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Abstract. We discuss spacecraft Doppler tracking for detecting gravitational waves in which
Doppler data recorded on the ground are linearly combined with Doppler measurements made on
board a spacecraft. By using the four-link radio system first proposed by Vessot and Levine [1]
we derive a new method for removing from the combined data the frequency fluctuations due to
the Earth troposphere, ionosphere, and mechanical vibrations of the antenna on the ground. This
method also reduces the frequency fluctuations of the clock on board the spacecraft by several
orders of magnitude at selected Fourier components, making Doppler tracking the equivalent of a
xylophone detector of gravitational radiation [2]. In the assumption of calibrating the frequency
fluctuations induced by the interplanetary plasma, a strain sensitivity equal to 4.7 × 10−18 at
10−3 Hz is estimated.

This experimental technique could be extended to other tests of the theory of relativity, and
to radio science experiments that rely on high-precision Doppler measurements.

1. Introduction. Spacecraft Doppler tracking allows accurate measurements of

distances and velocities of objects in the solar system, leading to information on masses

and higher order moments of gravity fields of planets, their satellites, and asteroids [3,

4]. Doppler measurements have also been utilized to search for gravitational waves in the

millihertz frequency region [5, 6], and for placing upper limits on amplitudes of signals

characterizing relativistic effects [7, 8]. However, as we mentioned in our first lecture,

Doppler observations suffer from noise sources that can be, at best, only partially reduced

or calibrated by implementing specialized and expensive hardware. The fundamental

limitation is imposed by the frequency fluctuations inherent in the clocks referencing the

microwave system. Current generation Hydrogen masers achieve their best performance

at about 1000 seconds integration time with a fractional frequency stability of a few parts
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in 10−16. This integration time is also comparable to the propagation time to spacecraft

in the outer solar system.

The frequency fluctuations induced by the intervening media have severely limited the

sensitivities of these experiments. Among all the propagation noise sources, the tropo-

sphere is the largest and the hardest to calibrate to a reasonably low level. Its frequency

fluctuations have been estimated to be as large as 10−13 at 1000 seconds integration

time [9].

In order to systematically remove the frequency fluctuations due to the troposphere

in the Doppler data, it was pointed out by Vessot and Levine [1] and Smarr et al.

[10] that by adding to the spacecraft payload a highly stable frequency standard, a

Doppler read-out system, and by utilizing a transponder at the ground antenna, one

could make Doppler one-way (Earth-to-spacecraft, spacecraft-to-Earth) as well as two-

way (spacecraft-Earth-spacecraft, Earth-spacecraft-Earth) measurements. This way of

operation makes the Doppler link totally symmetric and allows the complete removal of

the frequency fluctuations due to the Earth troposphere, ionosphere, and mechanical vi-

brations of the ground antenna by properly combining the Doppler data recorded on the

ground with the data measured on the spacecraft. Their proposed scheme relied on the

possibility of flying a Hydrogen maser on a dedicated mission. Although current designs

of Hydrogen masers have demanding requirements in mass and power consumption, it

seems very likely that by the beginning of the next century new space-qualified atomic

clocks, with frequency stability of a few parts in 10−16 at 1000 seconds integration time,

will be available. They would provide a sensitivity gain of almost a factor of one thou-

sand with respect to the best performance crystal-driven oscillators. Although this clearly

would imply a great improvement in the technology of space born clocks, it would not

allow us to reach a Doppler sensitivity better than a few parts 10−16. This would be

only a factor of five or ten better than the Doppler sensitivity expected to be achieved

on the future Cassini project, a NASA mission to Saturn, which will take advantage of a

high radio frequency link (32 GHz) in order to minimize the plasma noise, and will use

a purposely built water vapor radiometer for calibrating up to ninety five percent the

frequency fluctuations due to the troposphere [11].

In this paper we adopt the radio link configuration first envisioned by Vessot and

Levine [1], but we combine the Doppler responses measured on board the spacecraft and

on the ground in a different way, as it will be shown in the following sections. Furthermore

our technique allows us to reduce by several orders of magnitude, at selected Fourier

components, the noise due to the clock on board the spacecraft [2]. This experimental

approach could also be extended to other tests of the relativistic theory of gravity and

to radio science experiments that rely on high-precision Doppler measurements.

