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Abstract. We give a short account of some time-frequency methods which are relevant in

the context of gravity waves detection. We focus on the case of wavelet analysis which we believe

is particularly appropriate. We show how wavelet transforms can lead to efficient algorithms

for detection and parameter estimation of binary coalescence signals. In addition, we give in an

appendix some of the ingredients needed for the construction of discrete wavelet decompositions

and corresponding fast algorithms.

1. Introduction and notations

1.1. Generalities. It has been recognized for a long time that a wide class of signals

are efficiently described by means of Time-Frequency representations, i.e. representations

in which time (or position) and frequency variables appear simultaneously. The prototype

of such transforms is the so-called Gabor transform:

f(x) ∈ L2(R) →֒ Gf (b, ω) ∈ L2(R2) ,

where the function of the two variables b (time) and ω (frequency) is defined as

Gf (b, ω) =

∫

R

f(x)e−iω(x−b)g(x− b)dx . (1)
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Here, g(x) is a window, generally chosen in such a way that g(x) (resp. ĝ(ξ)) is well

localized near the origin of times x = 0 (resp. the origin of frequencies ξ = 0). Under

these assumptions, one may think of the coefficient Gf (b, ω) as describing the “content

of the signal f(x) near time x = b and frequency ξ = ω”. Of course, the localization with

respect to time and frequency variables simultaneously has to be understood in a “fuzzy

sense”, because of Heisenberg’s uncertainty principle. By improving precision in time, we

lose precision in frequency.

It is a standard result that the set of coefficients Gf (b, ω) characterize the signal f(x),

in the sense that f(x) may be “reconstructed” from its Gabor transform as

f(x) =
1

2π||g||2
∫

R2

Gf (b, ω)e
iω(x−b)g(x− b)dbdω . (2)

The inversion formula (2) has to be understood in the weak L2(R) sense, i.e. in the sense

of “energy conservation”:

1

2π||g||2
∫

R2

|Gf (b, ω)|2 dbdω =

∫

R

|f(x)|2dx . (3)

As we said, the Gabor representation is one among many other time-frequency rep-

resentations. Several examples may be found in monographs such as [14, 22, 40, 49] or

papers [4, 7, 25]. Throughout this paper we shall concentrate on the wavelet transform

which seems to be especially well adapted to binary coalescence signals and more par-

ticularly on continuous wavelet transform. The paper is organized as follows. The rest of

the current section is devoted to some generalities and notations. In Section 2 we recall

the basic definitions and properties of continuous wavelet transform. We describe in Sec-

tion 3 some elementary facts on the wavelet analysis of stationary stochastic processes.

Section 4 is devoted to a description of wavelet-based methods for detecting amplitude

and frequency modulated signals in noisy environment, and we address the problem of

detection of binary coalescence signals in Section 5. Section 6 is devoted to conclusions.

Finally, we give in the Appendix some aspects of discrete wavelet transforms and their

numerical implementation.

1.2. Fourier analysis. Let us start with some notions of Fourier analysis. We shall

work in the framework of the space of complex valued square-integrable functions, denoted

by L2(R), equipped with a natural inner product which turns it into a Hilbert space. We

shall use the following convention for the inner product. For any two functions f(x) and

g(x) in L2(R), we denote:

〈f, g〉 =
∫
f(x)g(x) dx. (4)

Our convention for the Fourier transform is the following: for f(x) ∈ L1(R), its Fourier

transform f̂(ξ) is defined as:

f̂(ξ) =

∫
f(x)e−iξxdx . (5)

In fact one shows that: ∫
|f(x)|2 dx =

1

2π

∫
|f̂(ξ)|2 dξ (6)
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whenever f(x) is a smooth function decaying rapidly at infinity. Relation (6) (the so-

called Plancherel formula) expresses the fact that the Fourier transform can be extended

to the whole space L2(R) as an isometry and more precisely as a Hilbert space unitary

equivalence between L2(R, dx) and L2(R, dξ/2π). The inverse transform is given by:

f̌(x) =
1

2π

∫
f(ξ)eiξx dξ. (7)

1.3. Hilbert transform, analytic signal. In addition to L2(R), we shall often make use

of the complex Hardy space sometimes called the space of analytic signals:

H2(R) =
{
f(x) ∈ L2(R); f̂(ξ) = 0 ∀ξ ≤ 0

}
. (8)

H2(R) is intimately related to the Hilbert transform H , defined by:

H · f(x) = 1

π
P.V.

∫
f(x− y)

dy

y
, (9)

(where P.V. denotes principal value) and conveniently expressed in the Fourier domain

as

Ĥ · f(ξ) = −i sgn(ξ)f̂(ξ) . (10)

Notice that it transforms sine waves into cosine waves, and vice versa.

Given a real valued function f(x), the associated analytic signal is defined as (up to

a factor 2) its orthogonal projection Zf (x) onto H
2(R). It is given by the formula:

Zf(x) = [Id+ iH ]f(x) , (11)

where Id denotes the identity operator. Equivalently, its Fourier transform is given by:

Ẑf (ξ) = 2θ(ξ)f̂(ξ) , (12)

where θ(ξ) denotes the Heaviside step function which is equal to 1 when ξ ≥ 0 and to

0 otherwise. The analytic signal representation has been proven to be useful in many

applications. In particular, the notion of time-dependent frequency, or instantaneous fre-

quency, makes sense as the derivative of the instantaneous phase of the analytic signal:

ν(x) =
1

2π

d arg Zf(x)

dx
(13)

1.4. Stationary processes and their spectral representation. We give here the basic

properties of stationary processes, without going into sophisticated mathematical details.

Our goal is rather to provide the reader with the main expressions which are needed in

order to follow the discussion below, at least with formal calculations. The interested

reader may want to consult [33] for more details.

Let us consider a real-valued stationary stochastic process n(x) = nω(x) of mean

zero (for convenience, we suppress the explicit dependence on the random parameter ω

throughout this paper). Then the autocovariance function C(τ) = E{n(x+ τ)n(x)} is

non-negative definite and by Bochner’s theorem, there exists a non-decreasing function

F (ξ) such that

C(τ) = E{n(x+ τ)n(x)} =
1

2π

∫
eiξτF (dξ) . (14)
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For the sake of simplicity, we shall stick to the case where the measure F (dξ) is absolutely

continuous with respect to the Lebesgue measure dξ, so that we may write F (dξ) =

E(ξ)dξ, and we write

C(τ) =
1

2π

∫
eiξτE(ξ)dξ . (15)

Here, E(ξ) is the spectral density of the process.

The Cramér representation states that n(x) may be obtained through linear filtering

of white noise. More precisely, the Cramér representation of the stochastic process n(x)

is given by

n(x) =
1

2π

∫ √
E(ξ)eiξxdWξ , (16)

where dWξ is a (real) white noise measure, such that

E{dWξ} = 0 ∀ξ , (17)

and

E{dWξ dWζ} = 2πδ(ξ − ζ)dξ . (18)

We will not go into further details on this point.

1.5. Spectral estimation. It is a standard problem in signal analysis to estimate the

spectral density from a unique (discrete) realization of finite length. Spectral estimation

is a technical subject, often involving subtle choices.

To start with let us assume that we are given a discrete stationary time series, con-

sisting of a finite number of samples Xi = f(xi), i = 0, . . .N − 1 of a continuous time

function f(x). Then the spectral density E(k) is usually estimated from the sample pe-

riodogram

Ê(ℓ) =
∣∣∣∣∣
1

N

N−1∑

k=0

Xke
−ikξℓ

∣∣∣∣∣

2

ℓ = 0, 1, . . .N − 1 (19)

where ξℓ = 2πℓ/N . However, it may be shown that such an estimator is 1) biased (but

asymptotically unbiased) and 2) inconsistent. The situation is usually improved by con-

sidering tapered sample periodograms of the form

Ê(ℓ) =
∣∣∣∣∣
1

N

N−1∑

k=0

wkXke
−ikξℓ

∣∣∣∣∣

2

ℓ = 0, 1, . . .N − 1 (20)

with a well chosen weighting sequence wk. Several choices are possible. Ours consists in

the sequence

wk =





| sin(kπ/L)|n if 0 ≤ k ≤ L

1 if L ≤ k ≤ N − L

| sin((N − k)π/L)|n if N − L ≤ k ≤ N − 1

(21)

for suitably chosen integers L < N/2 and n.

