
2
q (Kb

a)
≤ E0 + c|u|p−γ

L∞(L2∗ )
|u|γ

Ḃ
1
2 (Kb

a)
, γ = (n+ 3)/(n− 1),(3.19)

which implies a bound on the Besov norm of u provided the L∞
(
L2∗(D(t))

)
norm of u

is small on Kb
a. The decay of the L2∗ of u and equation (3.19) implies that u ∈ Ḃ

1
2
q (K).

To show that the whole energy decays apply estimate (2.10) to u− ulin,√
E(u− ulin) ≤ c|u|p

Ḃ
1
2
q (Kb

a)
, a ≤ b ≤ 0.

Since ulin is a solution of the linear equation and |u|
Ḃ

1
2
q (K)

≤ C, then E(u, b) can be

made arbitrarily small for a ≤ b ≤ 0 by taking the cone K, i.e. a, to be small.

The decay of E(u, b) at the tip of the cone allows us to extend the local solution to

a global one. For let u be a maximal solution defined on Rn × [T, 0) and K a cone with

vertex at t = 0. Since the energy decays on the cone K we have E(u, b) → 0 as b → 0.

Take b small enough so that the energy in a ball with center at (0, b), and radius slightly

larger then |b| is smaller then what is required by the local existence theorem. Then the

solution can be extended beyond the tip of K [12, 21].

Theorem 3.6 (p ≤ 2∗ − 1). Given finite energy initial data equation (3.13) has a uni-

que global solution.

4. Wave maps. An instructive way to describe the problem is when the target ma-

nifold N is a hypersurface in Rk+1. In this case if u(s) ∈ N ⊂ Rk+1 is a curve on N and

V (s) is a tangent vector to N at u(s) then the covariant derivative DsV (s) is given by

DsV (s) =
d

ds
V (s) +

(
V (s) · d

ds
n(s)

)
n(s),

where n(s) is the unit normal vector to N at u(s). Thus if we use (x0, x1, . . . , xn) = (t, x)

as a coordinate system on Rn+1 with the metric (ηαβ) = (−1, 1, . . . , 1) and consider a

map u: Rn+1 → N ⊂ Rk+1, then ∂αu is a tangent vector to N at u and

Dβ∂αu = ∂β∂αu+ (∂αu · ∂βn(u) )n(u) .

Consequently the wave equation of the map u is given by ηαβDβ∂αu = 0 or

∂20u−∆u+ (∂0u · ∂0n(u)− ∂iu · ∂in(u) )n(u) = 0,

where we use the summation convention on repeated indices.

In general for a complete Riemannian manifold (N, g) and a map u: Rn+1 → N we

consider the Cauchy problem

Dα∂αu
a = ∂α∂αu

a + Γabc(u) ∂αu
b ∂αuc = 0,

u(0, x) = U0(x), ∂tu(0, x) = U1(x),
(4.1)
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where Γ are the Christoffel symbols of the metric g. We will obtain sharp results on

existence and uniqueness for equivariant maps for space dimensions greater than two.

4.1. Conserved quantities. Equation 4.1 has a variational formulation

A(u) =

∫
L(u) dv =

∫
1

2
gab(u) ∂αu

a ∂βu
b ηαβ dv.

By Noether’s Theorem any one parameter group that leaves the action invariant generates

a conserved current. Thus we have the usual energy-momentum conservation from space

time translation and we have conserved currents generated by the isometry of N . We’ll

illustrate this by considering the case N = S2 ⊂ R3. In this case the unit normal to S2
at a point u ∈ R3 is u, and the wave equation for u ∈ S2 ⊂ R3 is

utt −∆u+ (|ut|2 − |∇u|2)u = 0,

u(0, x) = u0(x), ∂tu(0, x) = u1(x).

Invariance under time translation generates conservation of energy

∂0(
1

2
|ut|2 +

1

2
|∇u|2)− ∂i(ui · ut) = 0 ,

while invariance under space translation generates conservation of momentum

∂0(uk · ut)− ∂i(
1

2
|ut|2 + uk · ui −

1

2
δik|∇u|2) = 0 .

