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Abstract. We present a review of the spacecraft Doppler tracking technique used in broad
band searches for gravitational waves in the millihertz frequency band. After deriving the transfer
functions of a gravitational wave pulse and of the noise sources entering into the Doppler observ-
able, we summarize the upper limits for the amplitudes of gravitational wave bursts, continuous,
and of a stochastic background estimated by Doppler tracking experiments.

1. Introduction. Non-resonant detectors of gravitational radiation (with frequency

content 0 < f < f0) are essentially interferometers with one or more arms, in which a

coherent train of electromagnetic waves (of nominal frequency ν0 � f0) is folded into

several beams, and at points where these intersect relative fluctuations of frequency or

phase are monitored (homodyne detection). Frequency fluctuations in a narrow band can

alternatively be described as fluctuating sideband amplitudes, and interference of two or

more beams, produced and monitored by a nonlinear device (such as a photo detector

when light from a laser is used), exhibits these side bands as a low frequency signal again

with frequency content 0 < f < f0. The observed low frequency signal is due to frequency

variations of the source of the beams about ν0, to relative motions of the source and the

mirrors that do the folding (or the Earth and amplifying transponders), to temporal

variations of the index of refraction along the beams, and, according to general relativity,

to any time-variable gravitational fields present, such as the transverse traceless metric

curvature of a passing plane gravitational wave train. To observe these gravitational

fields in this way, it is thus necessary to control, or monitor, the other sources of relative

frequency fluctuations, and, in the data analysis, to optimally use algorithms based on

the different characteristic interferometer responses to gravitational waves (the signal)

and to the other sources (the noise). Several feasibility studies [1–4] have shown that
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this can presently be done to astrophysically interesting thresholds for both ground and

space-based instruments.

The frequency band in which a ground-based interferometer can be made most sen-

sitive to gravitational waves [5] ranges from about ten Hertz to about a few kilohertz,

with arm lengths ranging from a few tens of meters to a few kilometers. Space-based

interferometers, such as the coherent microwave tracking of interplanetary spacecraft [3]

and proposed Michelson optical interferometers in planetary orbits [4] are most sensitive

to millihertz gravitational waves, with arm lengths ranging from 106 to 108 kilometers.

In the Doppler tracking technique a distant interplanetary spacecraft is monitored

from Earth through a microwave tracking link, and the Earth and the spacecraft act

as free falling test particles. A radio signal of nominal frequency ν0 is transmitted to

the spacecraft, and coherently transponded back to Earth where it is received and its

frequency is compared to a radio signal of frequency referenced to a highly stable clock

(typically a Hydrogen maser). Relative frequency changes ∆ν/ν0 as functions of time

are then measured. A gravitational wave propagating through the solar system causes

small perturbations in ∆ν/ν0 which are replicated three times in the Doppler data with

maximum spacing given by the two-way light propagation time between the Earth and

the spacecraft. This characteristic signature of the Doppler response, referred to as the

three-pulse response, was first derived in its general form in 1975, by Estabrook and

Wahlquist [6]. In the following Section we outline its derivation, and generalize it to a

configuration with B bounces.

In Section 3 we describe the different noise sources affecting the Doppler data, and

provide a summary of the upper limits identified by the Doppler tracking technique to

gravitational wave amplitudes in the millihertz band. In Section 4 we present our remarks

and conclusions.

2. The response functions to a gravitational wave pulse. The net effect of a

weak gravitational wave train on the frequency of a coherent radio signal transponded

once in a stationary, freely falling, configuration of source and transponder is the so

called three-pulse response function [6]. A gravitational wave pulse contributes to the

interferometrically measured frequency change at three times, namely at the time it

is incident on the source, the intermediate time when the radio signal bounces off the

spacecraft, and at the round-trip light time.

In this Section we will deduce the general expression for the phase shift due to a

gravitational wave when an electromagnetic beam is made to bounce B times between

two freely falling (geodesic) particles [7]. These could be the Earth and a spacecraft or,

as in the more usual situation of an Earth-based interferometer, two highly reflective

mirrors forming an optical cavity.

In this Section we will interchangeably refer to microwaves and transponders or laser

light and mirrors, since the two configurations can be considered equivalent as far as

the derivation of the response function to a gravitational wave pulse is concerned. Let

us therefore consider a source of electromagnetic radiation, a laser for instance, to be

at the first mirror, and the net frequency change, or equivalent phase fluctuation, to be
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interferometrically measured there. Let us also consider the following space-time metric

ds2 = −dt2 + (1 + h)dx2 + (1− h)dy2 + dz2 , (1)

where h = h(t − z) � 1. To first order, this is the general relativistic solution for the

strain field of a linearly polarized gravitational wave train propagating in vacuum along

the positive z direction. The metric could be generalized by adding in an amplitude for the

other possible polarization, but to first order it is just as easy to do this at the conclusion,

as needed. Let us also assume that our two particles are stationary in the (x, z) plane.