As an example we display in Figure 1 the spectral density of the simulated VIRGO

detector noise, estimated from a sample size of 215.
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Figure 1: Power spectrum of the VIRGO detector noise.

2. Time-Frequency transforms and wavelet analysis. The starting point of

time-frequency analysis was the fact that a wide class of signals may be represented more

adequately by using simultaneously time and the frequency variables. Let us quote for

example musical signals, which are interpreted by human ear in terms of time (i.e. time

of emission, and duration) and frequency (the height of the sound), or chirp signals such

as gravitational waves generated by coalescing binaries. Throughout this paper, we shall

in particular be concerned with model signals of the form

f(x) =
∑

k

Ak(x) cosφk(x) , (22)

where the functions Ak(x) (termed local amplitudes) are assumed to be slowly varying

compared with the oscillations corresponding to φk(x) (local phases).

Of course, the notion of “time-frequency content” of a signal cannot make sense in an

infinitely precise way. For example, Heisenberg’s inequality prevents us from localizing

perfectly functions simultaneously in time and frequency. As a result, some arbitrariness

is necessarily introduced into time-frequency representations. Let us simply stress some

of the main consequences.

• First, time-frequency representations are not unique: there are many different ways

of describing the “time-frequency content” of a signal.

• Second, for a given time-frequency representation, it is impossible to achieve perfect

time-frequency localization, because of the Heisenberg uncertainty principle. This

means that we shall always have to look for a compromise between time localization

and frequency localization.

There exists now a large class of time-frequency representations enjoying different

properties. It is not the purpose of this paper to review them (for this we refer to [22] for

example), and we shall stick to the particular case of the continuous wavelet transform.

2.1. The continuous wavelet transform. Let us start by introducing the continuous

wavelet transform (CWT for short). Let ψ(x) ∈ L1(R)∩L2(R) be a fixed function, called

the analyzing wavelet, or mother wavelet. The corresponding family of wavelets is the
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family of shifted and scaled copies of ψ(x) defined by:

ψ(b,a)(x) =
1

a
ψ

(
x− b

a

)
. (23)

Given an analyzing wavelet ψ(x), the associated continuous wavelet transform is defined

as follows

Definition 2.1. Let ψ(x) ∈ L1(R)∩L2(R) be an analyzing wavelet. The continuous

wavelet transform of f(x) ∈ L2(R) is defined by the integral transform

Tf (b, a) = 〈f, ψ(b,a)〉 =
1

a

∫
f(x)ψ

(
x− b

a

)
dx (24)

The (real or complex) number Tf (b, a) carries information concerning the signal f(x) at

scale a around the point b.

R ema r k 2.1. If the wavelet ψ(x) is progressive, i.e. if ψ(x) ∈ H2(R), then the CWT

of a signal f(x) reads

Tf (b, a) = 〈f, ψ(b,a)〉 =
1

2
〈Zf , ψ(b,a)〉 .

A crucial property of the continuous wavelet transform is that, under a mild condition on

the analyzing wavelet (see equation (25) below), the transform is invertible on its range

(see e.g. [25] for a proof):

Theorem 2.1. Let ψ(x) ∈ L1(R) ∩ L2(R), and let

cψ =

∫ ∞

0

|ψ̂(aξ)|2 da
a
. (25)

If cψ is finite, nonzero and independent of ξ ∈ R (resp. finite and nonzero), then every

f(x) ∈ L2(R) (resp. f(x) ∈ H2(R)) may be decomposed as

f(x) =
1

cψ

∫ ∞

−∞

∫ ∞

0

Tf(b, a)ψ(b,a)(x)
da

a
db , (26)

with strong convergence in L2(R).

Assuming that cψ is independent of ξ actually amounts to assuming independence

with respect to sgn(ξ). Obviously, such an assumption is not needed in the H2(R) case.

The finiteness of cψ implies the vanishing of the integral of the wavelet ψ(x):
∫
ψ(x)dx = ψ̂(0) = 0 .

Condition (25) is often referred to as the admissibility condition. An admissible wavelet is

then essentially a band pass filter (we shall come back to this comment later on). Such a

condition may be enforced by assuming vanishing moments for the wavelet: for example
∫
xmψ(x)dx = 0 , ∀m = 0, 1, ...M − 1 .

In the Fourier domain, the vanishing moments essentially control the behaviour of the

Fourier transform of the wavelet at the origin. Such a property turns out to be essential

for the analysis of singularities and transients in signals.
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As a consequence, we have the following partial isometry between L2(R) and the

target space of the transform, namely H = L2(R× R
∗
+, a

−1dadb):

||f ||2 =
1

cψ

∫ ∞

−∞

∫ ∞

0

|Tf(b, a)|2
da

a
db (27)

for all f(x) ∈ L2(R). This allows for the interpretation of the squared-modulus of the

wavelet transform (suitably normalized) as a time-frequency or more precisely a time-scale

energy density.

2.2. Redundancy and reproducing kernels. For a given admissible wavelet ψ(x) fulfil-

ling the admissibility condition, the image of L2(R) by the wavelet transform is a closed

subspace Hψ of L2(R×R
∗
+, a

−1dadb). This space is called the reproducing kernel Hilbert

space. It is the space of solutions F (b, a) of the integral equation

F (b′, a′) = PψF (b
′, a′) =

∫ ∞

−∞

∫ ∞

0

Kψ(b′, a′; b, a)F (b, a)
da

a
db , (28)

where the reproducing kernel Kψ is given by:

Kψ(b′, a′; b, a) =
1

cψ
〈ψ(b,a), ψ(b′,a′)〉 . (29)

This fact is readily proved by taking the inner product of both sides of equation (26)

with the wavelet ψ(b′,a′)(x). The corresponding integral operator Pψ is easily shown to

be an orthogonal projection on the Hψ space (i.e. P ∗
ψ = P 2

ψ = Pψ).

R ema r k 2.2. Equation (28) expresses the redundancy of the CWT. As before, a

consequence of this redundancy is the existence of many different inversion formulas for

the CWT, or otherwise stated the possibility of using in the inversion formula (26) a

reconstruction wavelet different from the analyzing wavelet ψ(x): if the function χ(x) ∈
L1(R) ∩ L2(R) is such that the number

cψχ =

∫ ∞

0

ψ̂(aξ)χ̂(aξ)
da

a
(30)

is finite, nonzero and independent of ξ, then equation (26) may be replaced with:

f(x) =
1

cψχ

∫ ∞

−∞

∫ ∞

0

Tf (b, a)χ(b,a)(x)
da

a
db , (31)

where the wavelet coefficients Tf (b, a) are still defined by (24).

R ema r k 2.3. There exists a simpler version of continuous wavelet analysis, known

under the name of continuous Littlewood-Paley decompositions. Given a wavelet ψ(x) ∈
L1(R) ∩ L2(R), and assuming that the number

kψ =

∫ ∞

0

ψ̂(aξ)
da

a
(32)

is well-defined, finite, nonzero and independent of ξ, we have the following simple inversion

formula (known as Morlet’s inversion formula) for the corresponding continuous wavelet

transform

f(x) =
1

kψ

∫ ∞

0

Tf (x, a)
da

a
, (33)

the proof of which is elementary.
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2.3. Translation and scaling covariance. The wavelet transform enjoys built-in co-

variance properties. For example, the CWT of a shifted copy of the signal f(x) equals

the corresponding time-shifted copy of the CWT of f(x). A similar property holds with

dilations. More generally we have the following

Lemma 2.1. Let f(x) ∈ L2(R), and set

f̃(x) = f

(
x− x0
λ

)
.