Now if we consider the invariance of the action under rotation of u on in S2 we have the

conserved current

∂0(ut ∧ u)− ∂i(ui ∧ u) = 0,

where ∧ is the wedge product.

For the general case, energy-momentum conservation can be computed using the

energy-momentum tensor which is the variation of the action with respect to the metric

on Rn+1

Tαβ =
δA
δηαβ

= gab∂αu
a ∂βu

b +
1

2
ηαβL(u),

and energy momentum conservation can be expressed as

∂α(Tαβ) = 0.

Conserved current generated by isometries of N can be obtained by computing the varia-

tion of the action with respect to the metric on the target. Let φε denote a one parameter

family of diffeomorphisms generated by a vector field X, and gε the pullback of the metric

g by φ, i.e.

gεab(u) = gcd(φε(u))
∂φcε
∂ua

∂φdε
∂ub

.

Then
dA
dε

∣∣
ε=0

=
1

2

∫
(Lxg)ab∂αu

a ∂βu
b ηαβ dv,(4.2)

where (Lxg)ab = DaXb + DbXa is the Lie derivative. Moreover since DaXb∂αu
a =

DαXb(u), equation (4.2) can be written as

dA
dε

∣∣
ε=0

=

∫
Dα

(
ηαβXb(u) ∂βu

b
)
− ηαβ(XbDα ∂βu

b).
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If X generates an isometry on N (dAdε = 0), and if u is a solution to 4.1, we obtain the

conserved current

Dα

(
ηαβXb(u) ∂βu

b
)

= 0 .

4.2. Local existence. Equations (4.1) are semilinear wave equations, and therefore

there is no problem in proving local existence and uniqueness of solutions for smooth

initial data. However if we pose the Cauchy problem with initial data in Hs for small

s then the problem is much more difficult. Since the equations are invariant under the

scaling uλ(t, x) = u(λt, λx) it is easy to see that, in general, the problem cannot be

well-posed in Hs for s < n
2 . This can be seen by noting that any solution that blows up

in finite time, can be scaled so that the Hs norm of the Cauchy data approaches zero

and the existence time approaches zero as well. This implies that solutions do not depend

continuously on the initial data since the zero solution exists for all time. (See [14] for

examples where similar scaling argument fails to give the best possible space for local

existence.)

As stated in the introduction, there is no proof that H
n
2 is the optimal space for

local existence. Here we will give a simple proof, based on energy estimates only, that

the Cauchy problem is well-posed in H
n+1
2 for n ≥ 3. For n = 3 and N = Sk this result

was proved by M. Struwe [28]. Moreover, for general quadratic nonlinearities involving

derivatives, G. Ponce and T. Sideris [17] proved that the Cauchy problem is well-posed

in three space dimensions in the space H2+ε.

Theorem 4.1. The Cauchy problem (4.1) is well posed in the space H
n+1
2 for n ≥ 3.

S k e t c h o f t h e p r o o f. We start our proof by deriving higher energy estimates

for equation (4.1). Let Vα = ∂αu then equation (4.1) can be written as ηαβDαVβ = 0.

Differentiating with respect to xγ we obtain

ηαβDαDβVγ + ηαβR(∂γu, ∂αu)Vβ = 0,

Vγ(0) = Vγ , D0Vγ(0) = V1 .
(4.3)

Multiplying by D0Vγ and integrating by parts yields

d

dt

√
E(V ) ≤ C |ηαβR(∂αu, ∂γu)Vβ |L2 ,(4.4)

where V = (V0, . . . , Vn) and E(V ) =
∫

1
2 |D0V |2 + 1

2Σ|DiV |2 is the energy of V . By

Sobolev embedding the right hand side of the above inequality can be estimated by

d

dt

√
E(V )≤ C|∂u|2L2n |V |H1 ≤ C|u|2

H
n+1
2

√
E(V ).

