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Abstract. Resonant mass detectors of GWs of spherical shape constitute the fourth ge-

neration of such kind of antennae, and are scheduled to start operation in the near future. In

this communication I present a general description of the fundamental principles underlying

the physics of this kind of detector, as well as of the motion sensor set suitable to retrieve the

information generated by the incidence of a GW on the antenna.

1. Introduction. GW detection research started in the early 1960’s thanks to the

pioneering work of J. Weber [1], and has been going on ever since. Disproval of origi-

nal claims of event sights motivated further efforts in the direction of improving the

sensitivity of the detectors, whereby a sophisticated technology of cryogenic cooling of

bars began to develop in the late 1970’s. By cooling the alluminum bars to liquid he-

lium temperatures it is possible to damp thermal noise in it, which strongly tends to

blur the rather weak GW signals expected, but it also enables the use of very sensi-

tive SQUID amplifiers for a better performance of the detector system. Resonant de-

tectors of this kind constituted what is often called second generation detectors, and

they started operation towards the mid 1980’s, and still are in function today [3]. Third

generation detectors include an improved technology which enables them to reach ther-

modynamic temperatures in the range of a few milli-Kelvin, and have begun taking data

recently [2, 4]. The attained sensitivity of second generation detectors is reported to be

about h=10−19 for millisecond bursts of supernova radiation [3], and is expected to

improve by nearly an order of magnitude with the third generation of ultracryogenic

antennae.

In spite of this remarkable sensitivity, it turns out that it is just sufficient to see

supernova explosions in our galaxy; the event rate for such explosions is however too

low (only a few per century), which makes it highly necessary to enhance the detector

capabilities in order to stretch its scope beyond the galaxy into the Virgo cluster and
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perhaps even further out. This would obviously increase the event rate and therefore the

chances of seeing GWs.

A further fourth generation of resonant GW detectors is now being projected at several

places in the world, with the aim of satisfying the requirement of an even better sensitivity.

These detectors are planned to have spherical shape, rather than cylindrical , as had

the previous ones. There are a number of reasons of different nature which support

this choice. A rather fundamental one is that a solid sphere having the same (lowest)

resonance frequency as a cylinder is about 20 times more massive than the latter, whence

at least this factor is gained in energy sensitivity by use of such device, if operated in like

laboratory circumstances. But there are others too, as I shall presently discuss.

In this paper I will concentrate on the theoretical aspects of the functioning of a spher-

ical GW antenna, which means that some of the details of its practical implementation

will be left aside. I will clearly differentiate the following two parts of the problem: in

the first part I will consider the interaction between an incoming metric GW and a solid

elastic sphere of uniform density; this analysis enables the discussion of its response and

GW energy absorption cross section, i.e., of the sphere’s sensitivity. In the second part, I

will address the problem of how the sphere’s excitations can be actually sensed by means

of a suitable set of motion sensors attached to its surface.

Much of the material I will present here is the result of very recent original research,

and has been presented to an international audience here in Warsaw for the first time.

What follows is a summary of the most relevant ideas and conclusions; the reader will

be opportunely referred to the appropriate bibliography where he/she will find further

technical information.

2. The general formulae. It will be assumed that we have a homogeneous solid

sphere of uniform density ρ, total mass M and radius R. If it is hit by a force density

f(x, t), its vibration modes will be excited; these are described by the field of displacements

u(x, t), which satisfy the elastic equations

ρ
∂2u

∂t2
− µ∇2u− (λ+ µ)∇(∇·u) = f(x, t) (1)

where λ and µ are the sphere’s Lamé coefficients [5]. This is a non-relativistic equation,

but we feel firmly justified in using it, as we do not expect relativistic speeds in any GW

excitations —they should come in relatively low frequency ranges.

The first thing we want to address is this: how do we express the GW force density

acting on the solid?