Then

Tf̃(b, a) = Tf

(
b− x0
λ

,
a

λ

)
. (34)

R ema r k 2.4. Lemma 2.1 may be given an instructive geometric interpretation,

which we sketch here. The space of scale and translation variables may be endowed

with a (Lie) group structure, with product given by (b, a) · (b′, a′) = (b + ab′, aa′) and

inverse (b, a)−1 = (−b/a, 1/a). This group is termed the affine group and denoted by

Gaff . The natural action of Gaff on L2(R) given by

π(b, a)f(x) =
1√
a
f

(
x− b

a

)
(35)

is actually an unitary representation ofGaff , in the sense that π(b, a) is a unitary operator

for all (b, a) ∈ Gaff , and that π(b, a)π(b′, a′) = π((b, a) · (b′, a′)), and the connection to

the wavelet transform is as follows: if f(x) ∈ L2(R)

Tf (b, a) =
1√
a
〈f, π(b, a)ψ〉 , (b, a) ∈ Gaff . (36)

Back to Lemma 2.1, we have that f̃(x) =
√
λπ(x0, λ)f(x), and Tf̃ (b, a) =√

a
λ〈f, π((x0, λ)−1 · (b, a))ψ〉 =

√
a
λ〈f, π

(
b−x0

λ , aλ
)
ψ〉, which yields the lemma. The inva-

riance properties of the wavelet transform then have a deeper geometric interpretation in

terms of the action of the affine group. We shall come back to that point in Section 5.2.

Such properties have found a lot of applications, for example for the study of fractal

and multifractal functions and measures. We shall see below their implications for the

particular case of binary coalescence detection.

2.4. The case of (complex) progressive wavelets. If ψ(x) is a progressive wavelet (see

Remark 2.1 for a definition), Eq. (26) holds for functions f(x) ∈ H2(R). Progressive

wavelets are also well suited for L2(R) real signals. Indeed, if f(x) is a real valued function,

then its Fourier transform possesses Hermitian symmetry (i.e. f̂(−ξ) = f̂(ξ)) and is

completely characterized by its projection on H2(R). Then the H2(R) version of wavelet

analysis may be used as well, and is particularly convenient as we shall see.

The wavelet transform of real signals with respect to progressive wavelets is a complex-

valued function, and is also progressive with respect to the variable b. As such, it may be

uniquely written in the form

Tf (b, a) = |Tf(b, a)|eiΩ(b,a) , (37)
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where Ω(b, a) = arg Tf (b, a). Let us denote by ω(b, a) the local frequency of Tf (b, a), i.e.

ω(b, a) = ∂bΩ(b, a) . (38)

Then it is easy to see that

ω(b, a) =
1

a

R̃f (b, a)If (b, a)− Ĩf (b, a)Rf (b, a)

|Tf(b, a)|2
, (39)

where we have set

T̃f (b, a) =
1

a

∫
f(x)ψ′

(
x− b

a

)
dx , (40)

and Rf and If (resp. R̃f and Ĩf ) are the real and imaginary parts of Tf (resp. T̃f ). Note

that T̃f(b, a) is a wavelet transform of f(x) as well, the wavelet being the derivative of

ψ(x).

3. Wavelet transform of stationary processes We now turn to the description

of the CWT of stochastic processes. Let us consider first a stochastic process, and denote

by C its covariance operator. Then if ψ(x) ∈ L1(R) ∩ L2(R) we have

E{Tn(b, a)Tn(b′, a′)} = 〈Cψ(b′,a′), ψ(b,a)〉 ∀(b, a), (b′, a′) . (41)

In the case of stationary time series the covariance operator is a convolution operator,

with the spectral density E(ξ) as multiplier. Let n(x) be such a time series, and consider

its Cramér representation given in Eq. (16). Then, its CWT takes the form of a stochastic

integral

Tn(b, a) =
1

2π

∫
eiξb
√
E(ξ)ψ̂(aξ)dWξ , (42)

and we have the following

Proposition 3.1. Let n(x) be a stationary Gaussian stochastic process, with spectral

density denoted by E(ξ), and let Tn(b, a) denote its CWT, with respect to the progressive

wavelet ψ(x) ∈ L1(R) ∩ L2(R). Then

1. Tn(b, a) is a Gaussian process.

2. For fixed scale a, Tn(b, a) is a zero mean stationary process, with power density

Ea(ξ) = E(ξ)|ψ̂(aξ)|2 (43)

3. In particular, one has

E{|Tn(b, a)|2} =
1

2π

∫
E(ξ)|ψ̂(aξ)|2dξ . (44)

4. Assume now that ψ(x) ∈ H2(R). Then for fixed a and b, the real and imaginary

parts of Tn(b, a) are independent Gaussian random variables.

Let us consider as an example the case of a white noise process n(x). In this case,

Eq. (41) becomes

E{Tn(b, a)Tn(b′, a′)} = 〈ψ(b,a), ψ(b′,a′)〉 = cψKψ(b, a; b′, a′) ∀(b, a), (b′, a′) .
and we have in particular

E{|Tn(b, a)|2} = ||ψ||2/a .
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Let us now consider the “signal + noise” case, i.e.

f(x) = f0(x) + n(x) ,

where f0(x) is a deterministic signal, and n(x) is a weakly stationary process. Then clearly

Tf(b, a) = Tf0(b, a) + Tn(b, a) .

In addition, we may write

M(b, a) = |Tf (b, a)|2 = |Tf0(b, a)|2 +N(b, a) , (45)

where

N(b, a) = 2ℜ
(
Tf0(b, a)Tn(b, a)

)
+ |Tn(b, a)|2 . (46)

Thus by Proposition 3.1, we have

E{N(b, a)} =
1

2π

∫
E(ξ)|ψ̂(aξ)|2dξ . (47)

4. Ridge detection methods for time-varying frequencies. We now address

the problem of characterizing time and amplitude modulated signals from the behavior

of a given time-frequency representation. Such a problem has been addressed by several

authors in various contexts. We just give here a few methods that seem to us well suited

to the gravitational waves detection problem, and we focus on the wavelet transform case.

4.1. Generalities. Let us consider as a toy model a signal of the form

f(x) = A(x) cosφ(x) (48)

and assume that the amplitude A(x) is slowly varying compared to the oscillations. Let

ψ(x) ∈ H2(R) be a progressive wavelet, and assume that |ψ̂(ξ)| has a (unique) maximum

at ξ = ω0. Then we have

Tf (b, a) ≈
1

2
A(b)eiφ(b)ψ̂(aφ′(b)) , (49)

which indicates that the wavelet transform is essentially localized near a curve, called the

ridge of the wavelet transform, of equation

a = ar(b) =
ω0

φ′(b)
. (50)

As an illustration of this fact, we display in Figure 2 the modulus square of the wavelet

transform of a (Newtonian) gravitational wave signal generated (or at least expected to be

generated) by a coalescing binary system (the model for such signals is given in Eq. (70)

below). More precisely, we computed a (complex, progressive) wavelet transform with

Morlet’s wavelet

ψ(x) = e−x
2/2eiω0x

with ω0 = 2π, and scales of the form 2 an0 , with a0 = 21/8 and n = 1, 2, . . .40. With

such a choice, it may be verified that the scale variable is equivalent to a period (at

least when the sampling frequency is set to 1). The wavelet transform modulus square is

represented with gray levels: in our convention, the gray level at point (b, a) is directly

proportional to the value |Tf (b, a)|2. We can clearly see the localization properties of the
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Figure 2: Modulus square of the wavelet transform of a binary coalescence signal.

wavelet transform. The transform is localized in a neighborhood of a ridge (shown in the

figure). The algorithm used to estimate the ridge is described in Section 4.2 below.

