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Abstract. The detection of gravitational waves from coalescing compact binaries would be

a computationally intensive process if a single bank of template waveforms (i.e., a one step

search) is used. We present, in this paper, an alternative method which is a hierarchical search

strategy involving two template banks. We show that the computational power required by such

a two step search, for an on-line detection of the one parameter family of Newtonian signals, is

1/8 of that required when an on-line one step search is used. This reduction is achieved when

signals having a strength of ∼ 8.8 times the noise r.m.s. value are required to be detected with a
probability of ∼ 0.95 while allowing for not more than one false event per year on the average.
We present approximate formulae for the detection probability of a signal and the false alarm

probability. Our numerical results are specific to the noise power spectral density expected for

the initial LIGO.

1. Introduction. The inspiral, due to Gravitational radiation reaction, of a binary

composed of compact massive objects (Neutron stars or Black Holes) will produce a

gravitational wave signal [3] which, during the last few minutes before merger, will lie

within the bandwidths of upcoming laser interferometric detectors like the LIGO [1],

VIRGO [2], and GEO600. The waveform of this signal can be computed with enough

accuracy to allow pattern matching techniques, like matched filtering, to considerably

enhance the signal to noise ratio [3, 4]. Therefore, it should be possible to detect such

events upto a large distance and hence observe a significant event rate.

For the detection of signals from coalescing compact binaries, it will be required to

correlate the detector output with a bank of template waveforms since the signals will not

have a unique waveform but will depend on a number of parameters characterizing the

source, like the masses of the components, their spins etc. This discrete set of templates
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must be chosen such that even those signals which are not represented exactly in the set

are detected with a significant probability (typically, 0.95). At the same time constraints

imposed by the available computing power must be met. A formalism which leads to an

optimum bank of templates was set up in [6, 7] and is now known as the S-D formalism.

And a search strategy using a single bank of templates is called a one step search.

It was shown in [8, 9] that the use of a single template bank would be computationally

expensive when the post-Newtonian effects are incorporated. An alternative strategy

could be to use several template banks in a hierarchy such that information provided by

a coarsely spaced bank of templates at a lower level is used to restrict the search region

for a more finely spaced template bank at a higer level.

The use of such a strategy, known as a hierarchical search, has been proposed a number

of times [8, 9, 10]. However, a detailed formalism for the same has not been given so far

in the context of the detection of gravitational wave signals. We present in this paper a

rigorous formalism to describe a two step hierarchical search and a first estimate of the

numbers involved.

The main result of this paper is that the computational power required for an on-line

two step search can be upto a factor of eight smaller than that for an on-line one step

search. This happens when a detection probability of ≃ 0.95 is sought for signals having

a signal to noise ratio (s.n.r.) of 8.8σ and the false alarm is kept so that there is, on

the average, not more than one false event per year. This factor of eight is, however, not

the last word since although our formalism can yield higher factors (∼ 13) for slightly

lower strengths, the assumption of statistical independence of correlation outputs, used

in deriving some of the formulae, breaks down in these cases. We use the family of

Newtonian waveforms for our computations and the noise power spectral density expected

for the initial LIGO. However, this formalism can be easily extended to post-Newtonian

waveforms as well as a larger number of intermediate stages.

The rest of the paper is organized as follows. The main objective in Section 2 is the

presentation of formulae for the detection probability of a signal and the false alarm

probability. We start with section 2.1 where we briefly describe the noise and signals that

will be used in this paper. We obtain the test statistic relevant to this choice of signals

and noise in section 2.2. We discuss the distribution functions of this test statistic in

section 2.3. An approximate expression for detection probability is obtained. The false

alarm probability is also calculated in the context of a one step search which is discussed

in section 2.4.

Section 3 is devoted to the two step hierarchical search. In section 3.1, a general

formalism, and associated set of notations, is introduced to describe a two step hierar-

chical search. In section 3.2 It is shown, that there exists an optimum set of spacings

and thresholds which minimizes the computational requirement. An algorithm to obtain

this optimum solution is presented. In section 3.3 the computing power required for an

on-line two step search is estimated and numerical results are presented. We conclude

with Section 4.

