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I. Introduction. It is generally accepted that a theoretical result is tested in an

experiment if the numerical data implied by such a result can be reproduced, usually

with a certain accuracy, in consequence of a number of suitably designed experimental

measurements. So long experimental physicists cannot perform any measurements that

disagree with the implications of the theoretical result in question, the theory on the

basis of which the result has been derived is regarded as being experimentally verified

with an increased degree of confidence.

The scheme of gradually adding, in confrontation with the experiment, new theo-

retical information to the knowledge is in accordance with the inductive method first

introduced to modern science by Sir Francis Bacon in his Advancement of Learning and

Novum Organum. This method was later developed to a more sophisticated stage by gen-

erations of scholars. The key figures who contributed mainly to this development were

David Hume, John Stuart Mill, and more recently Rudolf Carnap and numerous other

representatives of the neopositivist philosophy who have strongly influenced views on

contemporary physics, held at least in some circles. An adherent of this philosophy who

to a certain degree left his mark in the theory of relativity was Hans Reichenbach.

A drawback of the neopositivists’ approach to testing physical theories shows espe-

cially up when one attemps to experimentally test (at least in principle, on the level of

so-called thought experiments) the equations of motion derived in a field theory, like for

instance the general theory of relativity. Here are two elements that should be considered:

the field, and the motion of the bodies which generate that field. A certain pecularity

of the situation is due to the fact that there is no other way of measuring the field but

by observing the motion of these bodies. Thus let us imagine that an astronomer wants

to verify whether the consecutive events which form world lines of bodies he observed
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satisfy the general relativistic equations of motion. Following the traditional approach, if

the verification is successful, the astronomer would say that he found yet another test of

the theory of relativity. What would he however claim in case the verification has failed?

That the theory of relativity is false? No, not at all. He would rather indicate that the

bodies which were observed are not the only bodies in the system. That there are some

additional bodies, maybe dark, that have modified the gravitational field.

The problem is even more accute, and relatively better suitable to an analysis, if one

considers the motion of test bodies. In the early days of general relativity it was assumed

that the world lines of test bodies were geodesics of the space-time manifold in question.

And this assumption has been called the geodesic hypothesis. After the work of Infeld

and Schild [1], which was examined recently more thoroughly in [2], it is known that the

geodesity of these world lines is a conclusion which follows, in a sense of a certain limit,

from the Einstein field equations of classical general relativity. It is however a convenient

shortcut to label the corresponding statement, despite it is a theorem, still as ’the geodesic

hypothesis’.

Now, what does it mean that the world line of a small body, a test body, is a geodesic

line? The statement may be easily tested if on one side the world line of the body is

known from observation, and the metric field is given by the theory on the other. But

how can we test that a field predicted by the theory is the real one? Only by observing

the motion of bodies. However, in order to draw a conclusion concerning the field, a law

of motion must be assumed. How does this interplay of the two elements of the theory

of relativity, of the motion and the field, agree with the view that the growth of science

follows in consequence of inductive generalizations of experimental facts?

In this connection it should be indicated that since its very beginning the inductive

approach to the theory of knowledge has been criticized from several positions. Especially

appealing to contemporary scientists seems to be the critique expressed in The Logic of

Scientific Discovery by Karl R. Popper, first in 1935, and then in his subsequent work.

Popper proposed to replace the inductive program by another one, named the falsifiability

of scientific statements and theories. A legitimate scientific statement should be according

to Popper falsifiable. In a rather naive sense, it means that a scientific statement already

in its formulation should contain a unique prescription indicating how it could possibly

be invalidated by experimental tests. The aim, however, of the falsifiability program is

not to raise doubt about the certitude of the roots of scientific theories. On the contrary,

in accordance with this program, only those theories are certain which, firstly, satisfy

the falsifiabilty requirement, and, secondly, will produce a negative response to all the

experimental trials of falsifying them. Since the work of Popper, his program was widely

discussed, criticized, and developed to a more sophisticated stage, cf. [3].

