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Introduction. Following Witten’s interpretation ([Wi]) of the Jones polynomial

([Jo]) in terms of Topological Quantum Field Theory , Reshetikhin and Turaev ([RT])

and then many others have constructed invariants of 3-manifolds now called Quantum

Invariants (see [Tu2] for a detailed exposition, and [Vo] for a survey). The construction

of Reshetikhin and Turaev involves representation theory of quantum groups. This point

of view gives a deep insight into the algebraic questions related to the subject, however

it is not immediately accessible for the beginner. Among these quantum invariants those

called the SU(2)-invariants can be obtained easily from the skein theory associated with

the Kauffman bracket ([Ka]). This was first observed by Lickorish ([Li1],[Li2],[Li3]) and

then systematically studied in [BHMV1]. Section 1 deals with this skein method. Starting

with a formal skein theory, we discuss the construction of 3-manifolds invariants, and give

the simplest examples. We think that this could be helpful for the beginner and hope

that the method will be applied to new examples.

Once one has constructed a lot of 3-manifold invariants, the question is to understand

their meaning, and this is far from clear at the moment. Let us discuss the example of

τSU(2) at q=e
iπ
8 ([KM]) which corresponds to θ8 in [BHMV1] and [Bl1]. This invariant

decomposes as a sum, over all spin structures on the manifold, of spin invariants. Moreover

the spin invariant is (a version of) the well known Rochlin invariant. This was first

observed by Kirby and Melvin and generalized independently in [KM], [Tu1] and [Bl1].

This example shows that considering refined invariants can help in understanding their

geometrical meaning. Section 2 is about cohomological refinements of quantum invariants.

According to H. Murakami ([Mu]) τ
SU(n)
r admits such refinements, for conveniently chosen
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12 C. BLANCHET

r. He states also a decomposition formula in which cohomology classes are replaced by

some spin type structures. In section 3, a topological definition of these structures is

given. In spite of its simplicity, this description seems to be new.

In this paper we only consider invariants of 3-manifolds. We will say in section 4 a few

words about extending this to a whole Topological Quantum Field Theory. Following the

methods developed in [BHMV3] together with N. Habegger, G. Masbaum and P. Vogel,

we have, in a joint work with G. Masbaum ([BM]), constructed and studied this extension,

for the spin refined invariants obtained from the Kauffman bracket. Understanding other

refined theories is our challenge!

The content of this paper was exposed at the Mini-semester in Knot Theory in War-

saw (Summer 1995). We thank the organizers and the Stefan Banach Center for their

invitation and hospitality.

1. Three-manifolds invariants derived from a skein theory. Various skein

modules of 3-manifolds have been defined and studied (see [P], [HP]). In each case the

modules have presentations in which generators are links, and relations are local (skein)

relations between them. The definition below gives a general nonsense. We emphasize the

functorial property. Here we consider embeddings of 3-manifolds. In a concrete theory

generated by links, an embedding M →M ′ carries links in M to links in M ′.

Let S be a functor from the category of compact oriented 3-manifolds with isotopy

classes of oriented embeddings to the category of k-modules. We will say that S is a skein

theory if S is monoidal and involutive (see [ML]). Here k is a commutative ring with unit,

supposed to be equipped with an involutive automorphism λ 7→ λ).

R e m a r k 1. The monoidal property says that, up to canonical isomorphisms, one

has S(M1 qM2) = S(M1)⊗ S(M2) and S(∅) = k. Using the embedding ε : ∅ → M , we

get the vector S(ε)(1) ∈ S(M). In a concrete skein theory, defined using links, this vector

is represented by the empty link in M . We will denote it by ∅.

R e m a r k 2. Involutivity says that, up to a canonical isomorphism, the module

S(−M) is equal to S(M). If a fixed oriented diffeomorphism g : M
∼→−M is given, then

S(g) defines an anti-linear automorphism of S(M) (a linear isomorphism from S(M)

to S(M)). This automorphism will be called the mirror and denoted x 7→ x. The map

(z, α) 7→ (z, α) gives such a g, in D2 × S1 as well as in S3 ⊂ C2 .