2. Preliminaries. Some of the results in the following have been obtained from or

compared with Monte Carlo simulations. For these simulations, we have mainly used the
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Gaussian random number generator, G05FDF, provided in the NAg library of numerical

routines. Wherever possible, the results have been checked for consistency with those

obtained using the routine GASDEV provided in Numerical recipes [13].

2.1. The noise power spectral density and the Newtonian waveform. It is expected

that the use of environmental monitors and coincidence checks between different detec-

tors will allow the removal of non-Gaussian components from the detector noise. The

remaining Gaussian component is expected to be stationary over a time scale of hours.

The power spectral density, Sn(f), of the Gaussian noise component will have steeply

rising parts at both the low and high frequency ends [1, 12]. The sensitive bandwidth for

the initial LIGO would be from [12] fa = 40 Hz to fc = 1 kHz and the output would

have to be bandlimited to this band.

The lowest order approximation to the waveform from a coalescing compact binary is

provided by the quadrupole formalism [11]. The response of an interferometric detector

to such a waveform can be written as [7],

h(t; A, ta, ξ,Φ) = A a(t− ta, ξ) cos(φ(t − ta, ξ) + Φ) . (1)

This is the family of signals that is to be detected.

The parameter A takes into account the distance to the binary as well as various

geometrical factors [3, 14, 18, 19] and is effectively a constant for the signal durations

considered here. The other, time dependent, part of the amplitude is, a(t, ξ) = [ 1 −

t/ξ ]−1/4. The phase of the waveform can be expressed as φ(t, ξ) = 2π
∫ t

0 f(t
′, ξ)dt′,

where the integrand is the instantaneous frequency of the signal, f(t, ξ) = faa(t, ξ)
3/2.

Thus, the waveform is a chirp whose amplitude and instantaneous frequency increase

with time. The rate at which the instantaneous frequency increases is governed by the

parameter ξ, called the chirp time,

ξ = 34.54

[

M

M⊙

]−5/3 [
fa

40Hz

]−8/3

sec , (2)

whereM, the chirp mass , is the following combination of the reduced mass µ and the total

mass M of the binary, M = (µ3M2)1/5. The low frequency cutoff makes the amplitude

of the signal negligible when its instantaneous frequency lies below fa. The time at which

f(t, ξ) = fa is denoted by ta which can be taken as the time of arrival of the signal. The

phase of the signal at ta is denoted by Φ.

The high frequency cutoff, fc, will also force the amplitude to a negligible value

for instantaneous frequencies beyond fc. Besides this the nature of the waveform will

change when the compact bodies plunge towards each other once the last stable orbit is

reached. The waveform has, therefore, an effectively finite duration which, to a very good

approximation, is ξ itself.

We can also write the waveform in Eq. (1) as

h(t; A, ta, ξ,Φ) = Ah0(t− ta; ξ) cos(Φ) +Ahπ
2
(t− ta; ξ) sin(Φ) , (3)

where, h0(t; ξ) = a(t, ξ) cos(φ(t, ξ)) and hπ
2
(t; ξ) = a(t, ξ) cos(φ(t, ξ) + π/2).

2.2. The test statistic and its computation. The one step search strategy for the de-

tection of the waveform described above will be implemented as follows [7].
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The detector output, x(t), will be sampled at the Nyquist frequency of ∼ 2 kHz to

give the time series (xi = x(i∆); i = 0, . . . , N − 1) where ∆ is the sampling interval.