It is possible to derive a more accurate formula for the wavelet transform using statio-

nary phase approximations. For this, let us suppose that the wavelet ψ(x) is progressive,

and may be written in its canonical form as

ψ(x) = Aψ(x)e
iφψ(x) . (51)

Then we may write

Tf (b, a) ≈
√
π

2

ei
π
4 sgn(Φ

′′

(b,a)(x0))

√
a2|Φ′′

(b,a)(x0)|
ψ

(
x0 − b

a

)
Zf (x0) , (52)

where

Φ(b,a)(x) = φ(x) − φψ

(
x− b

a

)
, (53)

and x0 = x0(b, a) is a stationary point of the integrand, i.e. a time such that

Φ′
(b,a)(x0) = 0 . (54)

In addition, it is assumed that for any (b, a) under consideration, there exists only one

such point, and that Φ′′
(b,a)(x0) 6= 0. We refer to [19] for a more detailed analysis.

4.2. Local analysis of the wavelet transform. The basic formulae (49) and (50) have

two immediate and important consequences. First,if the ridge equation a = ar(b) is

known, then equation (50) yields the local frequency of the signal:

ν(x) =
1

2π
φ′(x) =

1

2π

ω0

ar(x)
(55)

Second, the local amplitude of the signal is obtained by putting a = ar(b) into equ-

ation (49) :

A(x) = 2
|Tf(x, ar(x))|

|ψ̂(ω0)|
(56)

This shows the significance of the of ridge of the wavelet transform. More precise estimates

of the wavelet coefficients, such as the stationary phase approximation described above
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lead to efficient methods using the phase of the wavelet transform. The general framework

is given in [19]. Let us show how it works with the Morlet wavelet,

ψ(x) = e−x
2/2eiω0x , (57)

with Fourier transform

ψ̂(ξ) =
√
2πe−(ξ−ω0)

2/2 . (58)

For ω0 large enough (say ω0 > 5) ψ is (at least numerically) admissible and progressive.

The wavelets coefficients of the signal f(x)

Tf (b, a) =
1

2a

∫
A(x)e−

1
2 (

x−b
a )

2

ei[φ(x)−ω0
x−b
a ]dx (59)

are approximately equal to the leading term in the stationary phase expansion of this

oscillatory integral [19]

Tf(b, a) ≈ |T0(b, a)| eiΩ0(b,a) (60)

where

|T0(b, a)| =
√
π

2

e
− 1

2

(x0−b)2φ′′(xx)2

a2φ′′(x0)2+a−2

[1 + a4φ′′(x0)2]
1/4

(61)

and

Ω0(b, a) = φ(x0)− ω0
x0 − b

a
+

1

2

(x0 − b)2φ′′(x0)

1 + a4φ′′(x0)2
+

1

2
arctan

[
a2φ′′(x0)

]
, (62)

(see[19]). In these formulae x0 = x0(b, a) is the stationary point given by

φ′(x0) =
ω0

a
(63)

We assume that φ′′ > 0 hence for each (b, a) there is a unique first order stationary point.

Now the equation

x0(b, a) = b (64)

appears as another version of the ridge equation . It is easy to see that in the present

case of the Morlet wavelet x0 depends only on a and therefore for fixed a

∂

∂b
Ω0(b, a) =

ω0

a
− (x0 − b)

φ′′(x0)

1 + a4φ′′(x0)2
(65)

and on the ridge
∂

∂b
Ω0(b, a) =

ω0

a
. (66)

This suggests to look for the ridge by solving for a the implicit equation

∂

∂b
Ω(b, a) =

ω0

a
, (67)

where Ω(b, a) is the phase of the wavelet coefficient Tf(b, a). This can be done in practice

by various fixed point methods , for example direct iterations or a Newton method.

For the sake of comparison, we show in Figure 3 the wavelet transform of a section

of the signal analyzed in Figure 2. Notice in particular the behavior of the phase of the

wavelet transform in the right hand image. At a given point on the ridge, the wavelet

transform has a tendency to oscillate at the same frequency as the wavelet itself, as pre-

dicted by (67). This is the property which is exploited by the ridge extraction algorithm.
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Figure 3: Wavelet transform of a smaller part of the binary coalescence signal; left: mod-

ulus square; right: phase.

R ema r k 4.1. It is worth noticing that very little a priori information about the

signal is used. This is a main interest of this method. This way of extracting the ridge

gives good results in the case of a signal of the form

f(x) = A(x) cos φ(x) ,

provided that the stationary phase assumptions are fullfilled and the additional noise

is not too strong. When the input signal-to-noise ratio is low (in practice say - 5 db)

the algorithm is unstable and fails to provide a reliable extraction of the ridge. This is

basically due to its local nature.

4.3. Penalization approaches. In very noisy situations, the local approaches described

above may no longer be suitable, and it may be necessary to turn to global methods.

Such methods were introduced in [11, 12] and are developed in great details in [13].

They are based on a different setting of the problem, which makes use explicitely of

the a priori assumptions made on the signal. Let us give here an example of such me-

thods.

We start with a function of two variables M(b, ω) (where we consider for convenience

the variable ω = log(a)), supposed to be localized near a ridge ϕ0. M(b, ω) may be

for example a modulus square of wavelet transform, or some modified version of it. We

shall be more specific later on. The starting point is the assumption that the ridge is

a one-dimensional object, i.e. a curve, and then has to be modeled in that form. Let

us for simplicity consider the case of parametric curves. A ridge is then modeled as a

mapping

ϕ : s ∈ [0, 1] → ϕ(s) ∈ R
2 , (68)

where the first component of ϕ(s) is a time component b(s) and the second one is for

convenience taken to be the logarithm of the scale log a(s). Given a wavelet transform,

the problem is to find the optimal ridge, in a sense to be specified. Following [11, 13] we

state the problem as a minimization problem, for a conveniently chosen penalty function

Γ(ϕ). A natural candidate for such a penalty function is the following

Γ(ϕ) = −
∫

|Tf (ϕ(s))|2ds+
∫

|λ · ϕ′(s)|2ds (69)
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Such a function is the sum of two terms. Let us consider them independently. The first

one involves only the “concentration” of M(b, ω). However it cannot be utilized alone.

Indeed, minimizing only the first term would produce a curve trying to occupy densely

the domain of (b, ω). Some rigidity constraints have to be imposed on the curve. This is

the purpose of the second term.

The penalty functional Γ(ϕ) is not quadratic, and then cannot be minimized ex-

plicitely. The minimization has to be done numerically. In noise-free situations, the task

is easy and may be achieved using one of the standard minimization techniques (see for

example [44, 45]). However, in noisy situations, special care has to be paid to the problem

of local minima of Γ(ϕ). Indeed, the number of such minima turns out to increase with

the noise level, and standard minimization techniques fail in such situations.

A convenient alternative is provided by stochastic relaxation algorithms, for exam-

ple simulated annealing. A method for solving numerically the minimization problem

described above is described in great details in [13] (see also [11]).

5. The gravitational wave detection problem. Let us now turn to the problem

of gravity waves detection, and the corresponding parameter estimation problem. We

shall see that wavelet techniques are well adapted to such problems.

5.1. The model signal. We shall focus on the case of the binary star coalescence signal,

since it is one for which time-frequency analysis may be expected to perform well. In the

Newtonian approximation, the model is the following:

f(x) = Aθ(x0 − x)(x0 − x)α cos

(
Φ− 2π

β + 1
F (x0 − x)β+1

)
, (70)

(we recall that θ(x) is the Heaviside step function) with

α = −1

4
, β = −3

8
. (71)

Here, A (resp. F ) is generally interpreted as the numerical values of the signal’s amplitude

(resp. frequency) one second before coalescence, and Φ as a global phase term.

