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Abstract. Dynamics of a point-particle system interacting gravitationally according to the
general theory of relativity can be analyzed within the canonical formalism of Arnowitt, Deser,
and Misner. To describe the property of being a point particle one can employ Dirac delta distri-
bution in the energy-momentum tensor of the system. We report some mathematical difficulties
which arise in deriving the 3rd post-Newtonian Hamilton’s function for such a system. We also
offer ways to overcome partially these difficulties.

1. Introduction. Dynamics of a point-particle system interacting gravitationally ac-

cording to the theory of general relativity can be studied within the canonical formalism

devised by Arnowitt, Deser, and Misner [1]. In the framework of this formalism an ap-

proximation scheme for solving equations of motion was developed (for more details see

lecture of Schäfer in this volume). The ultimate goal at each level of approximation is

to calculate the Hamilton’s function of the system. In this paper we report some math-

ematical difficulties which arise in the calculation of the 3rd post-Newtonian Hamilton’s

function. The source of the difficulties is the presence of Dirac delta distributions in the

energy-momentum tensor describing the system of point particles. Similar problems are

already present in the calculation of lower order Hamilton’s functions, but it seems that

at these orders the methods used to overcome them do not give any ambiguities in the

final results, even if the calculations are performed to some extent in a “naive” way.

Up to now the calculations of the Hamilton’s function for a point-particle system was

unambigously done up to 2.5 post-Newtonian order [8] and also for 3.5 order [3]. For these
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orders there exist several independent derivations of the equations of motion. All these

derivations were found to be compatible with each other. Jaranowski and Schäfer found

recently [4], that at the 3rd post-Newtonian order the methods presented in this paper are

sufficient to calculate the 3rd post-Newtonian Hamilton’s function almost unambigously.

There exist a few terms, for which consistency may not be achievable. More precisely,

via integration by parts, these ambiguous terms can be represented in two different but

equivalent ways. The regularization methods applied to both representations give different

results but the difference does not depend on which regularization method is used.

The plan of the paper is as follows. Use of the Dirac delta distributions causes a

necessity to devise a rule to give meaning to integrals of the form
∫
d3x f(x)δ(x), where

the function f is assumed to be singular at x = 0. Such a rule is defined in Section 2.

Another difficulty lies in the necessity of regularizing a class of divergent integrals with

nonintegrabilities of the rational type. Section 3 is devoted to the problem of regularizing

integrals of some specific type. Section 4 shows how to properly differentiate homogeneous

and locally nonintegrable functions under the integral sign. In the Section 5 we study the

problem of compatibility of different regularization techniques. And finally, Section 6

suggests a regularization procedure for more general integrals.

We employ the following notation. All functions studied here are real valued functions

defined on the 3-dimensional Euclidean space R3 (possibly with some isolated points

removed), R3 is endowed with a standard metric and a scalar product, denoted by a dot.

Letters a, b, . . . are particles labels, so xa ∈ R3 denotes the position of the ath particle.

We also define: ra := x − xa, ra := |ra|, na := ra/ra; and for a 6= b: rab := xa − xb,

rab := |rab|, nab := rab/rab; | · | stands here for the length of a vector.

2. Hadamard’s “partie finie” regularization. The procedure described here was

used by Schäfer (cf. Appendix B in [8]) in the calculations of the 2nd and 2.5 post-

Newtonian Hamilton’s functions for a point-particle system.