Returning to the geodesic problem, the interplay between the motion and field, men-

tioned above, seems to indicate that the geodesic hypothesis is not falsifiable. In the

case, however, of a rich physical theory, like the theory of relativity together with its in-

terpretational hull, one should be rather careful with expressing that type of judgement.

The theory may offer enough possibilities to make constructions that permit one to view

relations between basic theoretical concepts differently than they might initially look like

from the point of view of their definitions alone.
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The objective of the present paper is to indicate that the seemingly vicious circle

involving the relation between the motion and the field in attempts to show that the

geodesic hypothesis is falsifiable, as it was described above, can be disentangled. The

solution of the problem is based on theorems about the desynchronization of clocks which

were obtained by the author in [4].

First, in Sections II - IV, the procedure, and its properties, of synchronization of clocks

carried by families of observers is presented, and then in Sec. V, the conclusions that has

been derived are used to solve the falsifiability problem of the geodesic hypothesis.

II. The locus of simultaneous events. The Einsteinian synchronization proce-

dure of clocks carried by inertial observers in Minkowski space-time can be extended to

the case of clocks of any mutually adjacent observers in an arbitrary space-time with

Lorentzian signature, as it was, for instance, done in [5]. There an observer O1 (Fig. 1)

Fig. 1

sends from a space-time point A a light signal to an infinitesimally close observer O2

and simultaneously receives at A a light signal sent to him by O2. The two signals are

represented by the null vectors k1 and −k2, respectively, that are tangent to null geodesics

connecting the timelike worldlines O1 and O2. The vectors k1 and k2 intersect the line

O2 at B1 and B2 correspondingly. The space-time point B on the line O2 chosen so that

the proper time distances dsB2B and dsBB1
, measured by the clock carried by O2, are

equal to one another is by definition called simultaneous with the point A. Note that

from the construction it follows that the vector l which connects the points A and B,

in terms of the space-time metric gαβ, is orthogonal at A to the four-velocity u of the

observer O1. This definition of simultaneity, unlike in the theory of special relativity, is

limited to neighbouring world lines only. It can, however, still be used as a definition

of the synchronization of origins of the time shown by proper clocks carried by two

neighbouring observers in a general space-time. In [5] it is indicated, using only arguments

of a qualitative type, that when we have a long sequence of observers then, starting from

the first one, any next two neighbouring observers, who are infinitesimally close to each

other, may, after having exchanged light signals, synchronize their clocks in the above

meaning. The procedure of synchronization can thus be extended to observers who are

no longer in an infinitesimal neighbourhood of one another. In the case, however, when

the sequence forms a closed loop, the last of the observers who synchronized their clocks
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in the sequence will again be in an infinitesimal neighbourhood of the one from whom the

synchronization procedure was started. These two observers will then in general find that

their clocks are not synchronized, but a synchronization gap being equal to the difference

of the proper times of their clocks will in general occur.

The situation just described can easily be put down in quantitative terms. The se-

quence of observers can be represented by a continuous one-parameter family of observers

whose history in space-time is described by a string, i.e. by a two-dimensional timelike

world sheet S given by the four equations

xα = ξα(s, ρ), α = 0,1,2,3 , (2.1)

where s is the proper time parameter along each timelike world line which is specified by

a value of the parameter ρ. The individual lines xα = ξα(s, ρ0), for any ρ = ρ0 = const

of an admissible interval, are therefore world lines of observers who move, in general with

an acceleration, in a given space-time. The four-velocity uα of such an observer is

uα =
∂ξα

∂s

(

s, ρ0
)

. (2.2)

Any section of the string of observers S is a curve whose equations in space-time can

be derived by substituting into Eqs. (2.1) in place of the variable s a continuous function

of the form s=f(ρ). Thus a section of S is given in terms of a function f by the equations

xα = ξα
(

f(ρ), ρ
)

=: ηα(ρ). (2.3)