In more general restricted post-Newtonian approximations, the signal is of the form

f(x) = Aν(x)2/3 cosφ(x) , (72)

where ν(x) = φ′(x)/2π is the local frequency, and the time-dependent phase φ(x) is the

sum of several post-Newtonian terms

φ(x) = φ0(x) + φ1(x) + φ1.5(x) + φ2(x) + . . . , (73)

where φ0(x) is the dominant Newtonian part. The correspondence between local frequ-

ency and time is given by

x = 1 + τ0

(
1−

(
ν(x)

F

)−8/3
)

+ τ1

(
1−

(
ν(x)

F

)−2
)

+ τ1.5

(
1−

(
ν(x)

F

)−5/3
)

+ . . . ,

(74)

which provides an expression for the group delay, i.e. the time of appearance of a given
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frequency:

x = τ(ν) = 1 + τ0

(
1−

( ν
F

)−8/3
)
+ τ1

(
1−

( ν
F

)−2
)
+ . . . .

Rema r k 5.1. In both Newtonian or post Newtonian case the signal is a locally mo-

nochromatic one in the sense that time and frequency are in one-to-one correspondence.

This property is crucial for the applicability of the wavelet analysis.

For the sake of simplicity, we shall restrict our investigations to the case of the Newtonian

approximation, i.e. we shall set τ1, τ1.5, τ2 . . . to zero. However, most of the techniques we

are about to discuss may be extended without difficulties to post-Newtonian situations.

To proceed, we need to analyze more carefully the Fourier transform and the analytic

signal of the model signals.

Using formal arguments, the Fourier transform of the signal in (70) may be evaluated

via the stationary phase approximation, which yields

f̂(ξ) ≈ A√
2πβF

(
ξ

2πF

)(2α−β+1)/(2β)

exp

{
i

(
Φ+

βξ

β + 1

(
ξ

2πF

)1/β

− ξx0 +
π

4

)}

(75)

R ema r k 5.2. Notice that the function given in (70) is neither integrable nor square

integrable. Therefore, the meaning of the Fourier transform in (75) is very problematic.

However, this problem may be circumvented as follows. Let F be a band-pass filter, such

that F̂ (0) = 0, and consider the filtered signal F ∗ f(x). The effect of such a filtering is

to force to zero both very high and very low frequencies. However, since we are dealing

with a locally monochromatic signal, forcing to zero very high and very low frequency

amounts to enforcing the decay of F ∗ f(x) at x → −∞ and forcing F ∗ f(x) to zero as

x→ x0. Then, if one works with a filtered signal instead of the original one, the Fourier

transform can be defined, and approximated as in (75). Again, let us stress that such an

approximation is acceptable only in a limited frequency range, excluding both very low

and very high frequencies, i.e. excluding values of the time variable close to or very far

away from the coalescence time.

R ema r k 5.3. In practice, the experimental signal has to be “prewhitened” before

sampling, in order to reduce quantization noise. This means that the signal to be processed

by detection algorithms is of the form

C−1/2f(x) =
1

2π

∫
eiξx

f̂(ξ)√
E(ξ)

dξ

where E(ξ) is the spectral density of the detector noise, or at least an approximation of it.

Note that the transfer function 1/
√
E(ξ) of the convolution operator C−1/2 has precisely

the properties required for the filter F .

At first sight, it is tempting to state the analytic signal of a real signal like

A(x) cos(φ(x)) equals A(x) exp{iφ(x)}. However, this is not true in general (for example,

the Hilbert transform of sin(1/x) is 1− cos(1/x) and not − cos(1/x) as one would naively

expect). However we have the following
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Lemma 5.1. Let λ be a (large) positive number, and let f(x) = A(x) cos(λφ(x)) ∈
L1(R), where A(x) and φ(x) are twice and four times differentiable functions respectively.

Then

Zf (x) = A(x)eiλφ(x) +O
(
λ−1

)
(76)

as λ→ ∞.

Such a result is not of direct application, since the limit λ→ ∞ is not suited for prac-

tical situations. However, a “weak interpretation” of it would be the following. Suppose

that 1) the variations of the amplitude are much slower than the variations coming from

the oscillations, and 2) the variations of the frequency φ′(x) are small enough. Then the

analytic signal of f(x) = A(x) cos φ(x) is approximately equal to A(x) exp{iφ(x)}.
Let us come back to the binary coalescence signal. A naive calculation would errone-

ously suggest that the analytic signal of (70) is of the form

Zf(x) = Aθ(x0 − x)(x0 − x)α exp

{
i

[
Φ− 2π

β + 1
F (x0 − x)β+1

]}
, (77)

and that the instantaneous frequency then reads

ν(x) = F (x− x0)
β (78)

Such a conclusion is only approximately true, for the same reasons as before, in particular

because of a possible correction affecting the low frequencies. However, within a limited

range of frequencies, such an approximation is definitely sensible.

f(x)+n(x) f1(x)+n1(x)
* k

Figure 4: Filtering scheme.

A standard approach for detecting such signals amounts to use the matched filter

technique, which we outline here (see [5, 18, 34, 35, 36, 47]) for a detailed analysis in the

context of binary coalescence detection). The basic situation is the following:a linear filter

of impulse response k(x) (convolution by k(x) ) is applied to an input signal which is the

sum of a (deterministic) signal of interest f(x) and some noise modeled as a second order

stationary process n(x) with known spectral density E(ξ). See Figure 4 for the scheme.

f1(x) = (f ∗ k)(x) =

∫
k(x− u)f(u)du (79)

n1(x) = (n ∗ k)(x) =

∫
k(x− u)n(u)du (80)

Then n1 is also a second order stochastic process with spectral density E1(x). The filtering
formulas in the Fourier domain read:

f̂1(ξ) = k̂(ξ)f̂(ξ) (81)

E1(ξ) = |k̂(ξ)|2E(ξ) (82)
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It is the purpose of matched filtering to maximize, at a given time x0 the outpout signal

to noise ratio

outpout SNR =
|f1(x0)|
σ1

(83)

where σ1 is the standard deviation of the outpout noise n1(x). For this we assume that

{ξ s.t. f̂(ξ) 6= 0 and E(ξ) = 0} is a zero-measure set.

Then it follows directly from the Cauchy-Schwarz inequality that in the class of all

linear filters the optimal one is the so-called matched filter given by its transfer func-

tion:

k̂opt(ξ) = Ce−iξx0
f̂(ξ)

E(ξ) , (84)

with a non-zero arbitrary constant C. The maximum output SNR is then given by

max(outpout SNR)2 =
1

2π

∫ |f̂(ξ)|2
E(ξ) dξ . (85)

A detection is declared if the output of the matched filter is beyond a given threshold,

based upon the statistics of the output noise. In realistic situations such as the GW

detection, the signal to be detected has several unknown parameters, then the problem

turns into an estimation/detection one (see e.g. [5, 9, 35] for a review). The practical way

currently under study by many authors is the construction of a family of filters (called

templates) which will form a net in the space of all filters. Of course one looks for a good

compromise between accuracy and calculation cost (which is directly related to the num-

ber and the sizes of the templates). In the following we shall explore some wavelet-based

alternatives.

5.2. Why wavelets? Let us now explain why wavelet analysis seems to be a good can-

didate for the detection problem described above. First, wavelets have a certain number

of intrinsic nice properties, such as the existence of fast algorithms (described in Appen-

dix below). But in addition, a closer look at the signal model in (77) shows that wavelet

analysis turns out to be naturally adapted to the problem. Let us neglect for the time

being the phase factor Φ. We see that Eq. (77) is (up to a normalization factor) a shifted

and scaled copy of a reference signal

fα,β(x) = θ(−x)xα exp
{
ixβ+1

}
. (86)

(In the terminology of [30] fα,β(x) is called a chirp of type (α,−β−1); note however that

the numerical value of β is out of the range of the analysis of [30]; gravity waves are not

oscillatory enough to qualify as true trigonometric chirps.) Therefore, as a consequence of

the covariance properties of the wavelet transform, the transforms of the corresponding

signals are obtained from the transform of (86) by the action of the affine group. More

precisely, we have that

Zf (x) = AF−α/(β+1)eiΦfα,β

(
F 1/(β+1)(x0 − x)

)
(87)

and then by Lemma 2.1
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Tf (b, a) = AF−α/(β+1)eiΦTfα,β

(
F 1/(β+1)(x0 − b), F 1/(β+1)a

)
, (88)

and the detection problem may be reformulated as a detection problem in the time-scale

plane: find a translation parameter x0 and a scale parameter a0 = F 1/(β+1) such that

Tf (b, a) = Tfα,β ((−x0, a0)−1 · (−b, a)) where · is the product in the affine group given

above.