The time series should of course be longer than the duration of the longest template or

equivalently, the largest chirp time, ξmax. For every value of ξ included in the template

bank, two correlations will be computed (ξm belongs to the template bank): C0(i∆, ξm) =
∑

j xj+iq0,j(ξm) and Cπ
2
(i∆, ξm) =

∑

j xj+iqπ
2
,j(ξm). The time series q0 and qπ

2
are

the templates matched [5] to the quadrature components h0 and hπ
2
. Their Discrete

Fourier transform [15, 16] components are given by q̂0,j(ξ) = Nhĥ0,j(ξ)/Sn( j/N∆) and

q̂π
2
,j(ξ) = Nhĥπ

2
,j(ξ)/Sn( j/N∆). Nh is a normalization constant defined later on. The

quadrature components have the following properties,
∑

j

q0,j(ξ)h0,j(ξ) ≈
∑

j

qπ
2
,j(ξ)hπ

2
,j(ξ) , (4)

[

∑

i

q0,i(ξ)hπ
2
,i(ξ)

]2

≪
∑

j

q0,j(ξ)h0,j(ξ)
∑

k

qπ
2
,k(ξ)hπ

2
,k(ξ) , (5)

Correlations can be computed very efficiently using the Fast Fourier Transform (FFT)

[15]. But in the time series of a template with chirp time ξm, samples for i > ξm/∆ will be

zero since the template has a finite duration of ξm. Therefore when a correlation between

the template and the detector output is taken using an FFT, only the first N − ξm/∆

samples will be the result of a linear correlation [4]. It is desirable to have equal lengths

of correlations for every template. Hence, only the first Np = N − ξmax/∆ samples will

be retained in each correlation and the rest discarded. We call Np, the padding for the

template bank. A useful figure for Np is ∼ 5× 105 corresponding to N = 256× 2048 and

ξmax = 32.0 sec.

The two correlations obtained above will then be squared and added to produce

another time series whose ith sample we denote as Xi(ξm) (i = 0, . . . , Np now), Xi(ξm) =

[C2
0 (i∆, ξm) +C2

π
2

(i∆, ξm)]1/2. We call this time series the rectified output of a template

ξm. We denote by λm the maximum value among the samples Xi(ξm). The above process

is repeated for all the chirp times belonging to the template bank and the set {λm} is

obtained.

Finally, a test statistic, Λ, is constructed as,

Λ = max
m

{λm} , (6)

and Λ is compared with a threshold η. If Λ > η then a detection is anounced or else not.

We now define some quantities which will be of use later on. We call the rectified

output of a template when x(t) consists of only a signal and no noise as the processed

form of the signal produced by the template. The maximum value that any processed

form of a signal can have is called the strength, S, of the signal [7]. This value is attained

only for a template with the same chirp time as that of the signal. For a signal with

amplitude A, S = A/Nh , where Nh is the normalization constant for a template with

the same chirp time as that of the signal. When the template chirp time is not the same

as that of the signal, the maximum of the processed form will be reduced. We call the
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Figure 1: The intrinsic ambiguity function, H(∆ξ), for initial LIGO noise power spectral density.

maximum of the processed form in such a case as the observed strength, Sobs, of the signal

in that template.

Given a signal with S = 1 and a chirp time ξs, we define the intrinsic ambiguity

function H(ξt, ξs) as the observed strength of the signal in template ξt. When S 6= 1,the

observed strength can be obtained as

Sobs = SH(ξt, ξs) . (7)

It is easy to show, using the stationary phase approximation [6], that H(ξt, ξs) depends

only on |∆ξ| and not on ξt and ξs separately. This behavior is replicated by the exact

intrinsic ambiguity function also. However, for binaries with massive components the

plunge cutoff frequency is small. This effectively reduces the signal bandwidth and leads

to a wider intrinsic ambiguity. For simplicity, we neglect this effect and take the intrinsic

ambiguity to be independent of its location. Our final results will not be affected much

by this approximation. A plot of the intrinsic ambiguity function is shown in Fig. 1.

2.3. False alarm and detection probability. The random variables C0(i∆, ξm) and

Cπ
2
(i∆, ξm) are linear combinations of the time samples of x(t). Since the noise in x(t)

was assumed to be Gaussian random process, C0(i∆, ξm) and Cπ
2
(i∆, ξm) will, therefore,

be Gaussian random variables. The mean values of C0 and Cπ
2
would, in general, be

non-zero when a signal is present but would be zero in the absence of a signal. Using the

properties of q0 and qπ
2
stated in the previous section, it is easy to show that the C0 and

Cπ
2
are statistically independent. Their variance can be made equal to unity by choosing

Nh suitably and this defines Nh.