2.1. The GW tidal forces: their monopole-quadrupole structure. We shall adopt a

point of view whereby GW forces are regarded as tidal forces arising as a consequence of

the non-vanishing of the GW Riemann tensor. If the wavelength of the incoming radiation

is long compared to the sphere’s dimensions (radius) then it can be shown that

fi(x, t) = ρc2 R0i0j(t)xj (2)

where R0i0j(t) are the “electric” components of the GW Riemann tensor evaluated at the

centre of the sphere, and xi is a Cartesian coordinate of a point in the solid relative to its
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centre. Eq. (2) has been obtained from the standard geodesic deviation equation. If the

assumption is made that the GW amplitude is given by the small metric perturbations

hµν , then

R0i0j =
1

2
(hij,00 − h0i,0j − h0j,0i + h00,ij) (3)

if only first order terms in the h’s are retained. If General Relativity is assumed to be

the theory which correctly describes GWs then it is possible to make a choice of gauge

where only the term hij,00 survives in the right hand side of (3). However, I shall not make

this assumption here, but will allow for alternative theories, too. As we shall shortly see,

it is possible to calculate the sphere’s response to arbitrary metric GWs, which gives the

spherical antenna the possibility of experimentally setting bounds on the predictions of

other hypothetical theories of the gravitational interaction. We thus keep (3) as it stands.

R0i0j(t) is a symmetric 3-tensor, and therefore the following decomposition can be

established [6]:

f(x, t) = f (S)(x) g(S)(t) +
2
∑

m=−2

f (m)(x) g(m)(t) (4)

with

f
(S)
i (x) = ρE

(S)
ij xj , g(S)(t) =

4π

3
E

∗(S)
ij R0i0j(t) c

2 (5)

f
(m)
i (x) = ρE

(m)
ij xj , g(m)(t) =

8π

15
E

∗(m)
ij R0i0j(t) c

2 (6)

and

E
(S)
ij =

(

1
4π

)
1

2





1 0 0

0 1 0

0 0 1



 (7)

E
(0)
ij =

(

5
16π

)
1

2





−1 0 0

0 −1 0

0 0 2



 , E
(±1)
ij =

(

15
32π

)
1

2





0 0 ∓1

0 0 −i

∓1−i 0



 (8)

E
(±2)
ij =

(

15
32π

)
1

2





1 ±i 0

±i−1 0

0 0 0



 (9)

This decomposition fully displays the monopole-quadrupole structure of a general

GW Riemann tensor: indeed its 6 independent components are seen to be expressible in

terms of the one monopole amplitude g(S)(t) and the 5 quadrupole amplitudes g(m)(t)

(m=−2,...,2).

2.2. The antenna response. The next step is to solve the equations of motion (1). It

is expedient to do so in terms of a Green function formalism. As shown in reference [6],

the solution to the problem can be cast in the form of an orthogonal series:

u(x, t) =
∑

N

ω−1
N uN (x)

[

f
(S)
N g

(S)
N (t) +

2
∑

m=−2

f
(m)
N g

(m)
N (t)

]

(10)
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Figure 1. The homogeneous sphere’s spheroidal (above) and toroidal eigenvalues for a few mul-

tipole families. Only the l=0 and l=2 spheroidal families couple to metric GWs, so the rest

are given for completeness and vetoing purposes. The diagramme corresponds to a sphere with

Poisson ratio σ=0.33. Plotted values correspond to dimensionless eigenvalues; actual frequencies

can be obtained from these by a suitable conversion factor which depends on the solid’s elastic

properties and size —see [6] for further details.
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where

fN ≡
1

M

∫

Solid

u∗
N (x) · f(x) d3x (11)

and

g
(α)
N (t) ≡

∫ t

0

g(α)(t′) sinωN(t− t′) dt′ , α = S,m (12)

and ωN are the vibration eigenfrequencies of the antenna, whose (suitably normalised)

wavefunctions are uN (x) —see always [6] for details. Equation (10) is very general, and

actually valid for any detector shape and boundary conditions. It shows that the sphere

is the optimum GW detector shape; indeed, the projection integrals (11) are maximum

for a maximum overlap between the driving forces’ form factors f (α)(x) and the solid’s

wavefuntions uN (x) —and this happens to be the case for a spherically shaped antenna,

due to the canonical multipole structure of its specific wavefunctions [6].