The components of a vector t tangent to this curve are equal to

tα(ρ) =
dηα

dρ
=

[

∂ξα

∂s

df

dρ
+

∂ξα

∂ρ

]

s=f(ρ)

=

[

uα f ′ +
∂ξα

∂ρ

]

s=f(ρ)

. (2.4)

Such a vector t, tangent to a curve of the form (2.3), can be used to define a connecting

vector lα = tα dρ between the world lines ξα(s, ρ) and ξα(s, ρ + dρ) at a point A with

the coordinates ξα(f(ρ), ρ). If we require that the clocks with these two world lines be

synchronized, then in accordance with the construction discussed at the beginnig of this

Section the connecting vector l should be orthogonal to the four-velocity vector (2.2), i.e.

gαβ u
αlβ = 0. With the help of the relation uαuα = 1, and Eqs. (2.4), this orthogonality

condition can be brought to the form

df

dρ
= −gαβ

(

ξµ
(

f(ρ), ρ
)

)∂ξα

∂s

(

f(ρ), ρ
)∂ξβ

∂ρ

(

f(ρ), ρ
)

. (2.5)

For a given family (2.1) of world lines and a given metric tensor field gαβ of the space-

time, relation (2.5) is an ordinary differential equation of first order for the function

f = f(ρ). Every solution of this equation permits us, by means of Eq. (2.3), to find a

curve xα = ηα(ρ), which is a section of the family (2.1), whose tangent vector at any

point is proportional to the connecting vector l at that point. Since this vector connects

pairs of events on adjacent world lines which are locally synchronized with each other,

the whole curve to which it is tangent can be interpreted as a locus of events such that

any “consecutive” pair of adjacent events along it is synchronized by a local procedure

of exchanging light signals of the kind that is described at the beginning of this Section.

In mathematical terminology the curve xα = ηα(ρ) is just an orthogonal trajectory of
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the family (2.1). In the physical context considered here, it will be called a locus of

synchronized events. Equations (2.5) can now be considered as an exact, global definition

of the synchronization of events belonging to different world lines of a one-parameter

family of observers, whereas the local consideration presented in [5] may be treated only

as its heuristic justification.

A solution s = f(ρ) of Eq. (2.5), satisfying the initial condition

f(ρ0) = s0, (2.6)

determines a locus xα = ηα0 (ρ) = ξα
(

f(ρ), ρ
)

of events which in the meaning discussed

above are synchronized with the event ξα(s0, ρ0) lying on the world line xα = ξα(s, ρ0)

of the observer that is characterized by the value ρ0 of the parameter labeling the family

(2.1). The observer can then take this into account by simply resetting his clock so that

the value of his proper time of the event of his meeting the locus ηα0 will also be equal to

s0. The fact which since the early days of relativity has been considered as interesting

is of course not the mere resetting of clocks, but a consequence of it which occurs when

the observers who one after another synchronize their clocks are situated along a closed

loop in the three-space. If the synchronization procedure starts from the observer ρ0 at

the moment of his proper time s = s0 and returns to him around the loop, he will find

that the event which his nearest neighbour at the other end of the loop considers to be

synchronized with s0 will not be, after the synchronization which is “closing” the loop is

performed, synchronized with the event ξα(s0, ρ0), but in general with a quite different

event ξα(s1, ρ0) on his world line. This fact, amounting to a certain nonintegrability of

the synchronization procedure along closed loops, is often called the desynchronization

effect. The difference between the proper times ∆s = s1 − s0 of the two events will be

called here the synchronization gap, cf. Fig. 2.