2. Doppler tracking as a xylophone detector. In Doppler tracking experiments

a distant interplanetary spacecraft is monitored from Earth through a radio link, and the

Earth and the spacecraft act as free-falling test particles. In a one-way operation a radio

signal of nominal frequency ν0 referenced to an onboard clock is transmitted to Earth,

where it is compared to a signal referenced to a highly stable clock. In a two-way operation
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instead a radio signal of frequency ν0 is transmitted to the spacecraft, and coherently

transponded back to Earth. In both configurations relative frequency changes ∆ν/ν0 as

functions of time are measured, and the physical effects the experimenter is trying to

observe appear in the Doppler observable as small frequency changes of well defined time

signature [3, 4, 5, 7]. In searches for gravitational waves only two-way data have been

used so far due to lack of space qualified, high performance, clocks. In what follows we

will not make any assumption on the frequency stability of the onboard oscillator and

return to this point later in the paper.

If a Doppler readout system is added to the spacecraft radio instrumentation, and a

transponder is installed at the ground station, one-way as well as two-way Doppler data

can also be recorded on board the spacecraft [1]. If we assume the Earth clock and the

onboard clock to be synchronized, then the one-way and two-way Doppler data measured

at time t on the Earth (E1(t), E2(t) respectively), and the one-way and two-way Doppler

measured at the same time t on the spacecraft (S1(t), S2(t)), are given by the following

rather complete expressions [2]

E1(t) =
(1 − µ)

2
[h(t− (1 + µ)L) − h(t)] + Csc(t− L) − CE(t) +

+ T (t) + B(t− L) + Asc(t− L) + ELE1
(t) + PE1

(t) , (1)

E2(t) = − (1 − µ)

2
h(t) − µ h(t− (1 + µ)L) +

(1 + µ)

2
h(t− 2L) +

+ CE(t− 2L) − CE(t) + 2B(t− L) + T (t− 2L) + T (t) +

+AE(t− 2L) + Asc(t− L) + TRsc(t− L) + ELE2
(t) + PE2

(t) , (2)

S1(t) =
(1 + µ)

2
[h(t− L) − h(t− µL)] + CE(t− L) − Csc(t) +

+ T (t− L) + B(t) + AE(t− L) + ELS1(t) + PS1(t) , (3)

S2(t) = − (1 + µ)

2
h(t− µL) + µ h(t− L) +

(1 − µ)

2
h(t− 2L− µL) +

+ Csc(t− 2L) − Csc(t) + 2T (t− L) + B(t− 2L) + B(t) +

+Asc(t− 2L) + AE(t− L) + TRE(t− L) + ELS2
(t) + PS2

(t) , (4)

where h(t) is equal to

h(t) = h+(t) cos(2φ) + h×(t) sin(2φ) ,

and is the gravitational wave signal. In Eqs. (1-4) µ is the cosine of the angle between

the direction of propagation of the wave and the line of sight to the spacecraft, h+(t),

h×(t) are the wave’s two independent amplitudes referenced to a given set of axes defined

in the plane of the wave, φ is the polar angle describing the projection of the direction

to the spacecraft in the plane of the wave, and L is the distance to the spacecraft [2, 5]

(units in which the speed of light c = 1).

In Eqs. (1-4) TRsc(t) and TRE(t) represent the noise due to the transponder on

board and on the ground respectively, ELE1
(t), ELE2

(t), ELS1
(t), and ELS2

(t) the

noises from the electronics at the ground station and on the spacecraft in the one-way

and two-way data, and PE1
(t), PE2

(t), PS1
(t), and PS2

(t) the frequency fluctuations due



158 M. TINTO

to the interplanetary plasma. The plasma noise can be entirely calibrated by using dual

frequencies [11]. The Doppler data S1(t) and S2(t) are then time tagged, and telemetered

back to Earth in real time or at a later time during the mission.

It is important to note the characteristic time signatures of the frequency fluctuations

due to the Earth clock (CE), the onboard clock (Csc), the spacecraft buffeting (B), the

troposphere, ionosphere, and mechanical vibrations of the ground antenna, (T ), the Earth

transmitter, (AE), and the onboard amplifier (Asc) [2, 10]. It was first pointed out by

Vessot and Levine [1] that by properly combining some of the four Doppler data streams

it was possible to calibrate the frequency fluctuations of the troposphere, ionosphere, and

ground antenna noise, T (t). Their pioneering work, however, left open the question on

whether there existed some other, perhaps more complicated, linear combinations of the

data that would further improve the sensitivity of Doppler tracking. In what follows we

answer this question, and derive a method that allows us to uniquely identify an optimal

way of combining the data.