We will denote by α the cosine of the angle between the direction of propagation of

the gravitational wave and the line joining particle a to particle b, and L their relative

distance.

In this space-time the two particles follow a geodesic motion, represented by world

lines parallel to the t axis. We can visualize our physical system in a space-time diagram

in which the vertical axis is the time t, while the horizontal axis is the line αz+βx (with

β2 = 1− α2). The t axis coincide with the world line x = y = z = 0 of particle a, while

the world line for particle b is (to first order in h): x = βL, y = 0, and z = αL. The

characteristic wave fronts of the gravitational wave are given by t− z = constant.

Consider, at an arbitrary time t, a perfectly monochromatic photon of frequency ν0

(as measured in the rest frame of a) emitted at a, which bounces off the end particle b at

time t+L, and then returns to particle a at time t+ 2L. The trajectory of the photon in

this space-time is represented by two null geodesics, one originating at the event that we

label 0 (on the world line of a) and ending at the event labelled 1 on the world line of b;

the other connects the event 1 to the event labelled 2 back to the world line of a. Parallel

transport of a null vector along these null geodesic is used to calculate ν1, the frequency

measured at event 1 in the rest frame of b, and ν2 at event 2 again in the rest frame of a.

The frequency shifts ν1−ν0, and ν2−ν1 are related to the gravitational wave amplitude

according to the following simple ”two-pulse” relationships [6, 7]

ν1(t+ L)

ν0
= 1 +

(1 + α)

2
[h(t)− h(t+ (1− α)L)] , (2)

ν2(t+ 2L)

ν1(t+ L)
= 1 +

(1− α)

2
[h(t+ (1− α)L)− h(t+ 2L)] , (3)

where ν0 is independent of time, since for the moment we are considering a monochromatic

light source (or ”atomic” frequency standard)

If we multiply together Eq. (2) and Eq. (3), and disregard second order terms in the

wave amplitude h, we deduce the three-pulse response function in its original form [6]

ν2(t+ 2L)

ν0
= 1 +

(1 + α)

2
h(t) − α h(t+ (1− α)L) − (1− α)

2
h(t+ 2L), (4)

Eq. (4) is then best rewritten to display the fractional frequency change at a as a function

of time t

y(t) ≡ ν2(t)− ν0

ν0
= − (1− α)

2
h(t) − α h(t− (1 + α)L) +

(1 + α)

2
h(t− 2L). (5)
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The phase difference ∆φ(1)(t) measured, say, by a photo detector, is related to the cor-

responding frequency change (Eq. (5)) as follows

y(t) =
1

2πν0

d∆φ(1)(t)

dt
. (6)

If we define the Fourier transform of the time series ∆φ(1)(t) to be given by

∆̃φ(1)(f) ≡
∫ +∞

−∞
∆φ(1)(t) e2πift dt , (7)

we can rewrite Eq. (5) in the Fourier domain as

∆̃φ(1)(f)

2 π ν0
= −R(α, f)

2πif
h̃(f). (8)

In Eq. (8) R(α, f) is the three-pulse transfer function

R(α, f) = − (1− α)

2
− α e2πi(1+α)fL +

(1 + α)

2
e4πifL. (9)

For those who prefer to think in terms of heterodyne detection, of signals on a carrier of

amplitude A0 and frequency ν0, this phase modulation engenders side bands of amplitude

A given by

A(ν0 + f)

A0
=
ν0

f
[R(α, f) R(α, f)∗]

1/2
h̃(f). (10)

If we expand Eq. (9) in the long wavelength limit (fL� 1), to first order in fL Eq. (8)

becomes [6]

∆̃φ(1)(f)

2 π ν0
' (α2 − 1) L [1 + πi(α+ 2)fL] h̃(f). (11)

The factor (α2 − 1) is the ”beam pattern” of a single-bounce linear gravitational wave

antenna. In the long wavelength limit, its ”antenna gain” is ≈ L.