Thus, it follows that Xi(ξm) has a Rayleigh density when a signal is absent and a

Rician density when a signal is present [5, 17]. These densities have the following forms:

R(z) = z exp(−z2/2) for the Rayleigh and Ri(z, d) = z exp(−(z2 + d2))I0(dz) for the

Rician (I0(z) is the modified bessel function of order zero). The quantity corresponding

to d, in the case of Xi(ξm), will be given by the ith sample of the processed form of the

signal.
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If we make the assumption that the set of samples in a rectified output is a statistically

independent set, then the cumulative distribution function of λm would be a product of

the cumulative distribution functions of the samples. We denote the distribution functions

of λ by F0,m(z) when a signal is absent and by F1,m(z; µ̄s) when a signal with parameters

µ̄s is present.

Of course, the assumption of statistical independence is not strictly correct. However,

we found from Monte Carlo simulations that the true F0,m can still be fit by a product

of distributions provided the number of samples is reduced from Np to an effective value

Neff = 0.7Np. The ratio Neff/Np is independent of Np and ξm. The latter property

allows us to drop the subscript ‘m’ and we get,

F0,m(z) = F0(z) =

(
∫ z

0

R(x)dx

)Neff

≃ exp(−Neff exp(−
z2

2
)) . (8)

Having got F0(z), we make the assumption that the set {λj} is a statistically inde-

pendent set. The false alarm probability Q0 for a given template bank and threshold η

can then be expressed as,

Q0 = 1− (F0(η) )
NT ≃ 1− exp(−NTNeff exp(−

η2

2
)) , (9)

where NT is the number of templates in the template bank. Monte Carlo simulations

show that the threshold, computed for a given false alarm, is actually quite insensitive

to the presence of statistical correlations. Thus, the assumption made above is not very

restrictive.

In the presence of a signal and for the kind of signal strengths encountered in our

analysis, the following approximation is well supported by Monte Carlo simulations. The

maximum over all the rectified outputs (i.e., Λ) is localized among those samples where

the processed form of the signal is large (>∼ 5.0). In fact, it is possible to get good fits to

Monte Carlo results if only the two templates nearest to a signal (i.e., having chirp times

on either side of the signal chirp time) are considered and further, within each of the

two rectified outputs, only that sample is considered at which the processed form of the

signal is maximum. Under this approximation and the assumption that the two maxima

are statistically independent, it can be shown that the detection probability Qd is given

by,

Qd = 1−

∫ η

0

Ri(x, Sm)dx

∫ η

0

Ri(x, Sm+1)dx , (10)

where ξm, ξm+1 are the templates between which the signal lies and Sm, Sm+1 are the

respective observed strengths. The assumption of statistical independence becomes more

erroneous for smaller values of ξm− ξm+1. We restrict ourselves to ξm− ξm+1 ≥ 0.030 sec

for which the Qd calculated from Eq. (10) is off by ∼ 10% from the Monte Carlo results.

2.4. One step search. We will now reformulate the S-D formalism for a one step search

in terms of detection probability.

We begin by stating our one step template placement criteria : The bank of templates

should be chosen in such a way that (i) every waveform, having a strength S greater

than a given minimum strength Smin, should have a detection probability greater than a
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given minimum detection probability Qd,min, and (ii) The false alarm should stay below

a specified level, Q0,max. A solution in terms of η and { ξj }, satisfying both criteria, need

not always exist. For instance, a signal having S = Smin = 6.0 will not be detected with

a detection probability of Qd,min = 0.95 if the false alarm is kept such that there is only

false event, on the average, in a year.