R e m a r k 3. Using any oriented embedding D3 q D3 → D3 we get a product on

the module associated with the 3-ball S(D3). We also get a product on the module

S(D2×S1), by using a standard embedding D2×S1 qD2×S1 → D2×S1. This makes

S(D3) and S(D2 × S1) into commutative algebras with unit 1 = ∅.

To an oriented embedding of a disjoint union of solid tori

g =

m∐
i=1

gi :

m∐
i=1

D2
i × S1

i →M

is associated a multilinear map

S(g) : S(D2 × S1)⊗m → S(M)
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By the isotopy hypothesis, this map only depends on the framed link L = (L1, . . . , Lm)

underlying g.

We call a bracket any linear map 〈. . .〉 : S(S3) → k involutive and such that the

composition

S(D3)→ S(S3)→ k

is multiplicative. Here involutive means that the mirror image (see remark 2 above) is

sent to the conjugate.

N o t a t i o n s. As already explained, a framed link L = (L1, . . . , Lm) in the sphere

gives a multilinear map S(D2 × S1)⊗m → k. The image of x1 ⊗ . . . ⊗ xm by this map

is denoted by 〈L1(x1), . . . , Lm(xm)〉 or 〈L(x1, . . . , xm)〉. Such an element is said to be

obtained by skein cabling, or simply by cabling.

For ε ∈ {−1, 0, 1} we note Uε the unknot with framing ε, and Hε the Hopf link with

linking number one and both components having framing ε.

A framed link L determines by surgery a 3-manifold which will be denoted by S3(L)

(every compact oriented 3-manifold can be obtained in this way). As a consequence of

Kirby’s theorem ([Ki]), we have the following proposition.

Proposition 1.1. If ω ∈ S(D2 × S1) satisfies

(K) ∀x ∈ S(D2 × S1) 〈H1(x, ω)〉 = 〈U0(x)〉〈U1(ω)〉 and 〈U1(ω)〉 is invertible

then
〈L(ω, . . . , ω)〉

〈U1(ω)〉b+〈U−1(ω)〉b−

is an invariant of the surgered manifold M = S3(L). Here b+ (resp. b−) is the number of

positive (resp. negative) eigenvalues of the linking matrix BL associated with L.

R e m a r k. The vector ω is defined up to a multiplicative invertible factor λ and up

to the kernel N1 of the bilinear form 〈H1( , )〉. The factor λ multiplies the invariant by

λb1(M) where b1(M) is the first Betti number of M . Adding an element of N1 does not

change the invariant; this is a corollary of the following lemma whose proof will be given

forward.

Lemma 1.2. If (K ) has a solution, then for any framed link in S3 the multilinear form

〈L(. . .)〉 is well defined on the quotient S(D2 × S1)/N1.

R e m a r k. Understanding the kernel N1 is a key point in this construction. Multi-

plying by any x, in the algebra S(D2 × S1), is a self-adjoint operator with respect to

〈H1( , )〉, thus N1 is an ideal. The first condition in (K) can be written

∀x (x− 〈U0(x)〉)ω ∈ N1

Moreover it is sufficient above to consider x in a set of generators of S(D2 × S1) as an

algebra.

A b o u t t h e p r o o f o f p r o p o s i t i o n 1.1. This proposition can be proved using

the well known Kirby theorem [Ki] as refined in [FR] and [RT] (see [Tu2] ch. 2). There

are two non standard points here.
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First one must check that changing the orientation of one component of the link L

does not modify the value of 〈L1(ω), . . . , Lm(ω)〉. This will follows from lemma 1.3 .

Second one must show that (K) implies that 〈U−1(ω)〉 is also invertible. This is a

consequence of lemma 1.4 .

Lemma 1.3. If ω is a solution of (K ), then the skein element ω̌ = S(j)(ω), where j is

the diffeomorphism (z, α) 7→ (z, α) of D2×S1, is equal to ω in the quotient S(D2×S1)/N1.

Lemma 1.4. If ω is a solution of (K ). Let ω ∈ S(D2 × S1) be the mirror image of ω.