Let Ẽ1(f) be the Fourier transform of the time series E1(t)

Ẽ1(f) ≡
∫ +∞

−∞
E1(t) e2πift dt , (5)

and similarly let us denote by Ẽ2(f), S̃1(f), S̃2(f) the Fourier transforms of E2(t), S1(t),

and S2(t) respectively. The most general linear combination of the four Doppler data

given in Eqs. (1, 2, 3, 4), can be written in the Fourier domain as follows:

ỹ(f) ≡ a(f, L) Ẽ1(f) + b(f, L) Ẽ2(f) + c(f, L) S̃1(f) + d(f, L) S̃2(f) , (6)

where the coefficients a, b, c, d are for the moment arbitrary functions of f and L. If we

substitute in Eq. (6) the Fourier transforms of Eqs. (1, 2, 3, 4) we deduce the following

expression

ỹ(f) =

{
a

(1 − µ)

2

[
e2πif(1+µ)L − 1

]
+ b

[
(µ− 1)

2
− µ e2πif(1+µ)L +

(1 + µ)

2
e4πifL

]
+ c

(1 + µ)

2

[
e2πifL − e2πifµL

]
+ d

[
− (µ+ 1)

2
e2πifµL + µ e2πifL

+
(1 − µ)

2
e2πif(2+µ)L

]}
h̃(f)

+ C̃E(f)
[
− a + b (e4πifL − 1) + c e2πifL

]
+ C̃sc(f)

[
a e2πifL − c + d (e4πifL − 1)

]
+ T̃ (f)

[
a + b (e4πifL + 1) + c e2πifL + 2d e2πifL

]
+ B̃(f)

[
a e2πifL + 2b e2πifL + c + d (e4πifL + 1)

]
+ ÃE(f)

[
b e4πifL + c e2πifL + d e2πifL

]
+ Ãsc(f)

[
a e2πifL + b e2πifL + d e4πifL

]
+ a

[
ẼLE1

(f) + P̃E1
(f)
]

+ b
[
T̃Rsc(f) e2πifL + ẼLE2

(f) + P̃E2
(f)
]

+ c
[
ẼLS1

(f) + P̃S1
(f)
]

+ d
[
T̃RE(f) e2πifL + ẼLS2

(f) + P̃S2
(f)
]
. (7)
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The four coefficients a, b, c, d, can be determined by requiring the transfer functions

of the random processes C̃E(f), C̃sc(f), T̃ (f), B̃(f), ÃE(f), Ãsc(f) in Eq. (7) to be

simultaneously equal to zero, and by further checking that each solution gives a non-zero

gravitational wave signal in the corresponding combined data. This condition implies that

a, b, c, d must satisfy a homogeneous linear system of six equations in four unknowns.

We calculated the rank of the (6 × 4) matrix associated with this linear system by using

the algebraic computer language Mathematica, and we found it to be equal to two. The

corresponding solution can be written in the following way

a(f, L) = c(f, L) e−2πifL − d(f, L)
[
e2πifL − e−2πifL

]
b(f, L) = − c(f, L) e−2πifL − d(f, L) e−2πifL , (8)

where c and d can be any arbitrary complex functions not simultaneously equal to zero. If

we substitute Eq. (8) into Eq. (7) however, we find that also the gravitational wave signal,

in the combined Doppler data, vanishes. In other words, any linear combination of the

four Doppler data that does not contain any clocks, troposphere, ionosphere, mechanical

vibrations of the ground antenna, buffeting of the spacecraft, and transmitters noise,

has also a null response to a gravitational wave pulse. These results imply that, at any

Fourier frequency f , we can remove only one of the considered noise sources. Among all

the noise sources affecting spacecraft Doppler tracking, the frequency fluctuations due to

the troposphere, ionosphere, and mechanical vibrations of the ground antenna, T̃ (f), are

the largest. If we choose a, b, c, d in such a way that the transfer function of T̃ (f) in

the combined data is equal to zero, from Eq. (7) we find that a, b, c, d, must satisfy the

following condition

a(f, L) = − b(f, L)
[
e4πifL + 1

]
− c(f, L) e2πifL − 2d(f, L) e2πifL . (9)