By Gronwall’s Lemma we obtain a bound on E(V ) in terms of the H
n+1
2 norm of u,

E(V (t)) ≤ exp

[
C

∫ t

0

|u|2
H

n+1
2

]
E(V (0)).(4.5)

Higher energy estimates can be obtained in the same manner by differentiating equa-

tion (4.3) k times and multiplying by D0D
kV . All the commutator terms as well as the

curvature terms are lower order and can be bounded by the norm of u in H
n+1
2 and

E(DkV ). Consequently if n is odd we obtain a priori estimates on the H
n+1
2 norm of
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u in terms of the initial data. If n is even we obtain the same estimate using interpola-

tion. This is carried out in the following manner: For any u ∈ H n+1
2 consider the linear

equation

ηαβDαDβW = 0, W (0) = W0, D0W (0) = W1.

Then from energy estimates for W we have

|W (t)|H1 ≤ C(|u|
H

n+1
2

)|W (0)|H1 , |W (t)|H2 ≤ C(|u|
H

n+1
2

)|W (0)|H2 .

By interpolation we obtain

|W (t)|
H

3
2
≤ C(|u|

H
n+1
2

)|W (0)|
H

3
2
.

Therefore for n even we can differentiate the equation n−2
2 times and then apply the

above estimate to obtain H
n+1
2 bound on the solution. These a priori estimates are used

to obtain existence of H
n+1
2 solution as limits of smooth solutions. The local existence

time will depend only on the H
n+1
2 norm of the initial data.

To show uniqueness we need to compare two solutions, say u1 and u2 with the same

initial data. However since solutions are maps into manifolds we cannot simply consider

the difference u1 − u2. We get around this difficulty by considering the tangent vectors

Vα = ∂αu1 and Wα = ∂αu2. Since u1 and u2 are Hölder continuous and coincide at

t = 0 we have for t sufficiently small u1(x) and u2(x) in a geodesically convex region

where u1(x) and u2(x) can be connected by a unique geodesic γ(s, x) of length `(x), i.e.

γ(0, x) = u1(x), γ(`(x), x) = u2(x) and Ds∂sγ = 0. Let Ṽ (s, x) be the parallel translation

of V (x) along γ,

DsṼα = 0, Ṽα(0, x) = Vα(x).

Then Ṽα(s, x) = X(s, 0, x)Vα(x), where X is the fundamental matrix solution of the

above ODE. Therefore to compare the two solutions u1 and u2 we compare V α and Wα,

where V α(x) = Ṽα(`(x), x) the parallel translation of Vα(x) to the point u2 along γ. Note

that the derivative of V α can be computed using the equation

DsDβṼα +R(∂sγ, ∂βγ)Ṽα = 0,

DβV α = DβVα −
∫ `

0

X(`, s, x)R(∂sγ, ∂βγ)Ṽα.

Since DαVα = 0 and DβVα = DαVβ we obtain

|DαV α| ≤ C`|V |2, |DαV β −DβV α| ≤ C`|V |2,

where the constant C depends only on the local geometry of the target manifold. Using

the above inequalities we can derive L2 estimates for V −W from the equation

|Dα(V α −Wα)| ≤ C` |V |2,

which implies the estimate

d

dt
|V −W |L2≤ C|` |V |2|L2 ≤ C|∇`|L2 |V |2L2n .

Using the first variation of arc length we have |∇`| ≤ C|V −W | and this implies the
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inequality
d

dt
|V −W |L2 ≤ C|V −W |L2 |u|2

H
n+1
2
.

By Gronwall’s Lemma we obtain uniqueness of solutions based on H
n+1
2 norm of the

initial data.

Theorem 4.2. The Cauchy problem (4.1) with initial data

U0 ∈ H
n+1
2 , U1 ∈ H

n−1
2 ,

has a unique local solution on [0, T ∗) for some T ∗ > 0:

u ∈ C([0, T0], H
n+1
2 ), ∂0u ∈ C([0, T0], H

n−1
2 ), ∀T0 < T ∗.