It should also be stressed once more that (10) is the antenna’s response to a completely

general metric GW, i.e., it is valid no matter which is the metric theory which correctly

describes the gravitational interaction.

A spherical antenna has two families of vibration eigenmodes: so called toroidal ,

or torsional, and spheroidal modes —see Figure 1 for a graphical representation of the

eigenvalue spectrum. The former consist in purely torsional, or tangential, deformations,

and are easily seen not to couple to GWs at all [6, 7]; the latter do couple to GWs and

consist of a combination of tangential and radial deformations. We are therefore mainly

interested in these1. If the spheroidal eigenfunctions are named unlm(x), it is not difficult

to see that (10) reduces to

u(x, t) =

∞
∑

n=1

an
ωn0

un00(x) g
(S)
n0 (t) +

∞
∑

n=1

bn
ωn2

[

2
∑

m=−2

un2m(x) g
(m)
n2 (t)

]

(13)

where an and bn are overlapping integrals. The reader should note that the subindex

N in equations (10)–(12) is a multiple index, actually N = {nlm} in this case, yet the

coefficients an and bn are fewer than in the general case (they carry the single index

n); this is due to the good matching between the sphere’s eigenmode amplitudes and the

GW’s multipolar structure, as discussed earlier. What this practically means that only

monopole (l=0) and quadrupole (l=2) sphere’s modes can possibly be excited by an

arbitrary GW. It should also be stressed that every l-pole mode is (2l+1)-fold degenerate,

i.e., there are (2l+1) eigenfunctions unlm(x) (m=−l,...,l) for each eigenfrequency ωnl.

2.3. The sphere’s GW energy absorption cross sections. The antenna response (eq.

(13)) can be Fourier transformed , and the detector’s vibration energy for a given frequ-

ency, E(ω), calculated. If Φ(ω) is the incoming GW’s flux density then a cross section

for GW energy absorption can be defined by

σabs(ω) =
E(ω)

Φ(ω)
(14)

1Toroidal modes can also be useful, in the sense that observation of excitations of them cannot

be attributed to GWs, and can thus be used as vetoes on signals.
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As has already become clear from the previous analysis, GW energy will be be trans-

ferred exclusivey to the monopole and/or quadrupole spheroidal modes of the antenna.

In other words, cross sections will vanish for all modes but these. In reference [6] I have

given a proof that

σabs(ωn0) =KS(ℵ)
GMv2t
c3

(kn0an)
2 (15)

σabs(ωn2) =KQ(ℵ)
GMv2t
c3

(kn2bn)
2 (16)

where ωn0 is the n-th monopole harmonic, and ωn2 the n-th quadrupole harmonic; KS(ℵ)

and KQ(ℵ) are values which are calculated based on a given assumption about which is

the theory correctly describing GW physics, such theory being symbolically designated

by ℵ. For example, if General Relativity is the correct theory then

ℵ = GR ⇒

{

KS(ℵ) = 0

KQ(ℵ) =
16 π2

15

(17)

whilst, if it is Brans-Dicke theory [8],

ℵ = BD ⇒











KS(ℵ) =
8π2

9
(3 + 2Ω)−2 k

[

1 + kΩ
(3+2Ω)2

]−1

KQ(ℵ) =
16π2

15

[

1 + 1
6 (3 + 2Ω)−2 k

]

[

1 + kΩ
(3+2Ω)2

]−1 (18)

where Ω is the usual Brans-Dicke parameter ω, renamed here to avoid confusion with

frequencies, and k is a dimensionless number of order 1 [9].

An interesting conclusion of equations (15) and (16) is that cross sections scale for

higher harmonics independently of the underlying theory of gravity. In particular, it is

seen that its value for the second quadrupole mode is only 2.61 times less than for the

first, which means a spherical GW detector can be advantageously used for GW sensing

at two quadrupole frequencies, in sharp contrast with the commonly used Weber bars,

which can only sense one frequency. This remarkable fact was revealed for the first time,

assuming General Relativity, in [10].