In the quotient S(D2 × S1)/N1, one has ω = λω with λλ = 1 .

Recall (see remark 2 above) that ω is defined using the diffeomorphism (z, α) 7→ (z, α).

As a consequence, after multiplying by a square root of λ (extend the scalars if nec-

essary), we get a solution of (K) equal to its mirror image. The corresponding invariant

of 3-manifolds is then involutive (M and −M have conjugate invariants).

P r o o f o f l e m m a 1.3. Let us denote, for x ∈ S(D2×S1), S(j)(x) = x̌. By isotopy,

for any x ∈ S(D2 × S1),

〈Uε(x̌)〉 = 〈Uε(x)〉 ε ∈ {0, 1}, and 〈H1(x, ω̌)〉 = 〈H1(x̌, ω)〉

It follows that ω̌ is a solution of (K), equal to ω up to N1.

N o t a t i o n s. A right handed twist induces an automorphism of S(D2×S1) denoted

by t. For x ∈ S(D2 × S1), let cx be the operator defined by cx(y) = h(x⊗ y), where h is

induced by a link in the torus D2 × S1 whose first component is parallel to a meridian

and whose second component is the core of the torus (standardly framed). Note that t

and cx commute.

The map c = [x 7→ cx] is a representation of S(D2 × S1) onto itself, dual to multipli-

cation with respect to the bilinear form 〈H0( , )〉. Namely

∀x, y, z ∈ S(D2 × S1) 〈H0(cx(y), z)〉 = 〈H0(y, xz)〉

By computing in two different ways the expression 〈H0(t(x)t(ω̌), t(ω))〉 we have.

Lemma 1.5. If ω is a solution of (K), then

∀x ∈ S(D2 × S1) 〈H0(x, ω)〉 = 〈H0(t(x), ω)〉

P r o o f o f l e m m a 1.4. Using the lemma above, we have first

〈H0(xω, ω)〉 = 〈H0(t(xω), ω)〉 = 〈U0(x)〉〈U−1(ω)〉〈U1(ω)〉

We have also

〈H0(xω, ω)〉 = 〈H0(ω, cx(ω))〉 = 〈H0(ω, tcx(ω))〉 = 〈H0(xω, t(ω))〉 = 〈U−1(xω)〉〈U1(ω)〉

Hence

∀x ∈ S(D2 × S1) 〈U−1(xω)〉 = 〈U0(x)〉〈U−1(ω)〉

Using the mirror automorphism we show that ω is a solution of (K). Thus, modulo N1,

ω = λω. Taking the mirror once more, ω = λλω. Using invertibility of 〈U1(ω)〉, we have

λλ = 1.
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N o t e. The drawings corresponding to the computation above prove the refinement

of Kirby’s theorem ([RT]) saying that negative Fenn-Rourke moves can be deduced from

positive and special negative ones.

P r o o f o f l e m m a 1.2. Let L = (L1, . . . , Lm) be a framed link in S3, we have to

show that 〈L1(x1), . . . , Lm(xm)〉 is zero if x1 is in N1. The proof is in three steps.

If L1 = U1, the definition of N1 gives the result.

Then using the properties of ω it is shown that N1 is fixed by the automorphism t

of S(D2 × S1) induced by a right handed twist. This gives the result if L1 is the unknot

with any framing.

In the general case, the component L1 can be unknotted by changing some crossings.

Inserting an ω around each changed crossing reduces the problem to the preceding case.

Example 1. Kauffman bracket skein theory. Given an invertible element A in a ring

k (equipped with an involution sending A to A−1), the skein module K(M) is the free k-

module generated by isotopy classes of banded links (embedded copies of S1× [0, 1]), quo-

tiented by the usual Kauffman relations ([Ka]). The equation (K) has been discussed in

[BHMV1]. The result is that A must be a root of unity whose order is an even integer 2p.

For each p there is, up to changing the ring and normalizing, a unique invariant θp. In the

notation coming from Chern-Simons gauge theory, θp corresponds to the SU(2)-invariant

for even p and to the SO(3)-invariant for odd p.