R e m a r k 4.1. In one space dimension equation (4.5) implies a global bound for the

H2 norm of the solution. Higher energy estimates imply that the solution is regular for

all time [4].

4.3. Equivariant maps. In this section we will restrict the target manifold to be ro-

tationally symmetric, i.e.

N = [0, φ∗)× Sk−1,
where φ∗ ∈ R+ ∪{+∞}. On N we have polar coordinates (φ, χ) ∈ [0, φ+)×Sk−1 and the

metric in these coordinate systems can be written as

ds2 = dφ2 + g2(φ) dχn,

where g(0) = 0, g′(0) = 1, and dχ2 is the standard metric on Sk−1. For such manifolds

there exist a special class of maps called equivariant maps. Using polar coordinates (t, r, ω)

on Rn+1, equivariant maps are given by

(t, r, ω)→ (φ(t, r), χ(ω) ),

where χ(ω) is a map from Sn−1 into Sk−1. For equivariant maps to be wave maps χ(ω)

has to be a harmonic polynomial of degree `, i.e., the restriction of a map from Rn → Rk
where each component is a homogeneous polynomial of some degree ` > 0, and φ has to

satisfy the Cauchy problem

φtt − φrr −
n− 1

r
φr +

k

r2
f(φ) = 0,

φ(0, r) = φ0(r), ∂tφ(0, r) = φ1(r),
(4.6)

with f(φ) = g(φ) g′(φ) and k = `(`+ n− 2).

The above equation is easier to analyze than (4.1) since the nonlinearity has a sin-

gularity at r = 0 instead of having a product of derivatives. The energy identity for the

above equations is given by

E(φ)
def
=

∫
1

2

(
φ2t + φ2r +

k

r2
g2(φ)

)
rn−1 dr =

∫
1

2

(
φ21 + φ20r +

k

r2
g2(φ0)

)
rn−1 dr .

As in section 4.2 we can use the scaling invariance of the equations to deduce which

problem we can study using conservation of energy only. The equation is invariant under

scaling φ → φλ(t, r) = φ(t/λ, r/λ) and the energy E scales as E(φλ) = λn−2E(φ). For

n = 1 E(φλ)→∞ as λ→ 0, and this rules out concentration since the energy is conserved



WAVE EQUATIONS 83

(indeed solutions are regular as remarked in section 4.2), and for n ≥ 3 E(φλ) → 0 as

λ→ 0, which doesn’t rule out concentration and development of singularities (which we

will show in section 4.4). For n = 2, existence of singularities is still an open problem and

there are only partial results on regularity of solutions.

Local existence in H
n
2 . To prove local existence and uniqueness to (4.6) in the space

H
n
2 (Rn) we use Strichartz estimates coupled to energy estimates. Let φ = rv, then v

satisfies

vtt − vrr −
m− 1

r
vr = v3Z(rv),

v(0, r) = v0 = φ0/r, vt(0, r) = v1 = φ1/r,
(4.7)

where m = n + 2 and Z is a smooth, even function. It is not difficult to prove the

equivalence of the Cauchy problem (4.6) for φ in H
n
2 (Rn) and the Cauchy problem for v

(4.7) with initial data

v0 ∈ Hk
loc(Rm), v1 ∈ Hk−1

loc (Rm), k =
m− 2

2
.

This can be done by noting that for radial functions Hardy’s inequality and Sobolev

embedding theorems imply

|r
m
2 −

m
p −sv|Lp(Rm) ≤ c|v|Hs(Rm),(4.8)

with 1 ≤ s ≤ m
2 and q ≤ p.

Strichartz estimates. The Besov norm estimate (2.9) applied to equation (4.7) yields

|v|Ḃs
q(K

b
a)
≤ cE(∂s−

1
2 v, a) + c|v3Z(rv)|Ḃs

q′
(Kb

a)
,(4.9)

where q = 2(m+ 1)/(m− 1) and where we set s = k− 1
2 = (m− 3)/2. The term Z(rv) in

the above inequality will cause no difficulty in carrying out our estimates since, by (4.8),

|rv|L∞ ≤ c|v|Hk , |v|Lm ≤ c|v|Hk , |r∂jv|
L

m
j
≤ c|v|Hk .