Let f be a real valued function defined in a neighbourhood of a point xo ∈ R3,

excluding this point. At xo the function f is assumed to be singular. We define the family

of auxiliary complex valued functions fn (labelled by unit vectors n) in the following

way:

fn : C 3 ε 7→ fn(ε) := f (xo + εn) ∈ C. (1)

We expand fn into Laurent series around ε = 0:

fn(ε) =

∞∑
m=−N

am(n) εm. (2)

Coefficients am of this expansion depend on the unit vector n. We define the regularized

value of the function f at xo as the coefficient at ε0 in the expansion (2) averaged over

all unit vectors n:

freg (xo) :=
1

4π

∮
dΩ a0(n). (3)

We use formula (3) to compute all integrals which contain Dirac delta distribution.
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It means that we define ∫
d3x f (x) δ (x− xa) := freg (xa) . (4)

Example 2.1. Let us consider the integral
∫
d3x δ (x− xa) /(r2

ar
2
b ), for a 6= b. Here the

function fn is equal to

fn(ε) =
1

ε2|rab + εn|2
. (5)

The expansion of fn into Laurent series, up to ε0, is given by

fn(ε) =
1

r2
ab

1

ε2
− 2 (n · rab)

r4
ab

1

ε
+

(
4 (n · rab)2

r6
ab

− 1

r4
ab

)
+O(ε). (6)

From (3) and (4) we have∫
d3x

1

r2
ar

2
b

δ (x− xa) =
1

4π

∮
dΩ

(
4 (n · rab)2

r6
ab

− 1

r4
ab

)
=

1

3r4
ab,

(7)

where we have taken into account that

1

4π

∮
dΩ (n · rab)2

=
1

3
r2
ab. 2 (8)

We can also use definition (3) to calculate some divergent integrals as limiting values

of integrals, which are convergent.

Example 2.2. Let us take the following integral, which is convergent for b 6= a and

c 6= a, b (cf. equation (A3.3) in Appendix 3 of [6]):∫
d3x

nian
j
b

r2
ar

2
brc

= 4π

[
−

(niab − nica)(njab − n
j
bc)

(rab + rbc + rca)2
+

δij − niabn
j
ab

rab(rab + rbc + rca)

]
. (9)

Let us now consider the divergent integral (here a 6= c)∫
d3x

nian
j
a

r4
arc

, (10)

which can be obtained from the left-hand side of (9) by identifying b with a. Let us define

the function f of the variable xc such that f(xc) is equal to the right-hand side of (9).

The function f is singular at xc = xa. Then we define:[∫
d3x

nian
j
a

r4
arc

]
reg

:= freg (xa) . (11)

Using definition (3) we obtain:[∫
d3x

nian
j
a

r4
arc

]
reg

=
π

r2
ac

(
niacn

j
ac − δij

)
. 2 (12)

3. Riesz’s formula for volume integrals. The following formula, firstly derived

by Riesz (see equations (7) and (10) in Chapter 2 of [7]), can serve as a tool to regularize a



58 P. JARANOWSKI

class of divergent integrals of rαa r
β
b (for a 6= b) using the analytic continuation arguments:[∫

d3x rαa r
β
b

]
reg

:= R(α, β) rα+β+3
ab , (13)

R(α, β) := π3/2
Γ
(
α+


)
Γ
(
β+


)
Γ
(
−α+β+



)
Γ
(
−α
)
Γ
(
−β
)
Γ
(
α+β+



) . (14)

Of course definition (13) can be directly used only for those numbers α and β for which

R(α, β) exists.

Example 3.1. One can use (13) to calculate the value of the following convergent

integral (here a 6= b) ∫
d3x

1

r2
a r

2
b

=
π3

rab
. 2

Example 3.2. The integral of 1/(r4
a rb), a 6= b, is divergent because the integrand has

the nonintegrable singularity at x = xa. From (13) one obtains the regularized value of

this integral [∫
d3x

1

r4
a rb

]
reg

= − 2π

r2
ab

. 2

Example 3.3. The integral of 1/(ra rb), a 6= b, is divergent because the integrand falls

off too slowly at infinity. Its regularized value, which follows from (13), is[∫
d3x

1

ra rb

]
reg

= −2πrab. 2

We need a regularization procedure which is more general than that defined by (13).

Let R(α, β) does not exist for some α and β, so the rule (13) is not directly applicable.