Example 2. Skein theory associated with linking. Let q be an invertible element in

k (equipped with an involution sending q to q−1). Define the skein module L(M) to be

the free k-module generated by isotopy classes of framed links, quotiented by the local

relations

L+ = qL0 L− = q−1L0 Lq U0 = L

Here L+, L− et L0 are the same except in a ball D2× [0, 1] where their projection on the

disc D2 × {0} have respectively, a positive crossing, a negative crossing and no crossing;

U0 is an unknot with the framing given by the disc it bounds. The algebra L(D2×S1) is

isomorphic to k[y, y−1]. The condition (K) has a solution only if q is a root of unity whose

order is either an odd integer N , or is 2N with N even. In each case, if N is invertible

in k, an invariant is produced, which is equal to the ZN -invariant derived from linking

matrices in [MOO] (see also [MPR]).

Example 3. HOMFLY theory. Quantum SU(n)-invariants of 3-manifolds have been

obtained by Turaev and Wenzl ([TW]) and studied by Kohno and Takata ([KT]). Re-

cently, following a combinatorial approach of Morton ([Mo]), Yokota ([Yo]) gave a con-

struction of this invariants based on HOMFLY skein theory. The case n = 3 was already

given by Ohtsuki and Yamada ([OY]). The construction of Yokota enters easily in our

description.

The SU(n) specialized HOMFLY skein module of a 3-manifold M is defined to be the

free module generated by framed links in M , quotiented by the relations

aL+ − a−1L− = (an − a−n)L0
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Lq U0 =
an

2 − a−n2

an − a−n
L

L+f = af(n
2−1)L

In the first two relations, notations are standards; in the third one L+f is obtained from

L by adding the integer f to the framing. Here a is an invertible element in k (equipped

with an involution sending a to a−1).

If a is a primitive (k + n)n-th root of unity, then Lemma 3.2, and Proposition 4.3 in

[Yo] show that (K) has a solution. The needed computation is related with combinatorics

in the algebra of Young diagrams studied by Morton and Aiston ([MA]).

2. Cohomological refinements. The homology of the surgered manifold M=S3(L)

can be described using a Mayer-Vietoris argument. We want to give a precise statement for

the group H1(M ; Z/n). The group H1(S3−L; Z/n) is canonically isomorphic to (Z/n)m.

The inclusion map induces a monomorphism φL : H1(M ; Z/n) → H1(S3 − L; Z/n) '
(Z/n)m whose image is the kernel of the linking matrix BL, reduced modulo n. An

elementary Kirby move between L and L′ gives a diffeomorphism between S3(L′) and

S3(L) (defined up to isotopy). This diffeomorphism induces the isomorphism

φL,L′ : Ker(BL) ' H1(S3(L); Z/n)→ H1(S3(L′); Z/n) ' Ker(BL′)

The formula for the usual positive Fenn-Rourke move is

φL,L′(c1, . . . , cm−1, 0) = (c1, . . . , cm−1, c
′
m) with c′m = −

∑
i<m

b′imci

Here Lm is a trivial component, with framing one, in a ball; the other components of L

slide over this component to obtain the link L′, b′im is the corresponding coefficient of

the matrix BL′ .

This can be used to construct invariants for pairs (M,σ), σ ∈ H1(M ; Z/n). Suppose

that the skein module S = S(D2 × S1) is Z/n-graded as an algebra

S =

n−1⊕
ν=0

Sν

Suppose moreover that this grading is compatible with cabling. By this we mean that

for any framed link L = (L1, . . . , Lm) in D2 × S1, and for any homogeneous elements

x1, . . . , xm of respective degrees d1, . . . , dm, the skein element L(x1, . . . , xm) is homo-

geneous of degree equal to
∑
λidi, where λi is the algebraic intersection of Li with a

meridian disc. This implies that the twist t and the cx are graded operators.