Therefore the term v3Z(rv) behaves effectively as a cubic term and we only need to

estimate v3 in Ḃsq′
(
Kb
a

)
. This can be done in a manner similar to (3.2):

|v3|Ḃs
q′
(Kb

a)
≤ c|v|α

Ḃs
q(K

b
a)

[[v]]β , [[v]]
def
= sup

t∈[a,b]

√
E(∂s−

1
2 v, t),

where α = (m+ 3)/(m− 1) and β = (2m− b)/(m− a). Inequality (4.9) can be estimated

by

|v|Ḃs
q(K

b
a)
≤ cE(∂s−

1
2 v, a) + c

(
[[v]] + |v|Ḃs

q(K
b
a)

)m+2

.(4.10)

Energy estimates. Applying estimate (2.10) to equation (4.7) on a truncated cone Kb′

a

for b′ ≤ b √
E(∂s−

1
2 v, b′) ≤ c

√
E(∂s−

1
2 v, a) + c|v3Z(rv)|Ḃs

q′
(Kb

a)
.

This yields, as in (4.9),

[[v]] ≤ c
√
E(∂s−

1
2 v, a) + c([[v]] + |v|

Ḃ
1
2
q (Kb

a)
)m+2.(4.11)
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By considering small truncated cone Kb
0 we can make the initial data E(∂s−

1
2 v, 0) small.

In this cases the Besov norm estimate (4.10) and the energy estimate (4.11) yield an a

priori bound

[[v]] + |v|Ḃs
q(K

b
0)
≤ c
√
E(∂s−

1
2 v, 0).

This a priori bound and a standard contraction mapping argument proves

Theorem 4.3. The Cauchy problem (4.6) with initial data

φ ∈ Hn/2 , φ1 ∈ H(n−2)/2,

has a unique local solution on [0, T ∗) for some T ∗ > 0:

φ ∈ L∞
(

[0, T0], Hn/2
)
∩ Ḃ

1
2
q ([0, T0]× Rn) ,

∂tφ ∈ L∞
(

[0, T0], Hn/2−1
)
, q =

2(n+ 3)

n+ 1
, ∀T0 < T ∗ .

Global regularity in two space dimensions. Since the problem is critical in two space

dimensions, the proof of regularity (as in the semilinear problem) proceeds in two steps:

1) small energy implies regularity and 2) energy cannot concentrate. Complete details of

the proof can be found in [8, 23].

Theorem 4.4 (n = 2). Let the function g in equation (2) satisfy the condition

g(s) + sg′(s) > 0 for s > 0.

Then the Cauchy problem with smooth initial data has smooth solution for all time.

S k e t c h o f t h e p r o o f. Without loss of generality we will assume that the data

is given at t = −1 and the first possible singularity is at (0,0). To show that the energy

cannot concentrate at (0,0) we will use the energy identity

(re)t − (rm)r = 0,(4.12)

where e = 1
2 (φ2t + φ2r + `2

r2 g
2(φ)) and m = φtφr. We also use a variant of the Morawetz

identity which can be derived by multiplying (4.6) by Maφ
def
= raφr + 1−a

2 ra−1φ:

∂t

[
ra+1(m+

1− a
2

φt
φ

r
)

]
− ∂r

[
ra+1(e− 2`2

r2
g2(φ) + φr

φ

r
+

(1− a)2

4

φ2

r2

]
= −aφ2t ra −

1− a
2r2

ra
[
2`2g2(φ) + `2φf(φ)− (1− a)2

2
φ2
]
.

Define the local energy and flux by

E(φ, t) =

∫ |t|
0

e(t, r) dr , rmflux(φ, t, s) =

∫ |t|
|s|

(e−m)(−x, x)x dx,

and integrate (4.12) on the truncated cone −1 ≤ t ≤ s < 0 to obtain −E(φ, t)+E(φ, s)+

cflux(φ, t, s) = 0. This implies that

• The energy E(φ, t) is monotone nonincreasing.