The detection probability can be expected to be the smallest for signals having a

strength Smin and chirp time ξ = (ξm + ξm+1)/2 for ξm ∈ { ξj }. Such signals will have a

detection probability given by Qd(η; Smin, (ξm+ξm+1)/2), which can be calculated using

Eq. (10). To satisfy criterion (i) above, all that needs to be done, given a threshold η, is

to ensure that all such minimum detection probability signals have, Qd(η; Smin, (ξm +

ξm+1)/2) = Qd,min . It follows from the location independence of H that only ξm+1 − ξm
will enter into the calculation of the detection probability and not ξm and ξm+1 separately.

We call this quantity the spacing of the templates and denote it by δ. The whole template

bank can now be constructed, using δ, as ξk = ξmin+kδ (k = 0, 1, . . .) till ξmax is reached.

We can now state a simple algorithm for setting up a one step search for given Smin,

Qd,min and Q0,max. A value for the spacing is chosen (starting from a large value, say

δ = 0.10 sec) and NT is found. Then a threshold η is found, from Eq. (9), such that the

false alarm becomes Q0,max. The detection probability Qd(η; Smin, ξmin + δ/2) is found.

If it exceeds Qd,min, then stop or else reduce the spacing and repeat the above process.

3. Two step hierarchical search. We present below, a possible structure for a two

step hierarchical search. It should be noted that this structure need not be unique. It is

based on our experience with a one step search.

3.1. A two step hierarchical search: description. The basic idea behind a two step

search is the use of two banks of templates. One of them has template chirp times placed

farther apart than the other. A one step like search would be conducted with the finely

spaced templates but only around “promising” candidate chirp times, namely, those tem-

plates in the coarser bank for which the maximum over their rectified output exceeds a

threshold. This threshold would be kept lower than the one which would be used with

the finely spaced templates.

We recall that the spacing for a one step search turned out to be a constant for

the whole template bank because of the location invariance of the intrinsic ambiguity

function. We expect the same feature for the two step template banks also. Thus we deal

with two constant spacings in the following.

In a two step search as configured here, first the maximum over a rectified output is

computed for each template in a bank B1. We call B1, the first stage template bank and

denote the spacing of this bank by δ(1). The number of templates used in B1 would be

n
(1)
t = (ξmax − ξmin)/δ

(1). If for some template in B1 having a chirp time ξm, it happens

that the maximum over its rectified output, λm, crosses η(1) then we call this event a

crossing of η(1) produced by the chirp time ξm. Given such a crossing, the next step

involves using a template bank B2,m with a spacing δ(2) that is smaller than δ(1). We

take δ(1)/δ(2) = n to be an integer. This keeps the two banks of templates commensurate

with each other.
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The set of chirp times used in B2,m will be located symmetrically around ξm (except

when ξm = ξmin or ξmax, but these can be ignored). It will be convenient, therefore, to

index the chirp times in B2,m with both positive and negative integers. Thus, the set of

chirp times used in B2,m can be constructed as, ξp = ξm+pδ(2). where −n+1 ≤ p ≤ n−1.

However, the range of p need not be made as wide as this. For instance, it could be

−n/2 ≤ p ≤ n/2 also. For the former, the number of template chirp times in B2,m would

be 2(n− 1) while for the latter it will be n.

Since η(1) would, in general, be kept quite low, the probability of more than one

crossing in the first stage will not be negligible. In general, for every crossing of η(1), a

fixed number, M (n ≤ M ≤ 2(n− 1)), of templates will be employed as described above.

Since the number of crossings that appear in our final results is small (typically, ∼ 2), the

choice of M within the above mentioned range does not make too much of a difference

to the computational cost. We choose M = 2(n − 1) for our analysis, the maximum

of the range, in order to maximize our chances of detection. Thus, the templates, in

B2,m, with chirp times ξn−1 and ξ−n+1, will have a separation of δ(2) from the templates

corresponding to ξm+1 and ξm−1 respectively.

Let nc be the number of crossings that are produced by the first stage templates in B1.