This actually opens the problem of developing a detection theory for functions defined

on the affine group, where translation is replaced with the group action. To our knowledge,

such a theory has not been developed so far.

Another reason for which it is natural to use wavelet-based techniques is the fact that

the expected signal is mainly characterized by a time-varying frequency. It turns out that

time-frequency representations of such signals have particular localization properties. We

describe below the behavior of the wavelet transform of such signals.

5.3. The wavelet transform. As we saw in the previous sections, the wavelet transform

has a tendancy to concentrate in the neighborhood of a ridge. In the case of signals of

the form (70), such ridges take the form

ar(b) =
ω0

2πF
(x0 − b)3/8 , (89)

or equivalently, if we consider the reciprocal function

br(a) = x0 −
(
2πaF

ω0

)8/3

. (90)

The problem amounts to that of finding an efficient and robust algorithm for detecting

the ridge and estimating its parameters. We now describe the application to this problem

of the methods mentioned to above.

5.4. Looking for ridges. Let us consider numerical examples of the continuous wavelet

transform for the simulated binary coalescence signals. In Figure 2 we analysed the noise-

free signal given by Eq.(70) (with A = 1 and F = 50). The localization of the wavelet

transform near the ridge (shown in the figure) appears clearly. In that example, the ridge

was estimated by the method described in Section 4.2. In Figure 5 we consider the same

signal but with an additive stationary Gaussian noise with spectral density modelling the

Figure 5: Noisy binary coalescence signal, buried in shot and thermal noises, with κ = .1.
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Figure 6: Comparison of ridges in noise-free and noisy situations.

Figure 7: Noisy binary coalescence signal, buried in shot and thermal noises, with κ = .5.

thermal and shot noises in the interferometric detectors of the form

E(ξ) = κ
(
Ss + Stξ

−4
)
,

where Ss = 1, St = 108, and κ = .1. (In our simulations the seismic noise has been

replaced with a cutoff at a frequency of 10Hz.)

The same localization properties of the wavelet transform may be observed (notice

that in our graphical conventions, the gray levels are automatically adjusted to the range

of the transform; thus eventhough the contribution of the frequency modulated signal

seems weaker in Figure 5 than in Figure 2, this is just a graphical effect), but the locali-

zation is now somewhat blurred by the presence of the noise. As a consequence, the ridge

(again shown in the figure) is not extracted as accurately as before. The two two ridges

(in noise-free and noisy cases) are compared in Figure 6.

Finally, we analysed the same signal but now with κ = .5 which means higher noise.

To improve the accuracy of the ridge extraction we applied the penalization algorithm

described in Section 4.3. The result is shown Figure 7. As may be seen from the wavelet

transform, the signal is still visible at small scales, i.e. at high frequencies, but is perturbed

by noise at larger scales. The ridge is correctly estimated in the small scales domain, i.e.

when its “energy” is at least comparable with that of the noise. On the contrary, in the

large scales, the estimated ridge is attracted by the low frequency part of the noise (in

this case the thermal noise). This clearly shows that the non-parametric methods such

as the ones we have described here are limited to a certain range of signal to noise ratio.
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5.5. Parametric methods. Up to now, we have only described a series of methods

which do not take into account the explicit model we have for the signal. Clearly, the

performances of the algorithms may be greatly enhanced by taking such information into

account. We describe here a number of possible approaches based upon wavelet transform.

For the sake of simplicity, we stick to the case of the continuous wavelet transform as

described above. We refer to [28] for a precise description of related methods.

Time-frequency template matching. This approach is a time-frequency version of Wie-

ner’s filter. The main idea here is to replace the classical analysis, which matches pha-

ses, with a frequency matching. Similar ideas have been developed in a different form

in [21, 50].

Let us start with the additive noise model

f(x) = AfF (x0 − x) + n(x) .

We have

M(b, a) = |TfF (x0 − b, a)|2 +N(b, a)

where M(b, a) is defined in (45). N(b, a) is a noise term, whose statistics has been de-

scribed above.

Fix a date τ , and consider a domain Ωτ = [τ − T, τ ]× [amin, amax] in the time-scale

domain. For simplicity, we shall denote by L2(Ωτ ) the space L2(Ωτ , dadb/a). Let us now

consider the following time-scale templates

Γ(τ,γ)(b, a) =
Γ̃(τ,γ)(b, a)

||Γ(τ,γ)||L2(Ωτ )
(91)

where

Γ̃(τ,γ)(b, a) = |Tfγ (τ − b, a)|2 . (92)

Then, minimizing ||M − AΓ(τ,γ)||L2(Ωτ ) with respect to A and γ yields the following

maximization problems:

F̂ (τ) = argmax
γ

〈M,Γ(τ,γ)〉L2(Ωτ ) (93)

Â(τ) = max
γ

〈M,Γ(τ,γ)〉L2(Ωτ ) (94)

This leads to the following meta-algorithm for detection

• FOR τ = τmin TO τ = τmax DO

1. Solve the maximization problem in (93) with respect to γ.

2. Store the values F̂ (τ) and Â2(τ).

• Scan the local maxima Â(τm) of the function Â(τ).

• IF Â(τm) ≥ THRESHOLD: mark τm as a possible date for an event.

Of course, the choice of the THRESHOLD depends on several parameters, and in particular

it relies on some a priori knowledge on the behavior of the algorithm when only noise is

present. Such a knowledge may easily be obtained through Monte-Carlo simulations.
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Line integral methods. As an alternative, let us simply discuss the line integral appro-

ach, described in more details in [28]. The idea is there to exploit the expected energy

concentration of the wavelet transform by considering restrictions of it to specific curves,

in the same spirit as the algorithms described above and in [13]. Let us consider for the

sake of simplicity the Newtonian signal, and let M(b, a) be as in (45).

Let (τ, γ) be a candidate for the pair (x0, F ), and let us consider the corresponding

ridge, expressed in terms of group delay

b(τ,γ)(a) = τ −
(
2πaγ

ω0

)8/3

. (95)

Finally, consider the following line integral

Lf (τ, γ) =
∫

M(b(τ,γ)(a), a)
da

a
. (96)

Let us now consider the case of a gravitational wave generated by a binary system col-

lapsing at time x0, with chirp parameter F . Using the stationary phase approximation

derived above, we can see that in the non-noisy situation, we have that

Lf (x0, F ) ≈
2π

φ′ψ(0)
|ψ(0)|2 ||f ||2 = ||f ||2

In addition,

Lf (τ, γ) ≤ Lf (x0, F ) .
This suggests to use the line integral Lf (τ, γ) instead of the quantity A(τ) in the previous

algorithm. More precisely, the algorithm is based on the following scheme: for any fixed

τ , solve

max
γ

Lf (τ, γ) (97)

and among the local extrema of the latter quantity, keep those which are above a certain

threshold.
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Figure 8: Line integral method for a pair of stars of 10 solar masses, at a distance of 100 Mpc;

left plot: 20 seconds simulation, with a time step of 100 ms; right plot: 2 seconds simulation,

with a time step of 1 ms.
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The advantage of such an approach is that it can be made extremely fast, since any

computation of Lf (τ, γ) requires the evaluation of a single integral instead of a double

one. In our implementation, the maximization is performed using an adapted version of

Brent’s method, and the usual wavelet transform is replaced with a predenoised one. We

refer to [28] for more details on this method.