• The flux is bounded by the initial energy, and flux(φ, t, s)→ 0 as t→ 0.

• Finite energy implies boundedness of solutions (since e has a term of he form φ2

r2 ).

• For solutions φ c1φ
2 ≤ g2(φ) ≤ c2φ2 and |f(φ)| ≤ C|φ|.
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• Solutions cannot concentrate on the boundary of the cone i.e.

φ(−x, x)→ 0 as x→ 0 .

• The annular energy Eλm(φ, t)
def
=
∫ |t|
λ|t| e(t, r) r dr → 0 as t → 0 for 0 < λ < 1.

Moreover by integrating (13) on the truncated cone and letting s→ 0 we obtain:

• For a sufficiently close to 1 we have

2`2g2(φ) + `2φf(φ)− (1− a)2

2
φ2 ≥ εφ2,

and this is sufficient to show that 1
|t|a
∫ ∫
Kt

φ2

r2 r
a dr dt→ 0 as t→ 0.

• E(φ, t)→ 0 as t→ 0 i.e. energy cannot concentrate at (0,0).

To show that small energy implies regularity we make the transformation φ = r`w:

wtt − wrr −
2`+ 1

r
wr =

`2

r`+2
[g(φ) g′(φ)− φ] .

Since g(φ) g′(φ)− φ = O(φ3) we have

wtt − wrr −
m− 1

r
wr = crm−4w3Z(φ),(4.13)

where m = 2(`+ 1) ≥ 4 and Z is a smooth function of φ. Since φ is bounded, we see that

w satisfies a wave equation in m space dimensions with nonlinearity of cubic growth. The

critical exponent in m dimensions is 2∗ − 1 = m+2
m−2 = 1 + 2

` ≤ 3, but the presence of the

rm−4 factor makes this essentially a problem with critical exponent.

As in the semilinear wave equation we are going to use the Strichartz estimate (2.9)

on w satisfying (4.13):

|w|
Ḃ

1
2
q (Kb

a)
≤ C

√
E(w, a) + c|rm−4w3Z(φ)|

Ḃ
1
2
q′
(Kb

a)
,(4.14)

where q = 2(m+1)
m−1 . By Hardy’s inequality and Sobolev embedding theorem we estimate

the right hand side by:

|rm−4w3Z(φ)|
Ḃ

1
2
q′
(Kb

a)
≤ CE(w, a)θ|w|γ

Ḃ
1
2
q (Kb

a)
,

where θ = 2/(m− 2)(m− 1), and hence

|w|
Ḃ

1
2
q (Kb

a)
≤ C

√
E(w, a) + CE(w, a)θ|w|γ

Ḃ
1
2
q (Kb

a)
,

with γ > 1. Since E(w, a) ≤ cE(φ, a) and we have shown E(φ, a) < ε for a close enough

to 0, this implies that |w|
Ḃ

1
2
q′
(Kb

a)
is bounded.

Higher regularity for w can now be obtained by differentiating the equation and

repeating the above argument. Eventually we gain enough regularity to deduce w ∈ L∞.

Higher energy estimates can then be used to improve this to w ∈ C∞, or as regular as

the data. This completes the proof of regularity for φ.

4.4. Singularities and non-uniqueness. Since equations (4.1) are invariant under sca-

ling uλ(x, t)
def
= u(x/λ, t/λ), then singularities can develop by simply forcing the solution
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to concentrate at a point. Therefore we look for solutions that are self similar

u = v(x/t).

These solutions are constant on rays emanating from the origin, thus possibly leading

to a derivative singularity at the origin. Substituting this ansatz into equation (4.1) we

obtain the equation of equivariant harmonic maps from the hyperbolic space Hn into N .