3. The motion sensing problem. So much, summarily, for the sphere’s poten-

tialities . But a major practical problem is this: how do we actually sense the eventual

excitations (by a GW or other causes) of the sphere’s vibrations, and convert them into

valuable information?

Currently operating bars accomplish this by using a resonant transducer attached to

one of its end faces. A resonant transducer is a device built in such a way that it has a

fundamental vibraiton frequency accurately tuned to the frequency of the bar at which

motions are to be sensed —always the first longitudinal mode of the cylinder. Such a

resonator ismuch less massive than the bar, so resonant transfer of energy occurs between

the two oscillating bodies (bar and sensor) which results in an enhanced amplitude motion

of the attached resonator. This way one obtains a mechanical amplification system for

the extremely tiny GW induced vibrations of the sphere. The transducer motions are

thereafter converted into an electrical signal by means of suitable circuits [3], then further

amplified and transferred to a readout device or disk archive.
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The idea of using resonators for motion sensing in a spherical antenna has been

considered a good one too by the experimentalists, who have recently set up a small

scale prototype detector in the University of Louisiana [11, 12]. Taking full advantage of

the sphere’s capabilities means, however, that several resonators must be attached to its

surface rather than just one, as in bars. This is due to the degeneracy of the sphere’s

vibration eigenmodes, which makes it possible to sense all the GW amplitudes of a given

l at a unique frequency ωnl
2. More specifically, a minimum set of 5 are required to see the

5 quadrupole amplitudes g(m)(t), while only one is needed to see the monopole amplitude

g(S)(t).

We begin by setting up the general system of equations which has to be solved in

relation to this problem. We assume that a set of N identical resonators of mass

Mresonator = ηM , η ≪ 1 (19)

are attached to the sphere’s surface at locations xa (|xa|=R for all a=1,...,N); we shall

further assume that these resonators have resonance frequency Ω, and that they only

couple to radial displacements of the sphere’s surface. Under these circumstances the

equations of motion of the complete system are

ρ
∂2u

∂t2
− µ∇2u− (λ+ µ)∇(∇·u) = f(x, t) +

+ ηMΩ2
N
∑

a=1

δ(3)(x− xa) [ξa(t)− na ·u(xa, t)] na (20)

ξ̈a(t) =−Ω2 [ξa(t)− na ·u(xa, t)] (21)

where na ≡xa/R is the outward normal at point xa, and δ(3)(x) is the usual Dirac density

distribution. The meaning of the above is rather transparent: in the right hand side of

(20) the force density caused by the attachement of resonators has been added to the

GW force density f(x, t), while (21) is the equation of motion of each resonator. We have

assumed that the latter behave like simple, non-damped harmonic oscillators, which is a

fairly good approximation as we shall shortly see.

Eqs. (20) and (21) above constitute a relatively complicated system of coupled dif-

ferential equations, whose solution, even if only formal , is not possible to write down.

Thankfully, though, we are only interested in practice in the N measurable quantities

qa(t) ≡ ξa(t)− na ·u(xa, t) , a = 1, . . . , N (22)

rather than in the complete solution. Even so, things are not easy. I shall attempt to give

the reader a flavour of the main ideas and consequences which follow from the rigorous

mathematical treatment of the problem.

3.1. The frequency response of the coupled system. Like before, a Green function

formalism is the suitable tool to address the present situation. It should be noted, however,

that the right hand side of (20) contains the unknowns u(x, t), and this results, combined

with (21), into a system of integro-differential equations. As it turns out, it is possible to

2Actually l=0 or l=2, as discussed earlier.
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reduce such a compliated system to a linear system of algebraic equations in the Laplace

transforms of unknowns and sources. This is the system:

q̂a(s) =−
s2

s2 +Ω2

∑

α







N
∑

b=1

[

δab + η
s2

s2 +Ω2

∑

ν

Ω2

s2 + ω2
ν

χ
(ν)
ab

]−1

×

×

[

∑

µ

B
(α)
µ,b

s2 + ω2
µ

]}

ĝ(α)(s) (23)

where µ, ν are multiple indices {nlm} each, and B
(α)
µ,b is a term proportional to overlapping

integrals of the tidal form factors —an or bn, see (13 above). χ
(ν)
ab is a diadic product of

sphere wavefunctions at locations a and b, and for a perfect sphere is given by

χ
(ν)
ab ≡ χ

(nl)
ab =

2l+ 1

4π
A2

nl(R)Pl(na ·nb) (24)

with Pl a Legendre polynomial and Anl(R) a radial function coefficient —see [6]. Finally,

ĝ(α)(s) are the Laplace transforms of the corresponding GW Riemann tensor amplitudes.