As an illustration, we show in Figure 8 the result of the method for the case of a

binary system made of 2 stars of 10 solar masses, at a distance of 100 Mpc. The signal

was simulated with the SIESTA software, and includes a Newtonian approximation for

the signal and the VIRGO detector noise (provided by the VIRGO collaboration), whose

spectral density is given in Figure 1.

R ema r k 5.4. Several variations around these two schemes are possible. For instance,

it is shown in [28] that it is convenient to replace the wavelet transform of the signal

with the so-called prewhitening wavelet transform, in which the spectral density of the

noise (which in that case has to be known in advance, from a model or from previous

experiments) is taken into account. It may be shown that in such a case, the output of

the algorithm is equal to that of the matched filter. Other variations were given in [21].

6. Conclusions. In this paper we have given a brief description of continuous wavelet

transform, focusing on some particular aspects which we believe relevant for gravitational

waves detection.

More precisely, we have described a set of methods for analyzing and detecting am-

plitude and frequency modulated signals embedded in noise. Some of the signals which

are expected at the gravitational waves detectors, namely gravity waves generated by co-

alescing binaries, fall into this class, and the techniques we described in this paper apply

to these.

The first type of methods we have described are non-parametric. They amount to se-

arching for the expected signal as a set of salient points or a curve in the time-scale plane.

We gave two different formulations of this approach, based on local [19] or integral [13]

techniques. They may be used if signal-to-noise ratio is low enough both for detection [29]

and for parameter estimation [37].

The second methods are parametric methods. They also amount to searching for

curves in the time-scale plane, but the curves are now given a specific functional form,

based on Newtonian or post-Newtonian approximations [28]. They represent interesting

alternatives to matched filter techniques, and may easily be implemented on line.

In addition in the Appendix we describe the main aspects of discrete wavelet decom-

positions, from a subband coding perspective. Let us stress that subband coding and

quadrature mirror filters were originally introduced in order to reduce quantization noise

in speech. Quantization noise seems to be a relevant issue for data aquisition at interfe-

rometric detectors, since the detector noise has a wide dynamical bandwidth (which will

require a prewhitening prior to quantization). For this reason, discrete wavelets should

be considered as a serious candidate from the data aquisition point of view as well.
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Bernard Escudié. Bernard was a great source of inspiration, and a large part of the

material presented in this paper is based on his ideas.

We dedicate this paper to his memory.

7. APPENDIX: Discrete wavelet decompositions from a sub-band coding

perspective and fast algorithms. In this appendix, we describe the main aspects

of discrete wavelet decompositions, and their connections to fast algorithms. Starting

from the sampling theorem, we describe the quadrature mirror filters technique and the

corresponding sub-band coding algorithms. We then describe the construction of wavelet

bases and show how they fit into the sub-band coding schemes. Finally we turn to the

algorithms for non-orthogonal wavelet decompositions.

Our starting point will be the sampling theorem, which asserts that any band-limited

L2(R) function whose Fourier transform’s support is included in thye interval [−πν, πν]
may be sampled without information loss with a sampling frequency νs ≥ ν/2.

7.1. Perfect reconstruction quadrature mirror filters. Let us start with a discrete se-

quence {fn, n ∈ Z}, assumed for the sake of simplicity to consist of samples fn = f(n) of

a band limited function f(x) with unit sampling frequency. As a consequence of Poisson’s

summation formula, the Fourier transform of the sequence is a 2π-periodic function, he-

reafter denoted by F (ξ) =
∑

k f̂(ξ+2πk). Let us now consider the 2π-periodic functions

H(ξ) and G(ξ) defined by H(ξ) =
∑
k χ[−π/2,π/2](ξ + 2πk) and G(ξ) = H(ξ + π). Let

hk =

√
2

2π

∫ π

−π
H(ξ)e−ikξdξ

gk =

√
2

2π

∫ π

−π
G(ξ)e−ikξdξ

denote the (appropriately normalized) Fourier coefficients of H(ξ) and G(ξ) respectively,

and introduce the sequences s̃n =
∑
k hn−kfk and t̃n =

∑
k gn−kfk, with Fourier trans-

forms F (ξ)H(ξ) and F (ξ)G(ξ) respectively. Clearly, the bandwidth of the sequences {s̃k}
and {t̃k} is half that of the sequence {fk}, so that these two sequences may be subsampled

by a factor two without loss of information. Since in addition we haveH(ξ)+G(ξ) = 1 ∀ξ,
we deduce that the sequence {fk} is completely characterized by the two sequences

sn =
∑

k

h2n−kfk (98)

tn =
∑

k

g2n−kfk (99)
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The sub-band coding technique (which was introduced in a signal processing context in

order to reduce quantization noise) is an extension of this simple calculation. The goal

is to replace the perfect filters with smoother ones, in order to reduce the number of

operations in Eqs (98) and (99). By doing so, one introduces aliasing, which may be

cancelled by an appropriate choice of the filters.

Let us then consider a pair of 2π periodic functions

H(ξ) =
1√
2

∑

k

hke
ikξ

G(ξ) =
1√
2

∑

k

gke
ikξ ,

and consider the sequences introduced in (98) and (99). Consider also the reconstructed

sequence

f rk =
∑

n

(
h2n−ksn + g2n−ktn

)
. (100)

Imposing the perfect reconstruction, i.e. f rn = fn imposes constraints on the filters H(ξ)

and G(ξ). The classical solution to these constraints yields the so-called Quadrature Mir-

ror Filters (QMF for short), for which

G(ξ) = eiξH(ξ + π) , (101)

and

|H(ξ)|2 + |G(ξ)|2 = 1 . (102)

The sub-band coding is based on a recursive implementation of the perfect reconstruc-

tion “convolution-subsampling” scheme described above. More precisely, we start again

with a sequence {fn} and we set sn0 = fn. Then, defining

sjn =
∑

k

h2n−ks
j+1
k (103)

tjn =
∑

k

g2n−ks
j+1
k (104)

we know how to reobtain the sequence {sj+1
k } from the sequences {sjn} and {tjn}:

sj−1
k =

∑

n

(
h2n−ks

j
n + g2n−kt

j
n

)
. (105)

A sub-band coding of the sequence {fn = sn0} amounts to representing it by the coeffi-

cients {s−Jn , t−Jn , t−J+1
n , . . . , t−1

n } instead of the original coefficients {fn}. In the case of a

finite sequence of length say N = 2L, we then have (because of the subsampling)

2L−1 + 2L−2 + . . .+ 2L−J + 2L−J = N

coefficients, i.e. the same number exactly.

Let us stress that the same filters are used throughout all the stages of the algorithm,

i.e. for all values of j. It is easy to see that to complete a decomposition at all scales of

a finite sequence of length N , the computational cost goes as O(MN), where M is the

length of the sequences {hk} and {gk}. It is then an extremely efficient algorithm.
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Rema r k 7.1. The original motivation for the introduction of sub-band coding was

the need of reducing quantization noise. Such a problem appears as soon as the dynamical

range of an (analog) signal is large. Then the dynamical range of the signal is generally

much smaller within each of the sub-bands, making the quantization task easier. Since

this seems to be the case with gravitational waves detector signals (where the spectral

density of the noise varies over several orders of magnitude), we believe that sub-band

coding could be an appropriate strategy.

We shall now see the close connection of sub-band coding with wavelets.

7.2. Multiresolution analysis and its connections to sub-band coding. The construc-

tion of orthonormal bases of wavelets relies on the concept of multiresolution analysis,

which we discuss here for the sake of completeness (see [17] for a self contained and

pedagogical introduction to the subject).

Definition 7.1. A multiresolution analysis (MRA) of L2(R) is a collection of nested

closed subspaces Vj ⊂ L2(R)

. . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . . (106)

such that the following properties hold

1. ∪Vj = L2(R) and ∩Vj = {0}.
2. If f(x) ∈ V0, then f(x−k) ∈ V0 for all k ∈ Z; f(x) ∈ Vj if and only if f(x/2) ∈ Vj−1.