This is to be expected since if we use on space time the coordinate system

σ =
√
t2 − r2 , ρ = r/|t| ,

the hypersurface σ = 1 is the hyperbolic space Hn, and solutions that are independent of

σ are harmonic maps from the hyperbolic space (σ = 1) into N . If such maps exist and

are regular (including regularity at infinity), then we can show that the Cauchy problem

with regular initial data can develop singularities in finite time. This is accomplished by

using these maps as initial data at t = −1 and noting that the solution

u = v

(
x

−t

)
develops a singularity in the derivative as t→ 0.

For equation (4.1) to have an equivariant self-similar solution φ(r/ − t), φ has to

satisfy the following ODE on the interval [0, 1]:

φ′′ +

(
n− 1

r
+

(n− 3)r

1− r2

)
φ′ =

k

r2(1− r2)
f(φ),(4.15)

where f := gg′ and k := `(`+ n− 2), ` ∈ N.

The solution φ has to vanish at r = 0 and has to be smooth on [0, 1]. We will establish

the existence of such solutions for odd space dimensions n, provided the metric on the

target N satisfies certain equations, which we will refer to as n-boundary conditions.

These equations can be derived by requiring a solution to (4.15) to be smooth at r = 1.

For example for n = 5 if we plug in a smooth function φ(r) = a0 + a1(v − 1) + . . . into

equation (4.15) we obtain

2a1 = kf(a0), −2a1 = kf ′(a0)a1.

Thus we obtain the boundary conditions

f(a0)(2 + kf ′(a0)) = 0.

Since k = `(`+n− 2) and ` is an arbitrary integer then the above eqution has a solution

if ∃a0 > 0 such that either f(a0) = 0 or f ′(a0) < 0 (since f ′(0) > 0). Similar calculations

lead to an equation for a0 = φ(1) in all odd dimensions. The n-boundary conditions are

polynomial equations in f(a0), f ′(a0), f ′′(a0), . . . , f (m)(a0) where m = (n − 3)/2. These

equations are always satisfied if ∃a0 > 0 such that f(a0) = 0, i.e. the target N is not

geodesically convex. These conditions allow us to prove the following

Lemma 4.1. If a solution of (4.15) satisfies the boundary condition and φ ∈ C 1
2 [0, 1],

then φ is smooth at r = 1.

This lemma can be proved by integrating the ODE close to r = 1 and using a bootstrap

argument [3]. To show that the ODE has a smooth solution we distinguish two cases.
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Non-convex case. Assume there exists a φ∗ > 0 such that the metric on N satisfies

g′(φ∗) = 0 and g′′(φ∗) < 0. In this case the function f has a second zero. Smooth solutions

of the ODE can be found by minimizing the functional

E[φ] :=
1

2

∫ 1

0

{φ′(r)2 + `(`+ n− 2)
g2(φ)− g2(φ∗)

r2(1− r2)
} rn−1dr

(1− r2)(n−3)/2
.(4.16)

subject to the condition φ(1) = φ∗. Any minimizing sequence {φn} for E is bounded

and therefore has a weakly convergent subsequence φn
w
⇀ φ in H1. Moreover for ` large

enough we can exhibit a function φ̃ = φ∗ + εηε, with

ηε(r) :=

{
(r−β − 1)α,ε ≤ r ≤ 1,

(ε−β − 1)α,0 ≤ r ≤ ε,
where α :=

n+ 1

4
, β := 2

n− 2

n+ 1
.

such that E(φ̃) < 0. By lower semi continuity of E we have E(φ) < 0 and φ 6= φ∗ is a

minimizer. Since φ solves the ODE (4.15), then φ is smooth on the open interval (0, 1).

Heuristically, for r ∼ 0 solutions of the ODE behave like φ ∼ c1r
` + c2r

−(`+n−2). Since

φ has finite energy then φ ∼ c1r
` for r ∼ 0 and φ is smooth on [0, 1). To show that φ

is smooth at r = 1, note that finite energy implies φ ∈ C 1
2 ([0, 1]), and that φ(1) = φ∗

satisfies the n-boundary condition. By Lemma 4.1, φ ∈ C∞([0, 1]).