Then the total number of second stage templates that will be used will be ncM . Adjacent

crossings will reduce this number since there would be some second stage templates in

common for such crossings. It is easily seen, however, that adjacent crossings have a

negligible probability compared to non-adjacent ones. Finally, the overall maximum over

the rectified outputs of the second stage templates employed is found. We denote it by

Λ(2). If Λ(2) crosses a threshold η(2) (> η(1)), a detection is announced. Thus, Λ(2) is the

test statistic for a two step search configured as above.

3.2. Determination of thresholds and spacings. We impose on the two step search

described above, conditions similar to the one step template placement criteria of sec-

tion 2.4. The two step template placement criteria are : (i) Every signal with a strength

greater than a given minimum strength Smin should produce, with a probability Qd,min,

at least one crossing among the two templates which lie on either side of it. It should also

be detected with a probability of Qd,min when the second stage templates corresponding

to the above crossings are employed. (ii) The false alarm should be less than a specified

level Q0,max. This false alarm is for the overall search and does not refer to a specific

level of the hierarchy. As in the case of a one step search, a solution in terms of thresholds

and spacings need not exist for all combination of Smin, Qd,min and Q0,max. Our choice

of only two adjacent templates for the first stage crossing is justified because most of the

extra crossings obtained, when four templates are used instead of two, would actually

be spurious since they will not lead to the final detection of the signal in the second

stage.

If a crossing of η(2) (which is quite large) were to be induced by noise alone, it would

imply that the noise “resembles” the template waveform very closely. Therefore, as in the

case of an actual signal, one can expect that such a noise realization would also induce

a crossing of the first stage threshold in a nearby first stage template. This need not be

true when the templates are far apart. However, for small spacings (∼ 0.030 sec) it can
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be expected that the presence of a hierarchy will not be an impediment to a false alarm.

We have checked this using a Monte Carlo simulation.

We denote the average value of nc in the absence of a signal by nav
c . The average

computational requirement of a two step search can then be expressed in terms of the

total number of templates used on the average,

nav
t = nav

c ×M + n
(1)
t . (11)

In Eq. (11), we have neglected, as before, the probability of adjacent crossings in the

absence of a signal. Under the assumption of statistical independence made above, nav
c

can be obtained as,

nav
c = Q0(η

(1))× n
(1)
t (12)

where Q0(η
(1)) is the probability of a crossing for a single template, Q0(η) = 1 − F0(η).

Q0(η
(1)) behaves almost like a step-function in a narrow range of η(1). This is of crucial

importance in the following.

From Eq. (11), we see that that in order to reduce the computational requirement,

n
(1)
t should be made small or, equivalently, the first stage spacing, δ(1), should be made

large. However, an increase in δ(1) will lower the observed strength, Sobs, of a signal

having a chirp time ξ = (ξm + ξm+1)/2, for ξm ∈ B1. This would imply a decrease in the

probability of a crossing induced by such a signal in the first stage and hence, a violation

of criterion (i) above. To avert this, η(1) would have to be lowered too. However, F0(z)

has an almost step-function like behavior below a critical value of z. If, in the course of

increasing δ(1), η(1) became less than this critical value, the value of nav
c would rise quite

fast so much so that nav
t would actually increase with an increase of δ(1) beyond this

point. Thus, there should exist a solution for the thresholds and spacings in a two step

search, for which the computational requirement is minimized. This optimum solution

can be found by a simple extension of the algorithm that was presented for a one step

search.

The Algorithm :

(i) Given Smin, Qd,min, Q0,max and the padding Np, a one step template bank and

threshold is set up using the algorithm presented in Sec. 2.4.

(ii) A trial value of δ(1) is chosen as δ(1) = j×δ(2) where, j ≥ 2 is an integer. For each

trial value of δ(1), η(1) is calculated so that Qd(η
(1); Smin, ξmin + δ(1)/2) = Qd,min. The

average computational requirement, nav
t , is then calculated using Eq. (12) and Eq. (11).

The value of δ(1) is increased by incrementing j, starting from a suitable initial value,

until the minimum of nav
t is reached.