Fig. 2

Let us discuss this effect in terms of the space-time geometry. A string that in space-

time represents a spatially closed loop must have the topology of a three-cylinder. Such a

string will be called closed. Analytically this means that the functions ξα must be periodic
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in their second argument:

ξα(s, ρ+ 2π) = ξα(s, ρ) (2.7)

(of course, after rescaling the parameter ρ, any period can be set to be equal to 2π). Thus,

from a geometric point of view, the world line characterized by the parameter ρ0 is exactly

the same as that parametrized by ρ0 + 2π. Even though the functions ξα are periodic,

the solution s = f(ρ) of Eq. (2.5) is not necessarily a periodic one. As a result, the locus

of synchronized events need not be a closed loop in space-time, and after returning to

the initial observer ρ0 it may suffer a jump. The value of this jump, measured in terms

of the proper time of the observer ρ0, is, in accordance with the definition given above,

equal to the synchronization gap, and therefore

∆s = f(ρ0 + 2π)− f(ρ0). (2.8)

Thus, to compute the synchronization gap of an observer ρ0 belonging to a family

of world lines described by Eqs. (2.1) which satisfy the periodicity condition (2.7), it is

sufficient to solve first the differential equation (2.5) with the initial condition (2.6) and

then to evaluate the difference (2.8).

Example. Consider a family of world lines given in the Minkowski space-time by the

equations

x0 = γ s,

x1 =
v

c
γ s sin ρ+R cos ρ,

x2 = −
v

c
γ s cos ρ+R sin ρ,

x3 = 0,

(2.9)

where

γ−2 = 1−
v2

c2
,

and the velocity of light c, the velocity v < c, and R are constants; moreover s, −∞ ≤

s ≤ +∞, is the proper time parameter, and ρ, 0 ≤ ρ ≤ 2π, is a parameter such that

each of the lines labeled by ρ = const is a straight timelike world line. The world sheet

generated by the lines (2.9) is a hyperboloid of revolution

v2

c2
(

x0
)2

−
(

x1
)2

−
(

x2
)2

= −R2, x3 = 0.

One can easily write the differential equation (2.5) corresponding to the family of

world lines (2.9) and to the Minkowski metric, and find its solution which satisfies the

initial condition (2.6):

f =
vRγ

c
(ρ− ρ0) + s0, (2.10)

The analytic equations of the locus of synchronized events could now be obtained by

substituting the r.h. side of Eq. (2.10) in place of the parameter s in Eqs. (2.9). With the

help of formula (2.8), one then obtains a nonvanishing synchronization gap equal to

∆s =
2vRγπ

c
. (2.11)
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This example thus shows that even in Minkowski space-time there are families of ob-

servers who, though moving without an acceleration, will still observe a nonvanishing

synchronization gap of inertial clocks carried by each of them.

Of course, in reality we do not have at our diposal continuously parametrized fam-

ilies of observers, but only a finite number of them. A locus of synchronized events is

then a finite set of points. They are vertices of a broken straight line which is only an

approximation of the locus resulting from the continuous formalism presented here. The

accuracy of this approximation will depend on the number of observers involved.

III. Perfect synchronization. Let us consider an open string S of observers, i.e. a

string for which the identifying condition (2.7) is not satisfied. Let us further select two

observers from the family (2.1), an observer O0 corresponding to the value ρ0 of the

parameter and O′ characterized just by the value ρ′, see Fig. 3. Let η0 be a locus of

Fig. 3

synchronized events starting from an event on the world line of O0 corresponding to the

value s0 of the proper time there. The observer O′ intersects η0 at a point corresponding

to the value s′0 of his proper time. In accordance with the terminology accepted in [5],

the clock carried by O′ will be synchronized with that of O0 if O′ resets the origin of his

clock so that s′0 = s0, which is always possible. In the discussion that was led in [5] there

was however a very important point left aside . Assume that after a finite time interval at

an event along O0’s world line corresponding to a value s1, s1 > s0, of O0’s proper time

another locus of synchronized events η1 is constructed. The observer O′ meets η1 at the

time s′1 shown by his proper clock. The question that was not even posed is: can we expect

that s′1 = s1 when at the moment of meeting η0 the proper clock of O′ was synchronized

so that his proper time s′0 was numerically equal to the proper time s0 of O0. I propose

to refer to the synchronization that allows a positive answer to the question above as to a

perfect synchronization. Thus if the world lines of the two observers are parallel timelike

straight lines in Minkowski space-time, the synchronization is certainly perfect. This is

the case of the classical Einstein synchronization. We cannot however expect to attain a

perfect synchronization in a more general situation of arbitrary families of observers of

the form (2.1) immersed in a general space-time manifold with a Lorentzian signature.