Then we define the auxiliary function

Iµ,νε (α, β) := R(α+ µε, β + νε) r
α+β+(µ+ν)ε+3
ab (15)

and study the limit

lim
ε→0

Iµ,νε (α, β). (16)

In general the limit (16) will depend on µ and ν. In the calculation of the 3rd post-

Newtonian Hamilton’s function for a point-particle system it is enough to consider only

limits, which depend linearly on the fraction µ/ν or ν/µ, or both [4], so the most general

form of such a limit is

lim
ε→0

Iµ,νε (α, β) = A(α, β) +B(α, β)
µ

ν
+ C(α, β)

ν

µ
, (17)

where A, B, C do not depend on µ and ν. As the regularized value of the integral of

rαa r
β
b we take the number A(α, β), i.e. this part of the limit (16) which does not depend

on the direction of approaching the point (α, β) ∈ R2 in the limiting process. Thus we

define [∫
d3x rαa r

β
b

]
reg

:= A(α, β). (18)
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Example 3.4. The integral of 1/(r5
a rb) can not be computed directly from definition

(13), because for α = −5 and β = −1 formula (14) is singular. To regularize this integral

we use definition (18). The result is

lim
ε→0

Iµ,νε (−5,−1) = −2

3

(
1 +

ν

µ

)
π

r3
ab

,

[∫
d3x

1

r5
a rb

]
reg

= − 2π

3r3
ab

. 2

It turns out that not for all α and β the integrals of rαa r
β
b can be regularized by means

of the rule (18), but we can always identify some linear combinations of the integrals,

which are regularizable with the aid of a generalization of formula (18). Let us consider

such a combination of integrands
N∑
i=1

cir
αi
a r

βi

b , (19)

where ci, αi, and βi are constants. For the combination we calculate the limit

lim
ε→0

N∑
i=1

ci I
µ,ν
ε (αi, βi). (20)

It is again enough to restrict to limits which are of the form (17)

lim
ε→0

N∑
i=1

ci I
µ,ν
ε (αi, βi) = A+B

µ

ν
+ C

ν

µ
. (21)

The regularized value of the integral of the combination (19) is defined as:[∫
d3x

N∑
i=1

ci r
αi
a rβi

b

]
reg

:= A. (22)

Example 3.5. Let us consider the three integrands (a 6= b): 1/(ra r
3
b ), 1/(r3

a rb), and

1/(r3
a r

3
b ). Integrals of any of them can not, by means of (13) or (18), be regularized

separately. But we can apply definition (22) to the following combination

1

rar3
b

+
1

r3
arb
− r2

ab

r3
ar

3
b

.

The result reads

lim
ε→0

[
Iµ,νε (−1,−3) + Iµ,νε (−3,−1)− r2

ab I
µ,ν
ε (−3,−3)

]
=

8π

rab
,

[∫
d3x

(
1

rar3
b

+
1

r3
arb
− r2

ab

r3
ar

3
b

)]
reg

=
8π

rab
.

Here the numbers B and C from (21) are equal to zero. 2

4. The rule to differentiate homogeneous functions. In our calculations we

have to differentiate some homogeneous and locally nonintegrable functions under the

integral sign. To do this properly we must use an enhanced rule of differentiation, which

comes from distribution theory [2]. The importance of this rule will be illustrated in the

next section.
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Let f be a real valued function defined in a neighbourhood of the origin in R3. f is

said to be a positively homogeneous function of degree λ, if for any number a > 0

f (ax) = aλ f (x) . (23)

Let k := −λ−2. If λ is an integer and if λ ≤ −2 (i.e. k is a nonnegative integer), then the

partial derivative of f with respect to the coordinate xi should be calculated by means

of the formula (cf. equation (5.15) in the paper of Kopeikin [5])

∂if = (∂if)ord +
(−1)k

k!

∂kδ(x)

∂xi1 . . . ∂xik

∮
Σ

dSi f x
i1 . . . xik , (24)

where (∂if)ord means the derivative computed using the standard rules of differentiations,

Σ is any smooth close surface surrounding the origin and dSi is the surface element on Σ.

