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Abstract. Gravitational radiation from a small mass particle orbiting a massive black hole
can be analytically studied to a very high order in the post-Newtonian expansion. Thus it gives
us useful information on the evolution of a coalescing compact binary star. In this talk, I report
on recent progress made in the black-hole perturbation approach.

1. Introduction. Black holes are most relativistic astronomical objects and we have

exact solutions of the Einstein equations that describe black holes. Hence black holes

are often used to examine various relativistic astrophysical phenomena as well as to test

various theories. As for gravitational wave physics, studies of the perturbations of black-

hole spacetimes will give us insight into the nature of gravitational waves in the case

of strong gravity such as the effect of curvature scattering in fully non-linear regime.

Furthermore, the existence of the so-called quasi-normal modes of black holes [1] enables

us to study the intrinsic physical properties of black holes in detail and perhaps has

profound implications to the radiation reaction problem. Thus it is hoped that the black-

hole perturbation approach can (at least partially) solve some of the unsolved problems

in gravitational wave physics.

Here, however, we do not consider such issues but confine our attention to a topic

of gravitational radiation from coalescing compact binaries. Recently this has became a

subject of great interest because one of the most promising targets of the planned future

gravitational wave detectors such as LIGO [2, 3]/VIRGO [4] is the gravitational radiation

from compact binaries just before their coalescence, the so-called “last three minutes” [5].

Gravitational radiation from coalescing compact binaries at its inspiral stage have a

characteristic waveform, called a “chirp” signal, with both the frequency and amplitude

increasing rapidly until the final coalescing stage begins [3]. The last few milliseconds

of coalescence are the stage which is not yet well-understood and is an issue of numeri-
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cal relativity. Turning back to the inspiral state, since how the chirp signal develops in

time depends on the rate of gravitational radiation, which further depends on orbital

parameters of a binary, it brings us rich information about mass, spin and other physi-

cal quantities of the binary stars. In addition, together with the detected amplitude of

gravitational waves, we will have an accurate measurement of the distance to the source,

by which we may be able to determine cosmological parameters of the universe. Further-

more, provided we have an accurate theoretical prediction of the evolutionary behavior

of inspiraling binaries based on general relativity, the observed data can be used to test

the validity of general relativity or constrain alternative theories of gravity. Thus, much

effort has been recently made to construct accurate theoretical templates [6].

To construct theoretical templates, the post-Newtonian approximations are usually

employed to solve the Einstein equations. Up to now, the gravitational wave luminosity

from a binary in quasi-circular orbits has been calculated up through 2.5PN order, i.e,

O(v5) beyond Newtonian quadrupole formula where v is the orbital velocity of the binary

[7, 8]. However, based on numerical calculations of the gravitational radiation from a

particle in circular orbit around a non-rotating black hole, Cutler et al. [9] showed that

evaluation of the gravitational wave luminosity to a post-Newtonian order much higher

than presently achieved level might be required. Then in order to find out the necessary

post-Newtonian order, the same problem was investigated by Tagoshi and Nakamura [10]

with much higher accuracy, to 4PN order and concluded that the accuracy to at least

3PN order is required for the construction of effective theoretical templates.

These previous studies using the perturbation equation of a black hole show its power-

fulness to the problem. Although restricted by the condition that µ�M , where µ and M

are the reduced mass and total mass, respectively, of the system, because the black hole

perturbation approach takes full account of relativistic effects by nature, we can spell out

the relevant post-Newtonian effects from perturbation calculations in a rather straight-

forward manner. Hence it plays a complementary role to the standard post-Newtonian

approach and provides a useful guideline for higher post-Newtonian calculations.

To strengthen the black hole perturbation approach further, it is then much desirable

to develop an analytical method in which coefficients of the post-Newtonian expansion

of the luminosity, for example, are evaluated exactly so that the results can be compared

with those by the standard post-Newtonian calculations without any ambiguity. Poisson

[11] first developed such a method and calculated the luminosity to 2PN order from a

particle in circular orbits around a non-rotating black hole. Then extending Poisson’s

method, a more systematic method was developed by Sasaki [12] and analytical waveforms

and luminosity up through 4PN order were analytically derived by Tagoshi and Sasaki

[13]. The results were in excellent agreement with those of Tagoshi and Nakamura [10].

Recently, the method has been extended to the case of a rotating black hole by Shibata

et al. [14]. They have obtained the energy and angular momentum luminosities to 2.5PN

order from a particle in circular orbits with small inclination angle, which hence clarified

the next leading order effects of spin-orbit coupling. For slightly eccentric orbits around

a Kerr black hole, Tagoshi has done the calculation to 2.5PN order [15]. For circular

orbits around a Kerr black hole, the calculation to 4PN order has been done by Tagoshi
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et al. [16]. Furthermore, extention of the method to the case of a spinning particle has

been done by Tanaka et al. [17] and the luminosity to 2.5PN order has been obtained for

circular orbits, which includes the effect of spin-spin coupling.