One of the conclusions arrived at in the following Section is a criterion stating for which



280 S. L. BAŻAŃSKI

families of observers immersed in a general space-time manifold a perfect synchronization

is possible.

IV. Integral laws. An analysis of relations between geometric properties on a two

dimensional string of observers S, defined by Eqs. (2.1), is facilitated by a number of

integral laws. In the first of these laws, which will be derived now, the string can be

either open or closed. On the sheet S we have a vector field uα whose value at any point

of S is equal to the four-velocity uα = ∂ξα/∂s of the observer at that space-time point.

In terms of this vector field, the equations of motion of the observers can be written in

the form

uα
;βu

β = Fα, (4.1)

where the semicolon stands for the covariant derivative with respect to the metric con-

nection of space-time, and Fα is the four-vector of force. Since uαuα = 1, one finds

that

uα;βu
α = 0, (4.2)

and the vectors u and F are orthogonal to each other. Subtracting Eqs. (4.1) and (4.2),

one obtains

u[α,β]u
β = 1

2 Fα, (4.3)

where the comma denotes ordinary, partial differentiation with respect to the coordinates,

and the square brackets stand for antisymmetrization.

Consider now a two-dimensional compact region Σ of the sheet S, and take into

account the following version of Stokes’ theorem
∫

Σ

u[β,α] dσ
αβ =

∮

∂Σ

uα dxα, (4.4)

where ∂Σ denotes the boundary of Σ.

Let t be a unit vector field on the sheet S orthogonal to the field u, tangent to S, and

pointing toward increasing values of the parameter ρ in Eqs. (2.1). It is assumed that the

inner orientation on S is defined by u ∧ t. The element of integration on the two-surface

can then be written as

dσαβ = 2 u[αtβ] ds dρ, (4.5)

and, due to Eqs. (4.3) and (4.5), the l.h. side of Eq. (4.4) becomes

∫

Σ

u[β,α] dσ
αβ =

∫ ∫

Fβt
β ds dρ. (4.6)

Because of all the orthogonality relations which are valid here, the last integral can also

be written in an intrinsic form
∫ ∫

Fβt
β ds dρ =

∫

Σ

F[βuα] dσ
αβ . (4.7)

Comparing Eqs. (4.6) and (4.7), one obtains a relationship which could be called the first

integral law for strings generated by world lines of particles (or observers) satisfying the
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equations of motion (4.3). It states that for any finite region Σ ⊂ S
∮

∂Σ

uα dxα =

∫

Σ

F[βuα] dσ
αβ . (4.8)

As was already said, Eq. (4.8) applies to a string S that can be either an open or a closed

one, cf. Fig. 4.

Fig. 4

Equation (4.8) can now be used for a derivation of the criterion mentioned at the

end of Sec. III. To this end, let us chose for the region Σ a “parallelogram” P formed

by the arcs of the two world lines (2.1) that are characterized by ρ = ρ0 and ρ = ρ1,

respectively, taken between the two loci η0(ρ) and η1(ρ) which were considered at the

beginning of Sec. III, and by the two arcs of the loci between the lines ρ = ρ0 and

ρ = ρ1, correspondingly. If the observer parametrized by ρ1 resets his clock to s = s0
when crossing the locus η0(ρ), then the vertices of the parallelogram will be parametrized

by the pairs (s0, ρ0), (s0, ρ1), (s, ρ1), and (s1, ρ0), where s is the value of the proper time

at which the observer ρ1 crosses the locus η1(ρ), see Fig. 5.