Let us now assume that the light between the two particles makes B bounces before

it is made to interfere with the light of the laser. We want to determine what the corre-

sponding phase change will be in this case. It is easy to see that the frequencies ν2(t+2L),

ν3(t + 3L), and ν4(t + 4L), for instance, are related among themselves as ν0, ν1(t + L),

and ν2(t+ 2L) assuming proper care of the time argument is taken. We can for example

find that the following expression for ν4(t+ 4L)/ν2(t+ 2L) holds

ν4(t+ 4L)

ν2(t+ 2L)
= 1+

(1 + α)

2
h(t+2L) − α h(t+2L+(1−α)L) − (1− α)

2
h(t+4L). (12)

If we multiply Eq. (4) by Eq. (12) we get, to first order in h,

ν4(t+ 4L)

ν0
= 1 +

(1 + α)

2
h(t+ 2L) − α h(t+ 2L+ (1− α)L) − (1− α)

2
h(t+ 4L)

+
(1 + α)

2
h(t) − α h(t+ (1− α)L) − (1− α)

2
h(t+ 2L) . (13)



THEORY OF SPACECRAFT DOPPLER TRACKING 149

If we use the definition of y(t) given in Eq. (5), Eq. (13) can be rewritten in the following

way
ν4(t)− ν0

ν0
= y(t) + y(t− 2L). (14)

After some simple algebra we can easily deduce the following expression for the frequency

change after B bounces

ν2B(t)− ν0

ν0
=

B−1∑
k=0

y(t− 2kL). (15)

Let us now denote by ∆φ(B)(t) the phase shift measured at the photo detector for the B

bounce configuration. Taking into account Eq. (15), we can write the following equation

1

2πν0

d∆φ(B)(t)

dt
=

B−1∑
k=0

y(t− 2kL), (16)

which in the Fourier domain becomes

∆̃φ(B)(f)

2 π ν0
= − ỹ(f)

2πif

B−1∑
k=0

e4πikfL. (17)

From the definition of y(t) (Eq. (5)), and after adding the geometric progression, we can

rewrite Eq. (17) as

∆̃φ(B)(f)

2 π ν0
= − R(α, f) h̃(f)

2πif

[
1− e4πiBfL

1− e4πifL

]
. (18)

If we expand Eq. (18) in the long wavelength limit, that is to say when fL � 1 but

allowing B to be large enough that 4BfL ' 1, for the dominant frequency band of the

gravitational wave signal, we get

∆̃φ(B)(f)

2 π ν0
' (1− α2)

2

(1− e4πiBfL)

2πif
[1 + πi(α+ 2)fL] h̃(f) (19)

Note that the transfer function given in Eq. (19) does not increase linearly with the

arm length, as it did for the one-bounce configuration, B = 1. For a given arm length L

and for a gravitational wave signal of dominant frequency f , we can choose the number

of reflections B in such a way that 4BfL ' 1, and the response is optimal, depending

only on f and the geometrical factor (1− α2).

Note that this condition also holds for a Michelson interferometer, since its transfer

function is essentially equal to the one given in Eq. (19), apart from a different antenna

pattern [8, 9]. At one kilohertz an orthogonal-arm interferometer, of 40 meters arm length

and B ' 2000 bounces, would experience the same phase shift due to a passing gravita-

tional wave as would an interferometer of 4 kilometer arm length and B ' 20 bounces.

3. Noise sources and their transfer functions. Substantial effort over the past

fifteen years has been devoted to the understanding of the noise sources affecting space-

craft Doppler tracking, and to estimate their strengths and spectral properties [10]. In

what follows we will summarize the main noise sources by providing their power spectral
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densities, Sy(f), as well as by expressing their amplitudes in terms of the Allan Deviation.

For an arbitrary random process y(t), the Allan Variance estimated at the integration

time τ is defined by the following expression

σ2
y(τ) =

〈[y(t+ τ)− y(t)]2〉
2

(3)

where y(t) is defined as follows

y(t) =
1

τ

∫ t+τ

t

y(s) ds, (4)

and angle brackets denote time averages.

Noise sources affecting the sensitivity of Doppler tracking experiments can be divided

into two broad classes: (i) Instrumental and (ii) Propagation.

3.1. Instrumental noise sources. In the high frequency region of the band accessible

to Doppler tracking, thermal noise dominates over all other noise sources at about 10−1

Hz. This noise is white in phase, being determined essentially by the finite temperature of

the receiver and the finite intensity of the signal. In frequency the power spectral density

therefore grows with the square of the Fourier frequency, Sy(f) ∝ f2, making this noise

source the dominant one in the ”blue” region. Since this noise appears at the moment of

detection t, its transfer function into the Doppler data is the identity.