In the next section, I review the black-hole perturbation approach based on the Teukol-

sky [18] and Regge-Wheeler equations [19]. (Due to limitation of space, however, I focus

on the case of a non-rotating black hole.) Then I summarize the recent results and discuss

future issues. For notational simplicity, we set c = G = 1 in the following.

1.1. Regge-Wheeler-Teukolsky formalism. Let us consider the case when a particle of

mass µ is in a circular orbit around a Schwarzschild black hole of mass M � µ. The

gravitational waves radiated out to infinity from the system is then described by the

fourth Newman-Penrose quantity ψ4 [18], which is related to the two independent modes

of gravitational waves h+ and h× at infinity as

ψ4 =
1

2
(ḧ+ − iḧ×). (1)

On the Schwarzschild background, it can be decomposed as

ψ4 =
1

r4

∑
`mω

R`mω(r)−2Y`m(θ, ϕ)e−iωt, (2)

where −2Y`m are the s = −2 spin-weighted spherical harmonics. The radial function

R`mω satisfies the inhomogeneous Teukolsky equation [18],[
∆2 d

dr

(
1

∆

d

dr

)
− U(r)

]
R`mω(r) = T`mω(r), (3)

where

U(r) =
r2

∆
[ω2r2 − 4iω(r − 3M)]− (`− 1)(`+ 2), ∆ = r(r − 2M), (4)

and T`mω is the source term determined by the energy momentum tensor of the particle.

To solve Eq. (3), we employ the Green function method. Then R`mω at r →∞ takes

the form,

R`mω(r →∞) =
r3eiωr

∗

2iωBin`ω

∫ ∞
2M

drRin`ω(r)T`mω(r)∆−2

≡ r3eiωr
∗
Z̃`mω, (5)

where Rin`ω(r) is a homogeneous solution which satisfies the boundary condition,

Rin`ω(r) =

{
D`ω∆2e−iωr

∗
for r∗ → −∞,

r3Bout`ω e
iωr∗ + r−1Bin`ωe

−iωr∗ for r∗ → +∞,
(6)

where r∗ = r + 2M ln(r/2M − 1). In the case of a circular orbit with radius r = r0,

T`mω(r) takes the form,

T`mω ∼ [a0δ(r − r0) + a1δ
′(r − r0) + a2δ

′′(r − r0)] δ(ω −mΩ), (7)

where Ω is the orbital angular frequency. Hence what we need to know are the behavior

of R`mω around r = r0 and its incident amplitude Bin`ω. Also because of Eq. (7), the

amplitude Z̃`mω takes the form,

Z̃`mω = Z`mδ(ω −mΩ). (8)
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In terms of Z`m, the gravitational wave form at infinity is given by

h+ − ih× = −2

r

∑
`m

1

ω2
Z`m −2Y`m(θ, ϕ)e−iω(t−r

∗), (9)

and the luminosity is given by

dE

dt
=

∞∑
`=2

∑̀
m=1

| Z`m |2 /2πω2, (10)

where ω = mΩ.

Now since the radius of the orbit and the angular velocity are related as

M

r0
= (r0Ω)2 ≡ v2, (11)

where v is the orbital velocity, we have the small non-dimensional parameters of the

problem, r0ω = O(v) and Mω = O(v3). Originally the parameter r0ω represents the

slowness of the particle motion, hence plays a role of the post-Newtonian expansion

parameter. The parameter Mω represents the strength of the gravity, hence plays a role

of the post-Minkowski parameter. In the present case, since the particle is in bound orbits,

these parameters are related to each other as shown above through the orbital velocity

of the particle.

Thus our task reduces to calculating the ingoing-wave Teukolsky function Rin`ω at

rω = O(v) � 1 as well as to extracting out its incident amplitude Bin`mω to a required

order of Mω = O(v3).

For technical reasons, however, it is much easier to deal with the Regge-Wheeler

equation, rather than the Teukolsky equation, by the transformation [20, 21],

Rin`ω → Rin`ω = ∆

(
d

dr∗
+ iω

)
r2

∆

(
d

dr∗
+ iω

)
rX`ω. (12)

Then X`ω satisfies the homogeneous Regge-Wheeler equation [19],[
d2

dr∗2
+ ω2 − V`(r)

]
X`ω(r) = 0, (13)

where

V`(r) =

(
1− 2M

r

)(
`(`+ 1)

r2
− 6M

r3

)
. (14)

Corresponding to Eq. (6), we have the asymptotic forms of Xin
`ω as

Xin
`ω(r) =

{
C`ωe

−iωr∗ , r∗ → −∞
Aout`ω e

iωr∗ +Ain`ωe
−iωr∗ , r∗ → +∞.