Proposition 2.1. If the vectors ων ∈ Sν , ν = 0, . . . , n− 1, satisfy the condition

∀ν ∀xν ∈ Sν 〈H1(xν , ω−ν)〉 = 〈U0(xν)〉〈U1(ω0)〉 and 〈U1(ω0)〉 is invertible

then, provided (c1, . . . , cm) lies in the kernel of BL,

〈L(ωc1 , . . . , ωcm)〉
〈U1(ω0)〉b+〈U−1(ω0)〉b−

is an invariant of the surgered manifold M = S3(L) equipped with the cohomology class

σ = φ−1L (c1, . . . , cm) ∈ H1(M ; Z/n).
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The condition in the hypothesis above can be reduced to a unique equation if the

grading satisfies the condition (WG) below (we will say that the algebra S is well graded).

(WG) For all ν there exists yν ∈ Sν such that Sν = yνS0 and 〈U0(yν)〉 is invertible.

Lemma 2.2. If the grading of S satisfies (WG), and ω0 ∈ S0 satisfies

∀x0 ∈ S0 〈H1(x0, ω0)〉 = 〈U0(x0)〉〈U1(ω0)〉 and 〈U1(ω0)〉 is invertible

then the hypothesis of Proposition 2.1 is satisfied.

P r o o f. Take ων = 〈U0(yν)〉−1yνω0.

In the interesting known examples, the cohomological invariant, constructed with

a given bracket, appears as a refinement of the one without structure in the following

precise sense: the latter decomposes as a sum, over all cohomological classes, of the refined

ones. The following theorem gives a sufficient condition for existence of a cohomological

invariant satisfying such a decomposition property.

Theorem 2.3. Suppose the grading of S satisfies (WG), and ω0 ∈ S0 is such that

(KC)

{
∀x0 ∈ S0 〈H1(x0, ω0)〉 = 〈U0(x0)〉〈U1(ω0)〉 and 〈U1(ω0)〉 is invertible
∀ν 6= 0 ∀xν ∈ Sν 〈H1(xν , ω0)〉 = 0

then there exists ων ∈ Sν , ν = 0, . . . , n− 1 such that the formula

τ(M,σ) =
〈L(ωc1 , . . . , ωcm)〉

〈U1(ω0)〉b+〈U−1(ω0)〉b−

is an invariant of the surgered manifold M = S3(L) equipped with the cohomology class

σ = φ−1L (c1, . . . , cn) ∈ H1(M ; Z/n).

Moreover , if ω = ω0 + . . .+ ωn−1 then

τ(M) =
〈L(ω, . . . , ω)〉

〈U1(ω)〉b+〈U−1(ω)〉b−

is an invariant of the surgered manifold M = S3(L) which satisfies the decomposition

property

∀M τ(M) =
∑

σ∈H1(M ;Z/n)

τ(M,σ)

The decomposition formula is a consequence of the lemma below, which can be shown

as for lemma 1.2.

Lemma 2.4. In the hypothesis of theorem 2.3 , 〈L(ωc1 , . . . , ωcm)〉 = 0 if (c1, . . . , cm) is

not in the kernel of BL mod n.

Example 1. In the Kauffman bracket skein theory, the algebra K = K(D2 × S1) is

Z/2-graded. The equation (KC) has a solution only if A is a root of unity whose order

is congruent to 8 modulo 16. The corresponding decomposition theorem has been stated

in [Bl1]. Note that, although K ' k[z], the degree does not give a usable Z/n-grading on

the skein algebra K, for n > 2. This is because the Kauffman skein relation in the solid

torus is not homogeneous with respect to this degree.
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Example 2. Skein theory L associated with linking. Using Gauss sum computations,

we can show that if N = 22l+1, the invariant ZN of section 1, example 2, admits a Z/2l

cohomological refinement.

Example 3. In [Mu], H. Murakami gives cohomological refinements of the quantum

SU(n)-invariants. This refinements as well as the corresponding decomposition formula

can be obtained using HOMFLY skein theory.

3. Spin type structures. In [Mu], H. Murakami states also a decomposition formula

in which cohomology classes are replaced by some spin type structures (see remark 2.7 in

his paper). He observes that for n = 2 these are spin structures, and the corresponding

refinements were studied in [KM] and [Bl1]. For n > 2, he only gives a combinatorial

description of the structures, and asks for a topological interpretation. We are going to

give a topological definition for these structures. From the combinatorial description in

the case of 3-manifolds we will then obtain a version of the results of the previous section

for 3-manifolds equipped with these spin type structures. More about these structures

will be found in [Bl2].