Fig. 5

The integral
∮

uα dxα along the boundary of the parallelogram will consist of four

parts of which two, along the loci, will vanish, while the other two will be equal to
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(s1 − s0) and (s− s0), respectively. Thus from Eq. (4.8) one obtains that

s1 − s =

∫

P

F[βuα] dσ
αβ . (4.9)

Equation (4.9) demonstrates that a perfect synchronization is not possible in general. It

is attainable, however, if the integral in Eq. (4.9) vanishes for every parallelogram P that

can be constructed on the sheet S. This condition together with Eq. (4.1) lead to the

the following criterion:

A perfect synchronization of proper clocks of a one-parameter family of observers is

possible if and only if either the four-vector of force acting on observers is normal to

the string S generated by them or all the world lines of the observers are geodesics with

respect to the space-time geometry.

Another application of the first integral law (4.8) deals with a closed string of observers

S which satisfy the periodicity condition (2.7). Let ρ0 be an observer, selected by the

value ρ = ρ0 of the parameter from the family (2.1), who determines two loci (or more

precisely speaking, two arcs of the loci each of which encircles the string exactly once) of

synchronized events on S: one, η0, satisfying the initial condition (2.6) and another, η1,

the condition f(ρ0) = s1, where s1 > s0. The synchronization gaps defined by the two

loci, respectively, are denoted by ∆s0 and ∆s1. Denote further by ηi+, i = 0,1, the union

of the ith locus ηi and of the arc of the world line ρ0 (of “length” ∆si) which joins the

two ends of the locus. Let the region Σℓ, to which the theorem (4.8) will be applied, be

the subset of the string S bounded by η0+ and η1+. Now, the integral on the r.h. side

in Eq. (4.8) calculated along ηi+ will be equal to ∆si, since the integral along the locus

vanishes due to the orthogonality of u and t. Therefore, Eq. (4.8) applied to the region

Σℓ becomes

∆s1 −∆s0 =

∫

Σℓ

F[βuα] dσ
αβ . (4.10)

The two sides of Eq. (4.10) can be divided by s1 − s0, and one can pass with the whole

equation to the limit s1 → s0. As a result, when Eq. (4.6) is taken into account, one

obtains a relation which may be called the second integral law for strings generated by

world lines of particles satisfying the equations of motion (4.3). It states that the proper

time derivative of the synchronization gap evaluated along the world line of an observer

measuring the gap is equal to the integral of the force vector along the locus η0,

d

ds

(

∆s
)

=

∫

η0

Fα dxα. (4.11)

In Eq. (4.11) the string of observers is fixed. For such a string, the integral on the

r.h. side may vanish due to various reasons, leading to a conservation law of ∆s. This

happens, for instance, when the force F is normal to the string or when it vanishes.

Thus, the conservation of the synchronization gap ∆s along the world line along which it

is measured is a necessary condition for all the world lines which generate the string (2.1)

used for determining the gap to be geodesics. Equation (4.11) leads, however, also to
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another, more universal property, independent of a special shape or orientation in space

of the family (2.1) of observers who measure a synchronization gap. This property can

be formulated in terms of the following theorem.

Theorem. Geodesics are the only world lines which will lead to a conserved synchro-

nization gap for all kinds of closed strings which might be generated by the observers in

order to determine the gap.

There are also two additional integral laws that apply to the synchronization of clocks

carried by a one-parameter continuous family of observers in space-times of special and

general relativity. They are reported in [4], and as not being relevant to the problem

discussed now, they will not be quoted in this paper.