(15)

where Ain`ω, Aout`ω and C`ω are respectively related to Bin`ω, Bout`ω and D`ω defined in Eq. (6)

as

Bin`ω = − c0
4ω2

Ain`ω,

Bout`ω = −4ω2Aout`ω ,

D`ω =
c0

16(1− 2iMω)(1− 4iMω)M3
C`ω, (16)

where c0 = (`− 1)`(`+ 1)(`+ 2)− 12iMω.
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To make the structure of the equation more transparent, we rescale the independent

variable r to z = rω and rewrite the homogeneous Regge-Wheeler equation as[
d2

dz∗2
+ 1−

(
1− ε

z

)(`(`+ 1)

z2
− 3ε

z3

)]
Xin
` = 0, (17)

where z∗ = z + ε ln(z − ε) = r∗ω + ε ln ε with ε ≡ 2Mω, and we have suppressed the

index ω since it is trivially absorbed in ε and z. As noted previously, the post-Newtonian

expansion corresponds to expanding Xin
` with respect to ε and evaluating Xin

` at z � 1

as well as Ain` to required orders in ε. This procedure to the first order of ε was carried

out by Poisson [11]. However, as can be seen from the structure of Eq. (17), the equation

would become very complicated if we go beyond the first order in this procedure. Further,

it becomes rather unclear how to impose the correct boundary condition that Xin
` ∝ e−iz

∗

at horizon (z → ε) if we expand the equation naively in powers of ε, since z∗ involves ε

in itself.

These difficulties were then resolved by Sasaki [12] by the following choice of the

dependent variable. Setting

Xin
` = e−iε ln(z−ε)zξ`(z), (18)

we find that Eq. (17) becomes[
d

dz2
+

2

z

d

dz
+

(
1− `(`+ 1)

z2

)]
ξ` = εe−iz

d

dz

[
1

z3
d

dz

(
eizz2ξ`(z)

)]
. (19)

Since ε appears only as an overall factor on the r.h.s., this form of the equation is most

suited for an iterative treatment. Thus expanding ξ` with respect to ε as

ξ`(z) =

∞∑
n=0

εnξ
(n)
` (z), (20)

we obtain the recursive equations,[
d

dz2
+

2

z

d

dz
+

(
1− `(`+ 1)

z2

)]
ξ
(n)
` (z) = εe−iz

d

dz

[
1

z3
d

dz

(
eizz2ξ

(n−1)
` (z)

)]
, (21)

with the lowest order solution given by

ξ
(0)
` = α(0)j` + β(0)n`, (22)

where j` and n` are the usual spherical Bessel functions. The boundary condition is that

ξ
(0)
` be regular at z = 0 [11, 12]. Hence β(0) = 0 and for convenience we set α

(0)
` = 1.

Putting the Regge-Wheeler equation in the above form helped us a lot to calculate

the first and second order solutions by iteration [12]. Using a similar transformation of

the Teukolsky equation [22], one obtains similar iterative equations for a Kerr black hole

and the first and second order solutions are expressed also in closed analytical form [14],

which are sufficient to calculate the gravitational wave luminosity to 4PN order.

We were recently informed that Mano, Suzuki and Takasugi [23] have succeeded in de-

veloping a systematic method to obtain the solution by using the Coulomb wave functions

and the hypergeometric functions, in which calculations to a very high order, including

the effect of black hole absorption are considerably simpler than by our method.
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2. Gravitational wave luminosity up to 4PN order. Here we only show the

final result of the luminosity to 4PN order for circular orbits around a Kerr black hole

by summarizing the results obtained in [13, 14, 16, 17]. The orbits are assumed to be on

the equatorial plane with the angular frequency Ω. The black hole has mass M and the

angular momentum JBH . For the case of spinning particle, the z-component of the spin

angular momentum is jz, and the spin-dependent part is calculated only to 2.5PN order

in the first order in the magnitude of spin [17]. Further in this case, we note the orbit

precesses slightly with inclination proportional to the radial component of the spin, but

it does not affect the luminosity. The result is〈
dE

dt

〉
=

(
dE

dt

)
N

{
1− 1247

336
v′2 +

(
4π − 11

4
q − 5

4
ŝ

)
v′3

+

(
−44711

9072
+

33

16
q2 +

31

8
qŝ

)
v′4 +

(
−8191π

672
− 59

16
q − 13

16
ŝ

)
v′5

+

(
6643739519

69854400
− 1712 γ

105
+

16π2

3
− 3424 ln 2

105

−1712

105
ln v′ − 65π

6
q +

611

504
q2
)
v′6

+

(
−16285π

504
+

162035

3888
q +

65π

8
q2 − 71

24
q3
)
v′7

+

(
−323105549467

3178375200
+

232597 γ

4410
− 1369π2

126
+

39931 ln 2

294
− 47385 ln 3

1568

+
232597

4410
ln v′ − 359π

14
q +

22667

4536
q2 +

17

16
q4
)
v′8

}
, (23)

where (
dE

dt

)
N

:=
32

5

( µ
M

)2
v′10, (24)

and

v′ := (MΩ)1/3 , q :=
JBH
M2

, ŝ :=
jz
µM

. (25)