Suppose n is an even integer. Then there exists, up to homotopy, a unique non trivial

map g : BSO → K(Z/n, 2). Define the fibration

πn : BSpin(Z/n)→ BSO

to be the pull-back, using g, of the path fibration over K(Z/n, 2). For n = 2 this con-

struction is well known, and BSpin(Z/2) = BSpin is a classifying space for the universal

covering Spin of the group SO. The space BSpin(Z/n) is a classifying space for the non

trivial central extension of the Lie group SO by Z/n. This extension will be denoted

by Spin(Z/n) in [Bl2] whence the notation BSpin(Z/n). Remark that Spin(Z/n) is a

sub-group of Spinc.

Now we can use the fibration πn to define structures (see [St]). Let γSpin(Z/n) =

π∗n(γSO) be the pull-back of the canonical vector bundle over BSO.

Definition. A Z/n spin type structure (or Spin(Z/n)-structure, or spin structure

with mod n coefficients) on a manifold M is an homotopy class of fiber maps from the

stable tangent bundle τM to γSpin(Z/n).

If non empty the set of these structures, denoted Spin(M ; Z/n), is affinely isomorphic

to H1(M ; Z/n), by obstruction theory. Moreover the obstruction for existence is a class

w2(M ; Z/n) ∈ H2(M ; Z/n), which is the image of the Stiefel-Whitney class w2(M) by

the homomorphism induced by the inclusion of coefficients Z/2 ↪→ Z/n.

The Stiefel-Whitney class w2(M) is zero for every compact oriented 3-manifold, hence

Z/n spin type structures exist on a 3-manifold M = S3(L). The following theorem gives

a combinatorial description of these structures. Recall that M is the boundary of a 4-

manifold WL called the trace of the surgery. To each σ ∈ Spin(M ; Z/n) is associated

a relative obstruction w2(σ; Z/n) in H2(WL,M ; Z/n). The group H2(WL,M ; Z/n) is

free of rank m = ]L. Taking the coordinates of the relative obstruction we get a map

ψL : Spin(M ; Z/n)→ (Z/n)
m

.
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Theorem 3.1. The map ψL is injective, and its image is the set of those (c1, . . . , cm)

which are solutions of the following (Z/n-characteristic equation)

BL

 c1
...
cm

 =
n

2

 b11
...

bmm

 (mod n)

Here the bii are the diagonal values of the linking matrix BL.

P r o o f. First we compute the absolute obstruction w2(WL; Z/n) = ξ∗(w2(WL)),

where ξ∗ is induced by the morphism of coefficients ξ : Z/2 ↪→ Z/n. If x is an integral

2-cycle and [x]a denotes its homology class modulo an integer a, w2(WL) ∈ H2(WL; Z/2)

is determined by the equation

∀x < w2(WL), [x]2 >= x.x (mod 2)

Hence w2(WL; Z/n) ∈ H2(WL; Z/n) is determined by

∀x < w2(WL; Z/n), [x]n >= ξ(x.x) =
n

2
x.x (mod n)

Now by functoriality, the relative obstruction lives in the inverse image of the absolute one

under the map induced by inclusion H2(WL,M ; Z/n)→ H2(WL; Z/n). Using the affine

structure over H1(M ; Z/n), we obtain an affine bijection between Spin(M ; Z/n) and this

inverse image. Whence the lemma by writing the equation above using coordinates.