V. Conclusions. We are now prepared to solve the problem posed in the Introduc-

tion. In accordance with the results derived in Sec. IV, to falsify the geodesic hypothesis

it is sufficient to measure the evolution of sychronization gaps formed by various closed,

continuous families of freely falling test satellites. No knowledge of the metric field is

required here. All that the observers in the satellites must be able to do is to send and

receive light signals and to measure the proper time along their world lines. Thus ev-

ery one of them must send a light signal to his nearest neighbour situated on a chosen

side, say on the left, receive the reflected signal and take the event labelled by the mean

time between the values of the emission and the reception of the reflected signal to be

simultaneous with the event of reflecting the signal at the neighbouring world line. After

the procedure is continued around the closed loop, the last observer in the row, being

also the first one from whom the procedure was started, let us call him O, finds that the

event he considers to be simultaneous with all the synchronized events on his left differs

from the event from which the synchronization procedure was started, and the proper

time that passed between these two events on his line is the synchronization gap. To find

it, there is no necessity of performing the synchronization procedure on all the satellites

simultaneously. It can be done afterwards by comparing the records in the satellites’ logs.

The observer O should keep track of the behaviour of the synchronization gap in time,

because its variability in time would, in accordance with the theorems just discussed, fal-

sify the geodesic hypothesis. It is important that the falsification program be performed

for various families and initial conditions. This would exclude the possibility of the ex-

istence of forces which, although describe deviations from geodesity, have no influence

on the variability of the synchronization gap due to their accidental orthogonality to the

two-surface spanned by the satellites, because of the vanishing of the l.h. side in Eq. (4.10)

in such a case even for nongeodesic world lines.

As it has been already said, in practice we do not have continuous families of satellites

at our disposal, but only a finite number of them. The continuous case is rather easy for

a general discussion, like that in Sec. IV, whereas the discrete case requires a separate

treatment for every set-up of the moving bodies, which additionally, in most cases, cannot

be performed in an exact way. The continuous approach can thus be regarded as an

approximation of a corresponding discrete case, and the quality of the approximation
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ought to be separately scrutinized in every particular case. We shall illustrate this point

by means of a rather naive, but simple example.

Example. Let us consider a family of observers whose world lines are circular spirals

in Minkowski space-time for which Eqs. (2.1) take the form

x0 = γ s,

x1 = r cos(
ω

c
γ s+ ρ),

x2 = r sin(
ω

c
γ s+ ρ),

x3 = 0,

(5.1)

where r and ω are constants, and

γ−2 = 1−
ω2r2

c2
.

The synchronization gap for these observers can be easily found as

∆s =
2πωr2γ

c
; (5.2)

provided the synchronization was performed clockwise, a minus sign would be produced

in the other case.

If instead of the continuous family (5.1) one considers a set of n bodies whose world

lines are described by equations similar to (5.10) in which the continuous parameter ρ

must be now replaced by the discrete values ρi = (2πi)/n for i = 0, 1, ..., n, then the

corresponding synchronization gap ∆sn cannot be derived from the general formalism

described above, but must be calculated directly from the world lines of the bodies. After

some analytic geometry in Minkowski space, one can find that ∆sn is given as the solution

of the transcendental equation

∆sn =
ωr2n

γc
sin

1

n
(
ωγ

c
∆sn + 2π). (5.3)

It is easy to see that in the limit of n → ∞, (5.2) is a solution of Eq. (5.1). For

finite n, however, Eq. (5.3) can be solved only numerically. Thus in order to compare

the difference between the two aproaches, one must assume some numerical values for

the parameters. Let us take r = 4.225 · 107m, the value of the radius of the circular

orbit of a geostationary satellite, and ω = 7.272 · 10−5s−1, its angular velocity. Then the

synchronization gap measured in seconds, τ = ∆s/c, takes the value .906 · 10−5s. The

corresponding values of the gaps τn = ∆sn/c are given in the following table:

n 3 4 5 6 9 12 15 20 50 100

τn · 105 .375 .577 .686 .749 .834 ..865 .880 .891 .904 .906

Thus first after the number of satellites is larger than twelve, one obtains here, within

the accuracy of one significant digit, the same result as for n → ∞. Thus only then the

continuous approach can be considered as a reasonable approximation of the discrete one.

The result may, of course, be quite different for other systems of bodies one would like

to discuss.
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