3. There exists a function φ(x) ∈ V0 such that the collection of the integer translates

φ(x− k), k ∈ Z is an orthonormal basis of V0.

Many examples of MRA have been constructed. We refer to [14, 17, 40] for reviews. We

shall not go into mathematical details here and we shall rather focus on the implications

of the above definition.

It follows directly from the inclusion of the Vj spaces that φ(x) may be expressed as

a linear combination of the functions φ(2x − k) (which form a basis of V1). This yields

the so-called two-scale difference equation (or refinement equation)

φ(x) =
√
2
∑

k

hkφ(2x+ k) . (107)

The coefficients hk are the Fourier coefficients of a 2π-periodic function, denoted by

H(ξ) =
1√
2

∑
hke

ikξ . (108)

Denote by Wj the orthogonal complement of Vj in Vj+1. Then one may prove that there

exists a function ψ(x) ∈ W0 such that the collection {ψ(x− k), k ∈ Z} is an orthonormal

basis of W0. More precisely, let m be an arbitrary integral number, and set

G(ξ) = ei(2m+1)ξH(ξ + π) =
1√
2

∑
gke

ikξ . (109)

The coefficients gk are related to the coefficients hk by

gk = −(−1)kh2m+1−k (110)
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The function ψ(x), called the wavelet associated with the MRA, is defined by

ψ(x) =
√
2
∑

k

gkφ(2x+ k) . (111)

Remarkably enough, the functions H(ξ) and G(ξ) are quadrature mirror filters, i.e. they

satisfy equations (101) and (102).

Let us introduce the following notation for the shifted and scaled wavelets and scaling

functions {
ψjk(x) = 2j/2ψ

(
2jx− k

)
,

φjk(x) = 2j/2φ
(
2jx− k

)
,

(112)

and associate with any function f(x) ∈ L2(R) the following family of coefficients
{

tjk = 〈f, ψjk〉 ,
sjk = 〈f, φjk〉 .

(113)

Then the results outlined above may be summarized as follows

Theorem 7.1. Let {Vj , j ∈ Z} be a MRA, with scaling function φ(x) and wavelet

ψ(x). Then the family {ψjk, j, k ∈ Z} is an orthonormal basis of L2(R). More precisely,

any f(x) ∈ L2(R) may be decomposed as

f(x) =
∑

j,k

tjkψjk(x) =
∑

k

sj0k ψj0k(x) +
∑

j≥j0,k

tjkψjk(x) . (114)

7.3. Fast algorithms for orthonormal wavelet decompositions. Let us suppose now

that we are given a multiresolution analysis with scaling function φ(x) and wavelet ψ(x),

and denote by H(ξ) and G(ξ) the associated QMFs as before. Then it is a direct conse-

quence of the refinement equations that we have

Proposition 7.1. The coefficients tjk and sjk are related by




tjk =
∑

ℓ

gℓs
j−1
2k−ℓ ,

sjk =
∑

ℓ

hℓs
j−1
2k−ℓ .

(115)

In other words, we are exactly in a sub-band coding situation. This result is remarkable

in many respects. Let us just mention that it provides for free a fast algorithm for or-

thonormal wavelet decompositions (let us stress that even though the wavelets get larger

and larger as the scale grows, the computational cost itself does not depend on the scale).

The connection between wavelet bases and subband coding was established first by S.

Mallat [39], and clarified later on by A. Cohen and W. Lawton. For more details, we refer

to [17, 51].

7.4. Fast algorithms for non-orthonormal wavelet decompositions. Let us now consi-

der a slightly different situation, closer to the continuous wavelet transform described in

the main body of this paper.

To start with, we consider scales which are still restricted to be powers of 2, but we

now allow the values of the shift variable to belong to a given lattice, independent of the
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scale, say Z. This leads to consider the following set of coefficients
{
T j(k) = 2j

∫
f(x)ψ

(
2j(x− k)

)
,

Sj(k) = 2j
∫
f(x)φ

(
2j(x− k)

)
.

(116)

Again, it follows directly from the refinement equations that such coefficients may be

computed as follows

Proposition 7.2. The coefficients T j(k) and Sj(k) are related by




T j(k) =
∑

ℓ

gℓS
j−1(k − 2j−1ℓ) ,

Sj(k) =
∑

ℓ

hℓS
j−1(k − 2j−1ℓ) .

(117)

The corresponding algorithm is as efficient as the previous one. Indeed, assuming that

we have at hand N = 2L discrete values S0(k) to start with, it is easy to see that the

number of operations required to compute the wavelet coefficients T j(k) for k = 1, . . .N

and j = −1, . . .− L goes as O(MN log(N)) (to compute N log(N) coefficients).

To deal with scales which are not restricted to powers of two, the situation is somewhat

more complicated, and one has to turn to approximate algorithms (if one wants to stick to

sub-band coding techniques; extremely efficient alternatives relying on FFT-based imple-

mentations are also available). We refer to [2, 42] and references therein for a discussion

of such approaches.

7.5. Some classical examples

Haar’s wavelets. Let us consider the following pair of filters:

h0 = h−1 = g−1 = −g0 =
1√
2
, hk = gk = 0 ∀k 6= 0,−1

Thus,

H(ξ) =
1

2

(
1 + e−iξ

)
.

The corresponding pyramid algorithm reads




sjk = 1√
2

(
sj+1
2k + sj+1

2k+1

)
,

tjk = 1√
2

(
sj+1
2k+1 − sj+1

2k

)
.

It may be expressed simply in terms of sums and differences.

It is easy to check that such a choice leads to

φ(x) = χ[0,1](x) ,

and

ψ(x) = χ[ 12 ,1]
(x)− χ[0, 12 ]

(x) .

The corresponding wavelet basis is known to as the Haar basis. It is made of compactly

supported functions, thus achieving optimal localization in the time domain. However,

Haar wavelets are poorly localized in the frequency domain (since both ϕ̂(ξ) and ψ̂(ξ)

decay as 1/ξ at infinity).
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Spline wavelets. Let V0 = {f ∈ Cr−1, f(x) = polynomial of degree r on [k, k + 1]},
and define Vj by scaling of V0. Let χ(x) = χ[0,1] ∗ χ[0,1] ∗ . . . ∗ χ[0,1](x) (r + 1 times) and

set

ϕ̂(ξ) =
χ̂(ξ)∑

k |χ̂(ξ + 2πk)|2 .

It may be checked that this yields a multiresolution analysis with scaling function φ(x),

from which the wavelet ψ(x) may be computed easily. The corresponding wavelets are

called spline wavelets, and have been described in great details in [14](with several gene-

ralizations). Neither φ(x) nor ψ(x) are compactly supported, but they have exponential

decay. In addition, φ̂(ξ) decays as ξ−r at infinity. The wavelet has the same localization

and regularity properties as the scaling function. In addition, ψ(x) has r + 1 vanishing

moments.

Daubechies’ wavelets. Another classical strategy consists in looking for compactly sup-

ported quadrature mirror filters which would generate orthonormal wavelet bases. This

approach was developed by I. Daubechies [17], who proposed to look for filters of the

form

H(ξ) =

(
1 + e−iξ

2

)r
F(ξ) ,

and search for trigonometric polynonmials F(ξ) such that the resulting wavelet ψ(x) is

in L2(R) and yields an orthonormal basis of L2(R). This leads to compactly supported

wavelets, whose frequency localization is described by |ψ̂(ξ)| ∼ |ξ|−αr as |ξ| → ∞. Tables

for the corresponding filter coefficients gk and hk are given in [17], as well as precise

estimates for the coefficient α.

The two constructions outlined above have found a lot of generalizations in the lite-

rature. We have no room here to give a precise account of these, and refer the reader

to [14, 17, 40, 51, 53] for example.
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[36] A. Kró lak and B.F. Schutz (1987): Coalescing binaries : probe of the Universe, General

Relativity and Gravitation, 19, 1163-1171.
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