Convex case. In this case we have g′ 6= 0, and the nonlinear term in the ODE satisfies

φf(φ) > 0 if φ 6= 0. To find a smooth solution in this situation we use a shooting argument.

First we solve the initial value problem φc(r) = cr` for r close to zero and then show that

we can choose c so that φc(1) satisfies the n-boundary condition. The steps in the proof

proceed as follows:

• ∀c ∈ [0,∞)∃! φc ∈ C
1
2 ([0, 1]) solution to (4.15).

• The map c −→ φc(1) is continuous from [0,∞)→ [0,∞).

• Given f̃ < f such that f̃ ′ > 0, then φ̃c < φc where φ̃c is a solution to the ODE

with f replaced by f̃ .

• limc→∞ φ̃c(1) −→ +∞.

Since φ0(1) = 0 the above implies that the range of φc(1) is [0,∞). Therefore we can

choose c∗ so that φc∗(1) satisfies the n-boundary condition. By Lemma 4.1, φc∗ is smooth

on [0, 1]. Using these smooth solutions as initial data for (4.1) we have:

Theorem 4.5. Let N be a rotationally symmetric manifold and let n ≥ 3 be odd. If

the metric on N satisfies the n-boundary condition, then there exist smooth initial data

such that the corresponding Cauchy problem (4.1) develops singularities in finite time.

Moreover for the non-convex case we can construct non-unique solutions in the follo-

wing manner: Solutions to the ODE (4.15) have an asymptotic behaviour as r →∞

φ(r) = a+
b

r
+O

(
1

r2

)
.

This implies that for the Cauchy data

φ(0) = a, ∂tφ(0) = − b
r
,
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equation (4.6) has φ(r/t) as a weak solution in Hs
loc(Rn) ∀s < n/2. However since φ∗ is

also a solution to the ODE one can check that

φ(t, r) =

{
φ
(
r
t

)
,r > t,

φ∗, r < t,

is also a weak solution corresponding to the same data.

Theorem 4.6. Let N be rotationally symmetric manifold and let n ≥ 3 be odd. If N

is not geodesically convex, then there exist initial data which belong to Hs,∀s < n
2 , such

that the Cauchy problem (4.1) has non-unique solutions.

For even space dimensions we cannot prove the existence of smooth initial data where

the corresponding solution to the Cauchy problem (4.1) is self-similar. Of course we

can generate singular solutions in even dimensions by considering self-similar solutions

u(ω, r/t) in odd space dimensions Rn+1 as solutions on Rn+2 which are independent of the

xn+1 variable. However such a solution will not lead to optimal ill-posedness results since

singularities will develop on the whole xn+1 axis, and the solution u 6∈ Hs(Rn+1) ∀s <
(n+ 1)/2 as t→ 0. However this problem can be rectified by composing the self-similar

solution on Rn+1 with the Lorentz boost in the xn+1 direction on Rn+2

L
(
t, r, ω, xn+1

)
=

(
βt+ xn+1√
β2 − 1

, r, ω,
t+ βxn+1√
β2 − 1

)
,

to produce a singular traveling wave on Rn+2

u
(
t, r, ω, xn+1

)
= u

(
ω,

√
1− β2r

βt+ xn+1

)
.

This traveling wave propagates with a speed β > 1 and at any instant of time is singular

at a point r = 0, xn+1 = −βt. Therefore if we consider initial data equal to the traveling

wave in a ball of radius (β + 1)/2, then the solution corresponding to such initial data

will develop a singularity at t = − 1
2 . Moreover ∀s < (n+ 1)/2 u ∈ Hs

loc as t→ − 1
2 .

Theorem 4.7. Let N be rotationally symmetric manifold and let n ≥ 3 be odd. Then

1. If the metric on N satisfies the n-boundary condition then there is a singular

traveling wave map from Rn+2 into N .

2. If N is not geodesically convex then there exist initial data in Hs(Rn+1),∀s <
(n+ 1)/2, such that the corresponding Cauchy problem (4.1) has non-unique solutions.
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