Equations (23) are somewhat complicated, but this is a result of their generality. We now

examine their consequences in specific cases of interest.

First of all we note the following general fact: the presence of an inverse matrix in

equation (23) indicates that its poles , relative to the Laplace variable s, will give us the

resonance frequencies of the coupled system {sphere + resonators}, while the residues

at those poles will give us the corresponding amplitudes . In a practical situation the

resonators will be tuned to one of the sphere’s spheroidal eigenfrequencies, i.e.,

Ω = ωnl , ωnl fixed (25)

and, more precisely, this will be either a quadrupole or a monopole frequency.

The exact solution to equation (23) cannot, once again, be found. We shall thus resort

to approximate methods, based on the assumption that the dimensionless parameter η is

a small number —cf. (19). Although it is not strictly necessary, the further assumption

that there are no other sphere’s resonant frequencies in the vicinity of the chosen Ω=ωnl

does simplify things, and will also be made here3.

The system resonances are found to be at

ω2
a± = ω2

nl

(

1±

√

2l+ 1

4π
Anl(R) ζa η1/2

)

+O(η) (26)

where O(η) stands for terms of order η or higher, and ζ2a is one of the eigenvalues of

the N×N matrix Pl(na ·nb). Equation (26) thus says that the system frequencies, af-

ter resonators have been added, consist of N symmetric doublets around the original

ωnl. It so happens, however, that Pl(na ·nb) has N−2l−1 identically null eigenvalues

if N > 2l+1, which means that an unshifted frequency will survive whenever the lat-

ter inequality holds, but the amplitude of the modes at this frequency is smaller , by a

3This is definitely the case for the fundamental quadrupole mode of a sphere, and also for

the first monopole mode; things are a little different for the second quadrupole mode, but I do

not wish to enter into so much technical detail in this paper.
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factor of order η1/2, than the others’. More specifically, we are going to have a single

doublet if we tune the resonators to a monopole sphere’s resonance, or 5 doublets if a

quadrupole frequency is selected. In the latter case, however, certain doublets may fall

on top of one another, thereby reducing their actual number to fewer than 5; as we

shall soon see, this happens when particular symmetries in the resonator distribution

occur.

The amplitudes of the modes associated to the above frequency doublets are evaluated,

as already mentioned, by the calculus of residues. The following is found:

q̂a(s) = η−1/2
∑

α

Λ(α)
a (s;n, l) ĝ(α)(s) +O(η0) (27)

Two major features are displayed by this equation: first, the amplification factor η−1/2

shows that the resonator amplitudes are enhanced relative to the sphere’s due to resonant

energy transfer between the large mass of the sphere and the small masses of the resona-

tors; and second, there is a pattern matrix Λ
(α)
a (s;n, l) relating the system’s response to

the GW excitations ĝ(α)(s). This matrix depends both on the selected frequency chosen

for tuning the resonators and on the geometry of the layout. We come now to a more

detailed discussion of these matters.

3.2. Resonator layouts. The following property of Λ
(α)
a (s;n, l) also holds: it vanishes

unless l is equal to the corresponding l in the tuning frequency ωnl; in other words, if we

tune our resonators to e.g. a quadrupole frequency (l=2) then their motion only couples

weakly to the l 6=2 sphere modes, actually a factor at least η1/2 less intensely than to the

quadrupole modes. This means that the resonators enable the observation of GWs in a

relatively narrow bandwidth around the tuning frequency.