Since b, c, d can not be equal to zero simultaneously, we will choose c to be equal to 1/2,

and b, d to be equal to zero. In other words we will consider only linear combinations of

one-way Doppler data. Note that with this choice we eliminate from the combined data

y(t) the frequency fluctuations due to the transponders and the interplanetary plasma

that affect the two-way Doppler data. These considerations imply the following expression

for ỹ(f)

ỹ(f) =
1

2

[
S̃1(f) − Ẽ1(f) e2πifL

]
. (10)

If we substitute the Fourier transforms of Eqs. (1,3) into Eq. (10) we get

ỹ(f) =
e2πifL

2

[
1 − (1 + µ)

2
e2πif(µ−1)L − (1 − µ)

2
e2πif(µ+1)L

]
h̃(f)

+ C̃E(f) e2πifL − 1

2
C̃sc(f)

[
e4πifL + 1

]
+

1

2
B̃(f)

[
1 − e4πifL

]
+
e2πifL

2

[
ÃE(f) − Ãsc(f) e2πifL

]
+

1

2

[
P̃S1(f) − P̃E1(f) e2πifL

]
+

1

2

[
ẼLS1(f) − ẼLE1(f) e2πifL

]
. (11)

Eq. (11) shows that the transfer functions of the noise of the onboard clock, C̃sc(f), and

of buffeting B̃(f), can in principle be set to zero (not simultaneously) at specific Fourier
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frequencies. In searches for gravitational wave pulses it has been shown [2] that one can

reduce by several orders of magnitudes the noise of the onboard clock at the nulls of its

transfer function without removing the gravitational wave signal.

3. Expected xylophone sensitivities. In what follows we provide the expression

for the noise in y(t) at the xylophone frequencies.

Let δ be the time interval over which a Doppler tracking search for gravitational

waves is performed. The corresponding frequency resolution ∆f of the data is equal to

1/δ. This implies that the fluctuations of the clock on board can be minimized at the

following frequencies

fk =
(2k − 1)

4L
± ∆f

2
; k = 1, 2, 3, .... (12)

We should point out, however, that these resonant frequencies in general will not be

constant, since the distance to the spacecraft will change over a time interval of forty days.

As an example, however, let us assume again L = 1 AU, δ = 40 days, and f = 5 × 10−4

Hz. The variation in spacecraft distance corresponding to a frequency change equal to the

resolution bin width (3 × 10−7 Hz) is equal to 1.0 × 105 Km. Trajectory configurations

fulfilling a requirement compatible to the one just derived have been observed during

past spacecraft missions [9], and therefore we do not expect this to be a limiting factor.

At these frequencies, and to first order in ∆f L, the Doppler response ỹ(fk) is equal to

ỹ(fk) ≈ i

2
(−1)

k
[
−1 + i µ e

π
2 iµ(2k−1) (−1)

k
]
h̃(f) ± (πi∆fL) C̃sc(fk)

+ i (−1)
k+1

C̃E(fk) + B̃(fk) +
1

2

[
ẼLS1

(fk) − i ẼLE1
(fk) (−1)

k+1
]

+
1

2

[
P̃S1

(fk) − i P̃E1
(fk) (−1)

k+1
]

+
1

2

[
Ãsc(fk) + i (−1)

k+1
ÃE(fk)

]
.(13)

For a typical gravitational wave experiment, δ = 40 days, and ∆f = 3.0 ×10−7. Therefore

the frequency fluctuations of a clock on board a spacecraft that is out to 1 AU are reduced

at the xylophone frequencies by the following amount:

π∆fL

c
= 4.7 × 10−4 .

From Eq. (13) we can estimate the expected root-mean-squared (r.m.s.) noise level σ(fk)

of the frequency fluctuations in the bins of width ∆f , around the frequencies fk (k =

1, 2, 3, ....). This is given by the following expression

σ(fk) = [Sy(fk) ∆f ]
1/2

, k = 1, 2, 3, .... , (14)

where Sy(fk) is the one-sided power spectral density of the noise sources in the Doppler

response y(t) at the frequency fk. In what follows we will assume that the random

processes representing these noises are uncorrelated with each other, and their one-sided

power spectral densities are as given in [2]. In that reference a frequency stability of 1.0 ×
10−16 at 1000 seconds integration time for the clock at the ground station was assumed.