As in section 2 there is a formula for the bijection ψL,L′ corresponding to a Kirby

move. Using the Z/n-characteristic equation we see that the coefficient for an unknotted

component with framing ±1 is n/2. For the usual positive Fenn-Rourke move, the formula

is

ψL,L′(c1, . . . , cm−1, n/2) = (c1, . . . , cm−1, c
′
m) with c′m = n/2−

∑
i

b′imci

Proposition 3.2. If the vectors ων ∈ Sν , ν = 0, . . . , n− 1, satisfy the condition

∀ν ∀xν ∈ Sν 〈H1(xν , ωn/2−ν)〉 = 〈U0(xν)〉〈U1(ωn/2)〉 and 〈U1(ωn/2)〉 is invertible

then, provided (c1, . . . , cm) satisfies the Z/n-characteristic equation,

〈L(ωc1 , . . . , ωcm)〉
〈U1(ωn/2)〉b+〈U−1(ωn/2)〉b−

is an invariant of the surgered manifold M = S3(L) equipped with the Z/n spin type

structure σ = ψ−1L (c1, . . . , cm).

Theorem 3.3. Suppose the grading of S satisfies (WG), and ωn/2 ∈ Sn/2 satisfies

(KS)

{
∀x0 ∈ S0 〈H1(x0, ωn/2)〉 = 〈U0(x0)〉〈U1(ωn/2)〉 and 〈U1(ωn/2)〉 is invertible
∀ν 6= 0 ∀xν ∈ Sν 〈H1(xν , ωn/2)〉 = 0

then there exists ων ∈ Sν , ν = 0, . . . , n− 1 such that the formula

τ(M,σ) =
〈L(ωc1 , . . . , ωcm)〉

〈U1(ωn/2)〉b+〈U−1(ωn/2)〉b−
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is an invariant of the surgered manifold M = S3(L) equipped with the Z/n spin type

structure σ = ψ−1L (c1, . . . , cm). Moreover , if ω = ω0 + . . .+ ωn−1 then

τ(M) =
〈L(ω, . . . , ω)〉

〈U1(ω)〉b+〈U−1(ω)〉b−

is an invariant of the surgered manifold M = S3(L) which satisfies the decomposition

property

∀M τ(M) =
∑

σ∈Spin(M ;Z/n)

τ(M,σ)

Example 1. The invariant coming from the Kauffman bracket skein theory admits a

spin refinement (with a decomposition theorem), if A is a root of unity whose order is

congruent to 0 modulo 16 ([Bl1]).

Example 2. If N = 22l, the invariant ZN of the skein theory L associated with linking

admits a Z/2l spin refinement.

Example 3. For n even the SU(n) specialized HOMFLY theory admits Z/n spin

type refinements ([Mu]).

4. Towards TQFTs. A universal method for extending an invariant of closed 3-

manifolds to a whole Topological Quantum Field Theory is described in [BHMV3] (see

[At], [Tu2] or [BHMV3] for axioms of TQFT). Roughly speaking we could say that the

problem is to have a pasting formula to compute the invariant out of pieces. If a manifold

is cut by a separating surface Σ, each piece gives a vector in a module associated to the

surface, and the invariant is obtained using a hermitian form on this module. Such

a formula is clear if one proceeds as follows. Take the free module generated by the

manifolds with boundary this surface, and divide by the kernel of the natural pairing

defined using the invariant of closed manifolds. This has to be computable; precisely we

want each module to have finite rank. The problem is reduced a lot if some natural surgery

axioms are satisfied. First one needs an extension of the invariant to closed manifolds

with (colored) links. (In our language a colored link is a skein element obtained by

cabling some framed link.) Second, in most cases, the required index 2 surgery formula,

is obtained only after resolving what is called the framing anomaly; this can be done

by using p1-structures. In [BHMV3], following the lines above, TQFT’s are constructed

from the Kauffman bracket. It is shown that the modules associated to surfaces (with

p1-structure) are free, of finite ranks given by the Verlinde formula.

How does this extend to the refined invariants? In joint work with Gregor Masbaum

([BM]) this question is solved for the spin invariants derived from the Kauffman bracket.

A finiteness theorem and dimension formulae are given, and it is shown that the multi-

plicativity axiom holds in a Z/2-graded sense. The relation between the spin theories and

the unspun ones is described by a transfer map. This map identifies the ‘unspun’ module

of a surface Σ with the invariant part, under a natural H̃0(Σ,Z/2)-action, of the modules

obtained in the spin theory (more precisely, the zero-graded part of the spin theory). As

already noted, understanding other refined theories is our challenge!
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