Example 4.1. Let us employ formula (24) to calculate ∂i∂j
1
r . The result is

∂i∂j
1

r
=
(
3ninj − δij

) 1

r3
− 4π

3
δijδ(x). (25)

From the above it follows that ∆ 1
r = −4πδ(x). 2

5. The compatibility problem. It turns out that one can use several different

procedures to regularize one divergent integral. The natural question arises about the

compatibility of the results obtained by means of different methods. Here we show an

example which illustrates the problem.

Example 5.1. Let us consider the following divergent integral (a 6= b):

niabn
j
ab

∫
d3x

(
∂i∂j

1

ra

)
1

r4
b

. (26)

We shall regularize this integral in two different ways. We first replace in (26) differentia-

tions with respect to xi by those with respect to xia, which we denote by ∂
(a)
i (obviously

∂ira = −∂(a)
i ra). Then we shift the differentiations before the integral sign and apply

directly definition (13). The result is[
niabn

j
ab

∫
d3x

(
∂i∂j

1

ra

)
1

r4
b

]
reg

= niabn
j
ab∂

(a)
i ∂

(a)
j

[∫
d3x

1

rar4
b

]
reg

=

= niabn
j
ab∂

(a)
i ∂

(a)
j

(
− 2π

r2
ab

)
= −12π

r4
ab

. (27)

We obtained the result (27) performing integration first and then differentiation. Now we

shall regularize the integral (26) doing differentiation first. To do it we have to use the

rule (24), which gives (cf. (25))

∂i∂j
1

ra
=
(
3nian

j
a − δij

) 1

r3
a

− 4π

3
δijδ(x− xa). (28)

We substitute (28) into (26):[
niabn

j
ab

∫
d3x

(
∂i∂j

1

ra

)
1

r4
b

]
reg

=

[∫
d3x

3 (na · nab)2 − 1

r3
ar

4
b

]
reg

− 4π

3

∫
d3x

δ(x− xa)

r4
b

.

(29)
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The second integral on the right-hand side of (29) can be calculated by means of definition

(4). The result is

−4π

3

∫
d3x

δ(x− xa)

r4
b

= − 4π

3r4
ab

. (30)

To calculate the first integral on the right-hand side of (29) we use first the relationship

na · nab =
r2
b − r2

a − r2
ab

2rarab
, (31)

which enables us to put the integrand in the form (19). Then we apply definition (22).

We obtain [∫
d3x

3 (na · nab)2 − 1

r3
ar

4
b

]
reg

= − 32π

3r4
ab

. (32)

Collecting (30) and (32) together we finally obtain[
niabn

j
ab

∫
d3x

(
∂i∂j

1

ra

)
1

r4
b

]
reg

= −12π

r4
ab

, (33)

which coincides with the result (27) obtained before. The two ways of regularizing the

integral (26), described above, coincide if and only if we apply formula (24) when we

perform differentiation before integration. 2

6. Integrals of more general type. Let us now restrict ourselves, for simplicity,

to the two body system, i.e. a, b, . . . ∈ {1, 2}. A typical integrand in the studying of the

3rd post-Newtonian Hamilton’s function for the two-body system has the form

f =

N∑
i=1

cJi1...Jiji r
αi
1 rβi

2 (∂Ki1
. . . ∂Kiki

r1)(∂Li1
. . . ∂Lili

r1) . . . (∂Mi1
. . . ∂Mimi

r2) . . . ,(34)

where cJi1...Jiji , αi, and βi are constants. We want to regularize the integral of f which is

typically divergent. To do this we could use definition (24) of differentiation of homoge-

neous functions for each derivative in (34) separately, but then we would obtain products

of identical Dirac delta distributions. To avoid this we shall proceed differently.