Thus, if we want to see (possible) monopole gravitational radiation then we need one

resonator tuned to a sphere’s monopole frequency —more than one is also OK, only it will

in principle provide redundant information. Since monopole oscillations are spherically

symmetric, it is irrelevant where we locate our resonator (or resonators); furthermore,

the frequency doublets, see eq. (26) above, reduce to a single one and, if there are more

than one sensors, a weakly coupled, unshifted frequency at ωn0. Sensing monopole GWs

with a system like ours is thus straightforward, and we skip going into more technical

detail.

Our truly interesting concern is quadrupole radiation sensing. Here we find that the

pattern matrix Λ
(α)
a (s;n, 2) can be explicitely calculated to give (after rather laborious

algebra)

Λ(m)
a (s;n, 2) = (−1)N

√

4π

5
bn ×

×

N
∑

b=1







∑

ζc 6=0

1

2

[

(

s2 + ω2
c+

)−1
−
(

s2 + ω2
c−

)−1
] v

(c)
a v

(c)∗
b

ζc







Y2m(θb, ϕb) (28)

where bn is an overlapping integral (b1/R=0.328, b2/R=0.106 for the lowest modes —cf.

[9]), and v
(c)
a is the eigenvector of the matrix Pl(na·nb) corresponding to the eigenvalue ζ2c .
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The above equations are useful for any resonator distribution on the sphere surface.

The question naturally arises as to whether there are preferred ones. Let us have a look

at this in a bit more detail.

A recent proposal by the LSU people, called TIGA (for Truncated Icosahedral Grav-

itational Antenna) [11, 12], consists in a set of 6 resonators attached to the centres of the

pentagonal faces of a truncated icosahedron. This highly symmetric layout can be seen to

result in a single, quintuply degenerate doublet of frequencies, plus a (weakly coupled) non-

shifted frequency4. Degeneracy in this layout is an indication of its isotropic sensitivity:

no matter where the GW comes from, all the energy absorbed by the detector will be

deposited into oscillations at the single frequency doublet. As also shown by Johnson

and Merkowitz, it is possible to make suitable linear combinations of the six resonator

responses q̂a(s), which they call mode channels , which are direct readouts of the five

quadrupole GW amplitudes ĝ(m)(s) at the single frequency of the split doublet, whereby

deconvolution of signal and incidence direction [6, 16, 15] can be readily accomplished.

Further investigation of the consequences of equation (28) has shown us that it is

possible to think of alternatives to the TIGA layout which may be even advantageous in

certain respects. We have for example proved [17] that any 5 resonator distribution with

an axis of pentagonal symmetry results in a frequency multiplet consisting in one non-

degenerate and two doubly degenerate frequency modes. Remarkably, GW amplitudes

selectively couple to these modes, so that different wave modes are seen at different

detector modes. More precisely, the system response is given by

q̂a(s) = −η−1/2

√

4π

5
bn

{

1

2ζ0

[

(

s2 + ω2
0+

)−1
−
(

s2 + ω2
0−

)−1
]

Y20(θa, ϕa) ĝ
(0)(s)

+
1

2ζ1

[

(

s2 + ω2
1+

)−1
−
(

s2 + ω2
1−

)−1
]

×
[

Y21(θa, ϕa) ĝ
(1)(s) + Y2−1(θa, ϕa) ĝ

(−1)(s)
]

+
1

2ζ2

[

(

s2 + ω2
2+

)−1
−
(

s2 + ω2
2−

)−1
]

×
[

Y22(θa, ϕa) ĝ
(2)(s) + Y2−2(θa, ϕa) ĝ

(−2)(s)
]

}

(29)

where ζ20 is the non-degenerate eigenvalue, and ζ21 and ζ22 are the doubly degenerate

eigenvalues; correspondingly, ω0±, ω1± and ω2± are the associated frequency doublets.

Equation (29) clearly shows the selective coupling between the GW amplitudes and the

system response q̂a(s) alluded above. Much like in the TIGA distribution, it is also pos-

sible to define here the following mode channels :

y(m)(s) =
2 η1/2

bn ζm

5
∑

a=1

Y ∗
2m(θa, ϕa) q̂a(s) , m = −2, . . . , 2 (30)

which yield five quantities directly proportional to the five GW quadrupole amplitudes

ĝ(m)(s) —this can be easily seen to be a consequence of the symmetry properties of

4Specifically, ζc =6/5 for c=1,...,5, and ζ6 =0.
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the spherical harmonics in a pentagonal distribution. Such configuration can now be

advantageously implemented in a GW detector by the following argument.