Although this is a factor of four better than what has been measured so far [11], it seems

very likely that by the beginning of next century such a sensitivity can be achieved.
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As far as the remaining sensitivity figures used in our estimate are concerned, they were

obtained from the Riley et al. report [11]. This document is a summary of a detailed study,

performed jointly by scientists and engineers of NASA’s Jet Propulsion Laboratory and

the Italian Space Agency (ASI) Alenia Spazio, for assessing the magnitude and spectral

characteristics of the noise sources that will determine the Doppler sensitivity of the

future gravitational wave experiment on the Cassini mission.

If dual radio frequencies in the uplink and downlink are used, then the frequency

fluctuations due to the interplanetary plasma can be entirely removed [11]. We will refer

to this configuration as MODE I. If only one frequency is adopted instead, which we

will assume to be Ka-Band (32 GHz), we will refer to this configuration as MODE II.

Ka-Band is planned to be used on most of the forthcoming NASA missions, and will be

implemented on the ground antennas of the Deep Space Network (DSN) by the year 1999

for the Cassini mission.

The r.m.s. σ(fk) of the noise as a function of the frequencies fk (k = 1, 2, 3, ....),

assuming that an interplanetary spacecraft is out to a distance L = 1.0 AU has been

estimated in reference [2]. For this configuration the fundamental frequency of the xylo-

phone (Eq. (11)) is equal to 5.0 × 10−4 Hz. A complete analysis covering configurations

with spacecraft at several other distances is also given in [2].

The MODE I configuration is represented in reference [2] by two curves, depending on

whether an atomic clock or a crystal Ultra Stable Oscillator (USO) is operated on board

the spacecraft. Sensitivity curves for the MODE II configuration are also included in that

reference, again with an atomic clock on board or a USO. The best sensitivity is achieved

in the MODE I configuration, regardless of whether an atomic clock or a USO is operated

on board the spacecraft. This is because the amplitude of the noise of the clock on board

is reduced by a factor π∆fL/c = 4.7 × 10−4 at the xylophone frequencies. At f = 10−3

Hz the corresponding r.m.s. noise level is equal to 4.7 ×10−18, and it increases to a value

of 5.7 × 10−18 at f = 10−2 Hz. As far as the MODE II configuration is concerned, the

r.m.s. noise level is equal to 7.9 ×10−18 at f = 10−3 Hz, while it decreases to 6.3 ×10−18

at f = 10−2 Hz. This is due to the fact that the one-sided power spectral density of the

fractional frequency fluctuations due to the interplanetary plasma decays as f−2/3.

4. Conclusions. We have discussed a method for significantly increasing the sen-

sitivity of Doppler tracking experiments aimed at the detection of gravitational waves.

The main result of our analysis, deduced in Eq. (13), shows that by flying a frequency

reference and by adding a Doppler extractor on board the spacecraft and a transponder

at the DSN antenna, we can achieve at selected Fourier components a strain sensitivity

of 4.7 × 10−18. This sensitivity figure is obtained by completely removing the frequency

fluctuations due to the interplanetary plasma, at a Fourier frequency equal to 10−3 Hz.

Our method relies on a properly chosen linear combination of the one-way Doppler data

recorded on board with those measured on the ground. It allows us to remove entirely

the frequency fluctuations due to the troposphere, ionosphere, and antenna mechanical,

and for a spacecraft that is tracked for forty days out to 1 AU it reduces by almost four

orders of magnitude the noise due to the on board clock.
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The experimental technique presented in this paper can be extended to a configuration

with two spacecraft tracking each other through a microwave or a laser link. Future

space-based laser interferometric detectors of gravitational waves [12], for instance, could

implement this technique as a backup option, if failure of some of their components would

make the normal interferometric operation impossible.

As a final note, a method similar to the one presented can be used in all those radio

science experiments in which one-way and two-way spacecraft Doppler measurements are

used as primary data set. We will analyze the implications of the sensitivity improve-

ments that this technique will provide for direct measurements of quantities such as the

gravitational red shift, possible anisotropy in the velocity of light, the Parameterized

Post-Newtonian parameters, the deflection and time delay by the sun in radio signals,

and occultation experiments.
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