Among all other instrumental noise sources (transmitter and receiver, mechanical

stability of the antenna, stability of the spacecraft transponder, spacecraft buffetting,

irregularities of the spacecraft spin rate, micro seismic disturbances, instabilities intro-

duced by signal distribution within the ground station, clock noise, etc.) clock noise has

been shown to be the most important instrumental source of frequency fluctuations [10].

Let us define C(t) to be the random process associated with the relative frequency

fluctuations introduced by the clock. As a consequence of the definition of the Doppler

observable (∆ν(t)
ν0

) measured on the ground, we conclude that C(t) shows up at two dif-

ferent times, namely under the linear combination C(t− 2L)−C(t). This time signature

can be understood by observing that the frequency of the signal received at time t con-

tains clock fluctuations transmitted 2L seconds earlier. By subtracting from the received

frequency the frequency of the radio signal transmitted at time t, we also subtract clock

frequency fluctuations with the net result shown above. Since the power spectral density

[10] of C(t) goes as f−1, we deduce that the spectral density of the clock noise in the

Doppler data has the following dependence on the Fourier frequency f :

Sy(f) ∝ sin2(2πfL)

f

The noise level of a typical atomic standard, like the Hydrogen Maser used by the

Deep Space Network (DSN), has been measured to be about 7.0× 10−16 at 1000 seconds

integration time.

3.2. Propagation noise sources. The radio link to the spacecraft crosses regions of

space in which the index of refraction n(t, ~r) is different from one, and changes in space
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and time. The propagation noise is due to fluctuations in the index of refraction of the

troposphere, ionosphere, and the interplanetary solar plasma.

As the radio signal to the spacecraft crosses the Earth’s troposphere, it suffers a path

delay ∆L. The time variations of ∆L induce frequency shifts ∆ν, of the main carrier

frequency ν0:

∆L =

∫
raypath

[n(t, ~r)− 1] ds ; ∆ν =
ν0

c

d

dt
∆L(t),

where the main contribution to the integral is limited to a region around the Earth.

It is important to say that at microwave frequencies the index of refraction of tropo-

spheric irregularities does not depend on the carrier frequency [10]. In other words the

noise level due to the troposphere is independent of the frequency ν0.

Let us define T (t) to be the random process associated with the frequency noise due to

the troposphere. From the definition of the Doppler observable we have that T (t) enters

into the Doppler data at two different times through the linear combination T (t− 2L) +

T (t). This is because the frequency of the received signal is affected at the moment of

reception as well as 2L seconds earlier. Since the frequency of the signal generated at time

t does not contain yet any of these fluctuations, it follows that T (t) is positive-correlated

[10] at the round trip light time 2L. Since the power spectral density [10] of T (t) goes

approximately as f−1/2, we deduce that the spectral density of the troposphere noise in

the Doppler data has the following dependence on the Fourier frequency f :

Sy(f) ∝ cos2(2πfL)√
f

The contribution of the tropospheric noise to the overall Allan Deviation at 1000 seconds

can be as large as 1.0× 10−13, depending on the local weather conditions.

Ionosphere and interplanetary plasma have been the dominant noise sources in Space-

craft Doppler tracking experiments analyzed so far, in which S-Band (≈ 2 GHz) mi-

crowave links were used. Since the plasma index of refraction at microwave frequencies

scales as ν−2
0 , these noise sources can be suppressed by increasing the microwave fre-

quency. Furthermore, by collecting data at solar opposition, that is to say when the

Sun-Earth-Probe angle is larger than about 1600, the plasma wind remains in the radio

path much longer, minimizing in this way the variations in the index of refraction.

From plasma scintillation data it has been shown [11] that the spectral density of this

noise has a power law dependence, Sy(f) ∝ f−β , where β ε [0.6, 1.0]. The contribution

of the plasma noise to the overall noise budget has the following magnitude

σy(1000) ≈ 4 × 10−14

(
2.3 GHz

ν0

)2

From the considerations made above we can write the Doppler response y(t) to a gravi-

tational wave pulse as the following rather complete expression

y(t) =− (1− µ)

2
h(t) − µ h(t− (1 + µ)L) +

(1 + µ)

2
h(t− 2L) +

+ CE(t− 2L) − CE(t) + 2B(t− L) + T (t− 2L) + T (t) +

+A(t− 2L) + TR(t− L) + EL(t) + P (t) ,
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where the random processes B, A, TRsc, EL, and P correspond respectively to the noise

due to the antenna and buffeting of the spacecraft, the radio amplifier on the ground, the

spacecraft transponder, the electronics on the ground, and the interplanetary plasma.