Imagine we are so lucky that we know a GW arrives down the resonators’ symmetry

axis. Now, evidence of excitation of the ω0± or ω1± frequency components for example is

a strong veto on General Relativity, as this theory predicts the excitation of only the ±2

modes. It is unrealistic to think of such good fortune in the first place, but a more likely

practical situation can also be handled advantageously. Indeed, the fact that different

wave modes couple to different detector frequencies is a very powerful discrimination

tool; at the same time, the frequency span of the multiplet in a forseeable GW antenna

will only be a few tens of Hz, so the signal spectrum is likely to be constant over such

span, and hence proposed deconvolution techniques [6, 16] comfortably applicable.

In Figure 2 we give a graphical representation of what might be considered an inter-

esting practical implementation of a GW antenna based on the just discussed pentagonal

transducer layout. It relies on the philosophy of having a polyhedron, rather than a sphere,

as a suitable approach to the GW spherical antenna, for ease of instrumentation attache-

ment and manipulation [13]; the choice was made having in mind that the polyhedron

should be as spherical as possible, whilst having at the same time axes of pentagonal sym-

Figure 2. Our proposed polyhedric antenna. Resonators are marked as follows: a square for the

first quadrupole frequency, a triangle for the second, and a star for the monopole.
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Figure 3. The resonator multiplets in a TIGA distribution (above) and in our proposed PHC

distribution (below). They correspond to the first qudrupole frequency of two identical spheres

and identical resonators. The horizontal scale of the plot is the resonance frequency ω02, enhanced

by a factor of η−1/2.

metry. Our polyhedron is called pentagonal hexacontahedron [18], has sixty identical faces

(irregular pentagons), and is considerably more spherical than the TI [19]. An inscribed

sphere exists which is tangent to every face at a point, to which a resonator could even-

tually be linked, thereby accomplishing a perfect simulation of a spherical distribution,

i.e., all transducers equidistant from the centre.

In Figure 2 we also indicate proposed resonator locations —see caption for details.

For example, for the first quadrupole resonance Ω=ω02, it is found that [20]
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ω0± = ω02

(

1± 0.5755 η1/2
)

ω1± = ω02

(

1± 0.8787 η1/2
)

(31)

ω2± = ω02

(

1± 1.0668 η1/2
)

In Figure 3 we display a graphical representation of this frequency multiplet together

with the TIGA multiplet, for comparison. Of course, the assumption has been made that

resonators and sphere are identical in bothe cases. As can be seen, the frequency span of

the multiplets is practically the same, with a richer response spectrum in our proposed

polyhedron.

In addition to the set of 5 transducers tuned to ω02, another set of five resonators,

tuned to the second quadrupole frequency, ω12, and located symmetrically in the ‘south-

ern hemisphere’, could be attached to the sphere, too. An eleventh resonator, tuned to

the first monopole frequency, ω00, and placed at an arbitrary position, could finally be

added as well. Such an altogether 11 transducer configuration would take advantage of

the large sphere GW absorption cross section at its second quadrupole mode [10], and

would therefore constitute a rather complete GW detector of its own. Also, it just requires

5 transducers rather than 6 for each quadrupole mode sensed.

4. The suspended sphere. Theory so far has been made on the rather idealised

assumption that the GW antenna maintains a perfectly spherical symmetry. This how-

ever is not quite what one will find in actual practice, as any earth based detector will

have to be suspended in a suitable platform in order to isolate it from local sources of

noise. But no matter how such suspension system is implemented in real life, it will

have as an unavoidable consequence the breaking of spherical symmetry, thence (at least

partial) removal of eigenfrequency degeneracy occurring. Perturbative calculations can

be made to quantitatively solve the problem, but I would not like to go into any de-

tails of those procedures here. Rather, I will only take up the case when suspension

is maintained by a wedge at the end of a rod which passes through a diametral bore

practiced across the sphere. This is the way the LSU people have implemented their pro-

totype TIGA, and on which reliable experimental data are available [14]. The purpose

of this section is only to persuade the reader of the power of the theoretical analysis

presented above, as backed by the remarkable matching of its predictions to real mea-

surements.