For small spacings of δ(2) ∼ 0.030 sec, the number of templates that will be required

in the one step search constructed in step (i) above would be ∼ 1000. Thus, the typical

threshold, η(2), that would be required is ∼ 7.9 for a false alarm that leads to one

false event per year on the average. The observed strength required to attain a detection

probability of 0.95 for such thresholds is∼ 8.6. If the detection of signals having a strength

≃ 8.6 is desired with the above probability, then it is clear that an almost continuous set

of template chirp times would be required since otherwise the observed strength would

become < 8.6. Of course, this would require an infinite amount of computing power.
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Thus, there does not exist a solution to the template placement criteria for such a set

of values for Qd,min,Q0,max and Smin ≤ 8.6. We call such a limiting value of Smin as

the minimum visible strength for a one step search. In actual practice, we find that the

minimum visible strength is a little higher at 8.75. This is because η(2) also increases as

δ(2) is reduced.

The padding, Np, was kept fixed throughout the discussion above. This parameter

of a two step search is, however, decisive in an estimation of the computational power

required.

3.3. Computational power required for an on-line analysis. For the on-line detection

of a signal, it is required that the processing of a given segment of data be completed

within the time required to gather the next one [4]. For a given Np, each time series will

have N = Np + ξmax/∆ samples, where ∆ is the sampling interval. If an FFT is used,

this implies doing 6N log2 N floating point operations (flops) [15]. The correlations will

be followed by 3Np flops for the squaring and summation required for the calculation

of a rectified output. The maximization over a single rectified output would involve, at

most, Np flops. Thus, the total number of flops required per template chirp time, nflop,

is, nflop = 6N log2 N + 4Np. The total number of flops required for the whole template

bank on the average, Nflop, is therefore Nflop = nav
t nflop. We neglect the relatively small

number of flops involved in the calculation of Λ(2). Thus, for an on-line implementation of

a two step search, Nflop operations would have to be performed in Np∆ sec. The average

computational power required, Conline, is then,

Conline =
Nflop

Np∆
× 10−6 MFlops, (13)

where, “MFlops” stands for a million floating point operations per second.

An increase in Np leads to an increase in F0(η) for a given threshold. Consequently,

the number of false crossings in the first stage would also increase. Since nav
t starts to rise

when the number of crossings is >
∼ 1, the minimum of nav

t for a larger Np will be achieved

at a larger value of η(1). At the same time, the requirement that the probability of a

crossing be Qd,min will force δ(1) to a smaller value since the required observed strength

would now be higher. The overall effect is an increase in nav
t as well as Nflop. On the

other hand, an increase in Np will result in a longer time in which the required processing

has to be completed and hence a lower computational power. Thus, given Smin, Qd,min

and Q0,max, there would exist an optimum Np at which Conline is minimized.

We compute the value of Conline, as a function of N , for two different ranges of the

chirp time. For each range, the minimum values of nav
t is found for a few representative

values of Np, keeping Smin fixed. This process is then repeated for progressively lower

values of Smin till δ(2) becomes ∼ 0.030 sec. We quote our results for such values of Smin

(note that these values are not the minimum visible strengths). Table 1 contains the

results for ξmin = 2.0 sec and ξmax = 32.0 sec (corresponding to a 1.2, 1.2M⊙ binary).

In this table, Smin = 8.8. In Table 2, ξmax = 138.0 sec (0.5 , 0.5M⊙ binary) and

Smin = 9.0.

In each table the minimum value of nav
t is computed, using the algorithm presented

in the previous section, for several values of N . The value of Conline is then found at each
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Table 1

Minimum Conline as a function of N for : Smin = 8.8, ξmin =

2.0 sec, ξmax = 32.0 sec, Qd,min = 0.95. η
(2) = 7.92, δ(2) =

0.0325 sec.