Data taken with the spacecraft Viking , Voyager , Pioneer 9 , Pioneer 10 , Pioneer 11 ,

Mars Observer , Ulysses, Galileo have been, and will be, analyzed in search for bursts, con-

tinuous, and a stochastic background of gravitational radiation [11–15]. Although none

of the searches performed so far has led to a detection, upper bounds for the strength

of various possible gravitational waveforms have been obtained. In what follows I will

summarize the most stringent limits set to date on bursts, sinusoids and chirps, and a

stochastic background of gravitational radiation.

3.3. Bursts. Gravitational wave bursts could be generated at a detectable level in the

Doppler tracking band by collapses to form black holes, or by collisions of two black holes

[5]. Most of the searches performed so far have been done by using data from spacecraft

tracked at S-Band. Since the signal-to-noise ratio, after applying matched filters, depends

on the differences between the spectral characteristics of the signal searched for and

the noise [10], an independent and objective measure of the upper limits set by these

experiments on burst radiation is given by the Allan Deviation. A reference sensitivity

to bursts was set by the Pioneer 11 spacecraft, which was tracked in 1983. The Allan

deviation of the measured noise was about 7 × 10−14, being determined entirely by

plasma scintillation [10].

In March 1993 the spacecraft Mars Observer was tracked for about three weeks at

X-Band (8.4 GHz). Due to the higher frequency of the radio link the plasma noise was

reduced by almost a factor of 20 with respect to the S-Band experiments. From a prelim-

inary analysis of the data, an Allan Deviation of 1.0× 10−14 has been measured, making

Mars Observer the most sensitive Doppler tracking experiment to date [16].

3.4. Sinusoids and chirps. Binary systems containing super massive black holes are the

candidate sources of sinusoids and chirps gravitational waves in the millihertz frequency

band [5]. The best sensitivities to these signals have been set by the Pioneer 10 experiment

in December 1993, and by the spacecraft Ulysses during the February 1992 experiment.

The Ulysses spacecraft was tracked for three weeks at S-Band, and it also had an X-Band

radio signal in the down-link. Because of the two frequencies in the down-link, a perfect

calibration of the dispersive plasma noise in the down-link was possible. The Pioneer

spacecraft was tracked instead for almost 30 days, but only at S-Band. The one-sigma

limits set by these experiments were 7.0 × 10−15 and 3.5 × 10−15 respectively [17, 18].

An analysis of the data taken in 1993 with Mars Observer will be performed soon, in

search for this class of signals. The expected sensitivity at one sigma level is expected to

be about 10−15.

3.5. Stochastic background. The spectrum of the signal in the Doppler data results

from averaging the three-pulse response function over all possible directions [6]. The an-

alytic dependence of such a spectrum is almost like the noise spectrum of the reference

clock, having a sinusoidal modulation. This modulation is fortuitous, since it is basically

orthogonal to the modulation of the leading noise sources, namely ionospheric and tro-
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pospheric noise. This difference between the signal and the noise has been exploited to

reach an almost clock-noise-limited upper limit for the gravitational wave background

spectrum at selected frequencies [10]. The best upper limit have been deduced only re-

cently with the 1993 Pioneer 10 experiment. This spacecraft was tracked in December

1993 for almost 30 days, at S-Band and with a round-trip-light-time of about 16 hours. It

was therefore possible to search for a gravitational wave background at low frequencies,

just below 10−5 Hz. Since the local average of the spectrum, around the frequencies

where the propagation noise is minimum, has been measured to be 1.2 × 10−23 Hz−1,

the corresponding one sigma sensitivity has been estimated to be a few parts in 10−14.

4. Conclusions. Spacecraft Doppler tracking is the only existing experimental tech-
nique that allows searches for gravitational waves in the millihertz frequency band. Al-
though the sensitivities achieved so far have been relatively modest, it is important to
note that all the experiments performed so far have utilized radio components that were
not purposely designed for gravitational wave searches. For the first time, frequency sta-
bility requirements on the radio system on board the spacecraft and the ground antenna
have been approved on the upcoming NASA project Cassini. This interplanetary space-
craft will be launched in October 1997 for gathering scientific data from Saturn, Titan
and other natural satellites of the Saturnian system. During part of the spacecraft tra-
jectory (cruise and opposition), from year 2001 until year 2003, for forty days each year,
searches for gravitational radiation will be performed. The implementation of a purposely
designed radio system with frequency stabilities specified by the experimenters, indicate
that an Allan deviation equal to 7.0× 10−16 should be achievable.
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