The nature of the suspension by a diametral bore is such that the otherwise five-fold

degenerate quadrupole sphere frequencies ωn2 split up into 5 non-degenerate frequencies

ωn2m, m=−2,...,2, though the difference between members with equal |m| is rather small

due to the cylindrical symmetry maintained by the bore. This means that a somewhat

more complicated analysis of the general equation (23) needs to be done in this case than

had been done earlier. It however turns out to be feasible thanks to the fact that the

amount of relative frequency splitting caused by symmetry breaking is of order η1/2, and

this enables the application of a perturbative approach with marked similarities with the

one followed in the degenerate case. I would not like to go into the technical details of

how this is done, but only report on its final results.
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Figure 4. The frequency multiplets of a suspended TIGA. Solid slashes correspond to measured

frequencies [14], and broken slashes to theoretically calculated ones. As can be seen, matching

between both sets is remarkably good for all six resonator distributions.

These are summarised in Figure 4, where we see a graphical representation of the

frequency spectrum of a sphere with resonators in the vicinity of the first quadrupole

resonance of the former. The graphic displays the result of the theoretical calculations

for system parameters corresponding to real TIGA prototype values, as given in [14],

along with the values of the actually measured frequencies. As we see, coincidence be-

tween theory and practice is outstanding for all the resonator configurations studied: the

worst discrepancy is only a few parts in 104. I consider this a strong indication that the

theoretical model described above is the correct one.
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5. Conclusion. I have presented here a summary of the main aspects of a rather

rigorous theoretical model of spherical GW antenna, both regarding its sensitivity pa-

rameters (cross sections) and the problem of motion sensing by means of a set of radial

resonators attached to its surface. The development of such model contributes, I believe,

to a more thorough understanding of the whole problem of this kind of GW detector

than was available to date.

Beyond this, however, a new propoposal for transducer layout has emerged out of

our theoretical considerations which I think may be worth considering as an interesting

“brother” of the TIGA layout, for several reasons. For example, the fact that different

mode channels see corresponding GW amplitudes at different member frequencies of the

detector multiplet can be used to great advantage in any signal deconvolution techniques,

and this is of much theoretical value for GW physics as such. Also, the pentagonal hex-

acontahedron is a more spherical polyhedron than the truncated icosahedron, and has

more identical faces which enable mounting of more resonators at positions equidistant

from its centre; as already argued, a rather complete GW antenna can be accomplished

on the basis of this intrinsic capability. The fact that fewer sensors per quadrupole mode

are needed in our proposed detector should also be considered a potential simplification

of the scheme.

It could be objected at this point that the TIGA has the unpaired virtue of having

isotropic sensitivity. While this is true in principle, one may not forget that such symmetry

will be broken in any earth based implementation of a spherical antenna due to suspension

requirements. If our proposed resonator set should be made to have the suspension axis as

its own axis of pentagonal symmetry, then optimum benefit would be naturally obtained

from the system’s inherent features.

A major problem I have not touched upon here is that of noise. While this deserves a

thorough analysis of its own —currently underway— I can presently forsee no signal to

noise ratio penalty in this configuration relative to TIGA or others. The reason for this

conjecture is that all mode channels are combinations of all five resonators’ amplitudes,

which in turn extract energy for their excitation from the incoming GW. Now, if the

reasonable assumption is made that the spectrum of that GW is flat over the relatively

narrow frequency span of the detector multiplet (a few tens of Hz in e.g. a 3 metre

diameter alluminum sphere), then the same amount of energy will be available at each

frequency, and hence the same signal to noise ratio at every member of the multiplet.

This is however a somewhat “hand waving” argument which needs to be more thoroughly

substantiated.
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