N ×∆(sec) Conline(MFlops) η(1) δ(1)(sec) navt navc
64.0 41.3 (392.9) 5.58 0.358 97 1
128.0 32.6 (279.6) 5.75 0.325 107 1
256.0 31.6 (253.7) 5.92 0.293 115 1
512.0 33.6 (249.3) 6.11 0.260 124 1
1024.0 36.7 (253.2) 6.11 0.260 134 1

Table 2

Minimum Conline as a function of N for : Smin = 9.0, ξmin =

2.0 sec, ξmax = 138.0 sec, Qd,min = 0.95. η
(2) = 8.10, δ(2) =

0.0335 sec.

N ×∆(sec) Conline(MFlops) η(1) δ(1)(sec) navt navc
256.0 234.2 (2092.1) 5.84 0.335 455 3
512.0 172.9 (1400.8) 6.03 0.301 502 3
1024.0 167.1 (1245.5) 6.21 0.268 545 3
2048.0 175.2 (1211.5) 6.21 0.268 588 6

such minimum. We also list the corresponding values of η(1), δ(1), nav
t and nav

c (the last

two are rounded to the nearest whole number). It is easy to show that η(2), and hence

δ(2), is independent of Np. Their values are presented in the captions of the tables. The

numbers in parenthesis in the second column are the computing powers required for an

on-line one step search. The values of N are chosen as powers of two because an FFT

is most efficient at these values [15]. The value of Q0,max is always chosen to give an

average of one false event per year.

We call the ratio of the computing power required for an on-line one step search to

that required for an on-line two step search as the computational advantage of a two

step search. From Table 1, the computational advantage at the minimum of Conline is

8.0. In Table 2, the corresponding number is 7.5. The number of crossings, nc, will have

a variance given by n
(1)
t Q0(η

(1))
(

1−Q0(η
(1))

)

. For the entry from Table 1 considered

above, the r.m.s. deviation in ncM will be ≃ 12. Thus, the value of nav
t ≃ 127 and the

computational advantage falls to ≃ 7.2. This is not a large change. Thus, a two step

search offers a large reduction in the computing power required for an on-line detection

while providing a useful combination of detection and false alarm probabilities.

For ξmax = 32.0 sec and the values of Qd,min and Q0,max that were used above, it was

noted earlier that Smin ∼ 8.6 is the minimum strength which would be detectable. At

this value of Smin, the computational requirement would become infinitely large since a

template would be required for each value of the chirp time. We find that as this limiting

strength is approached, the computational advantage of a two step search increases to

a value of ≈ 13. However, the second stage spacing becomes quite small for such low
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values of Smin which implies that the statistical correlations among the rectified outputs

can no longer be ignored. The formula used for the detection probability would therefore

be very erroneous in such a case. A more careful analysis, taking statistical correlations

into account, is needed when the value of Smin becomes close to the minimum visible

strength.

The probability of adjacent crossings was neglected as compared to non-adjacent

crossings. This is true when nc ≪ n
(1)
t . The values obtained for nav

c clearly satisfy this

condition. Note that δ(1) is large enough for statistical correlations to be negligible and

hence Eq. (12) to be valid.

4. Conclusions. We have investigated the performance of a two step hierarchical

search for the detection of Newtonian waveforms from coalescing binaries. The noise power

spectral density used in the analysis is that of the initial LIGO. A rigorous formalism to

describe a two step search was presented which employs the detection probability of a

signal in an essential way to set up the bank of templates and thresholds.

Our main result is that, as compared to a one step search, a two step search can

reduce the computing power required for an on-line detection of Newtonian signals by

at least a factor of ≃ 8. For an on-line detection of signals having a strength of ∼ 8.8

(detection probability ≃ 0.95 and an average of one false event per year) the computing

power required, for a two step search, is 167 MFlops when the range of chirp times is

taken as ξmin = 2.0 sec and ξmax = 138.0 sec. We expect our results to hold good since

the second stage spacings are ∼ 0.030 sec. For weaker signals the spacings turn out to

be much smaller, in which case statistical correlations will play a very significant role.

The formula used for the detection probability would then be suspect. However, if we

apply this formula for smaller spacings, the reduction achieved in computational power

turns out to be much larger (a factor of ≈ 13). But these cases merit a more thorough

investigation which should consider statistical correlations more carefully.
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