We first perform all differentiations in (34) employing the standard rules but keeping

scalar products of identical unit vectors (i.e. we do not put na · na = 1). Importance

of this point will be illustrated in the next example. After this operation the integrand

takes the form

f =

N ′∑
i=1

cJ′
i1
...J′

iji
(n
K′

i1
1 . . . n

K′
iki

1 r
α′

i
1 )(n

L′
i1

2 . . . n
L′

ili
2 r

β′
i

2 ). (35)

Next we use a set of formulae to replace products of unit vectors by combinations of radii

and their derivatives. Here we show only three simplest relations of this type:

rαan
i
a =

∂ir
α+1
a

α+ 1
,

rαan
i
an

j
a = −δijr

α
a

α
+
∂i∂jr

α+2
a

α(α+ 2)
,
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rαan
i
an

j
an

k
a = − (δij∂k + δik∂j + δjk∂i) r

α+1
a

(α− 1)(α+ 1)
+

∂i∂j∂kr
α+3
a

(α− 1)(α+ 1)(α+ 3)
.

Now the integrand looks as follows

f =

N ′′∑
i=1

cJ′′
i1
...J

′′
iji

(
∂K′′

i1
. . . ∂K′′

iki

r
α′′

i
1

)(
∂L′′

i1
. . . ∂L′′

ili

r
β′′
i

2

)
. (36)

Using the representation (36) we can calculate the integral of f in two different ways,

analogously to what was done in Example 5.1. Firstly, to regularize the integral over f we

shift all differentiations before integral signs and then we use formula (13) for individual

integrands. More precisely, we calculate the limit

lim
ε→0

[
N ′′∑
i=1

(−1)ki+licJ′′
i1
...J

′′
iji

R(α
′′

i + µε, β
′′

i + νε)

× ∂(1)

K
′′
i1

. . . ∂
(1)

K
′′
iki

∂
(2)

L
′′
i1

. . . ∂
(2)

L
′′
ili

r
α

′′
i +β

′′
i +(µ+ν)ε+3

12

]
. (37)

It turns out again that it is enough to consider only limits which have the form (17) and

again as a regularized value of the integral of f we take, by definition, the number A

of (17). Secondly, we can perform all differentiations in (36) before integration. To do

this we must use the enhanced rule of differentiation (24). After this the integrand will

be a sum of two parts: the first part will contain no Dirac delta distributions, whereas

the second one will contain some. The first part will be of type showed in (19) and to

calculate the integral over it we shall use definition (22). The second part is calculated

by means of formula (4). We have observed that at the 3rd post-Newtonian order both

ways give the same result.

In the next example we compare the two just described equivalent methods of regu-

larizing with the Hadamard’s “partie finie” regularization from Section 2.

Example 6.1. The Newtonian gravitational potential which describes the system of

two point particles of masses m1 and m2 is, up to a constant, equal to

φ =
m1

r1
+
m2

r2
. (38)

At the n− 1 post-Newtonian order we have to compute the following integral∫
d3xφn (∆φ) . (39)

In deriving Hamilton’s function we assume that surface terms obtained during integration

by parts can always be neglected. So (39) can, with the aid of integration by parts, be

put into the form

−n
∫
d3xφn−1 (∇φ)

2
. (40)

Because ∆φ = −4π(δ(x − x1) + δ(x − x2)), we define the first way of computing the

integral (39)

Reg(I)(n) := −4π

∫
d3xφn (δ(x− x1) + δ(x− x2)) , (41)
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where the right-hand side of (41) is computed by means of equation (4). To compute

the integral (40) we can use one of the two regularization procedures described below

equation (36), so we define

Reg(II)(n) := −n
[∫

d3xφn−1 (∇φ)
2

]
reg

, (42)

where the subscript “reg” means here use one of the two methods. Direct calculation

shows that for n ≤ 8 we have:

Reg(I)(n) = Reg(II)(n) for n ∈ {1, 2, 3, 4, 5};

Reg(I)(n) 6= Reg(II)(n) for n ∈ {6, 7, 8}.
It follows that the two methods of regularization give the same results for n ≤ 5, i.e. up

to the 4th post-Newtonian order. If in (35) we would replace scalar products na · na by

1, then disagreement between the two ways of regularization would be already present

for n = 4, i.e. at the 3rd post-Newtonian order. 2
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