3. Future issues. Here I discuss several issues of the Regge-Wheeler-Teukolsky

approach to be solved in order to make this approach more realistic and physically more

fruitful.

We have succeeded in obtaining the luminosity to 4PN order in the post-Newtonian

expansion by the Regge-Wheeler-Teukolsky approach. In the first place, it is of interest

to proceed with the calculation to a much higher order, including the effect of black hole

absorption. In one respect, it will clarify the convergence property of the post-Newtonian

approximation much better than what we know now and will give us more insight into the

problem of matching the post-Newtonian spacetime with the fully relativistic spacetime,

which is necessarily solved in order to give reasonable initial data of a coalescing com-

pact binary to be used in numerical relativity. In another respect, it will give us detailed

information of how the black hole’s spacetime geometry affects the luminosity and wave-
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forms of the gravitational radiation emitted by a small mass particle, hence will helps us

to understand necessary ingredients to reconstruct the geometry out of the information

contained in the waves [24].

However our approach is limited by the condition that one of the binary stars has

a much smaller mass than the other, i.e., µ � M . In order to make this approach

more fruitful, it is then necessary to extend it so that it can take account of finite µ/M

effects. Concerning this point, it is important to include the effect of radiation reaction in

this approach. At the moment, our approach relies on the adiabatic approximation of the

reaction. But even if we accept this approximation, there remains one important problem;

that is the backreaction to the Carter constant. In the case of a non-rotating black hole,

we may assume the orbit to be in the equatorial plane without loss of generality. Then

the energy and the z-component of the angular momentum completely determines the

orbit. Hence knowing the energy and angular momentum fluxes averaged over several

orbital periods is enough to solve the adiabatic evolution of the orbit. But this will not

be the case once we consider a rotating black hole, since the inclination of the orbit away

from the equatorial plane becomes meaningful, which is represented by a non-zero value

of the Carter constant. The problem is that the Carter constant is not associated with a

Killing vector of the geometry, hence no field quantity representing the Carter constant

has been known. Thus one cannot calculate the backreaction to the Carter constant

by just evaluating the gravitational waves at infinity. In this sense, a simple adiabatic

approximation scheme seems to break down anyway as soon as we take the rotation into

account. Furthermore, if we take into account spin of the small mass particle, the situation

gets worse; the equation of motion is not integrable in this case from the beginning.

In order to clarify the validity limit of the adiabatic approximation, as well as to find

out the backreaction to the Carter constant, we need to formulate a method in which

the non-adiabatic backreaction can be taken into account. In other words, we need to

derive a backreaction force term in the equation of motion for the particle. This will be

analogous to the post-Newtonian formulation which includes the back-reaction potential

to a required order of accuracy.

Whether such a backreaction force term can be obtained for general orbits is very

non-trivial. However, at least for a Kerr black hole, we know from the classic work by

Chrzanowski [25] that the tensor Green function can be obtained in a separable form.

Hence we may calculate the perturbed metric at any spacetime point. Then once we

obtain a reliable method of regularizing the self-energy, we will be able to derive the

backreaction force term. In this connection, for quasi-periodic orbits, it may be possible

to justify the earlier work of Gal’tsov [26], in which the backreaction force term is assumed

to be derivable from the radiative Green function, i.e., the retarded minus advanced Green

functions. Recently, Ori has proposed another way of deriving the reaction force [27].

He has shown that the reaction force calculated solely in terms of the retarded Green

function but averaged over many periods gives the same result as that of Gal’tsov as long

as the energy and angular momentum are concerned. Finally, DeWitt-Brehme’s covariant

approach [28] suggests that one should extract out the tail part of the retarded Green

function (i.e, the part that does not vanish inside the light cone) and use it to contruct
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the radiation reaction force term. However, it is not clear how this extraction can be

actually done.

Another important but difficult problem is to take into account the effect non-linear

in µ/M in the equation of motion. In the post-Newtonian approach, we know this effect

appears already in 2PN order in the luminosity formula [6], well before the radiation

reaction comes into play. To my knowledge, however, no serious attempt has been made

in this direction so far.
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