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Abstract. We show that Lissajous knots are equivalent to billiard knots in a cube. We

consider also knots in general 3-dimensional billiard tables. We analyse symmetry of knots in

billiard tables and show in particular that the Alexander polynomial of a Lissajous knot is a

square modulo 2.

0. Introduction. A Lissajous knot K is a knot in R3 given by the parametric equ-

ations

x = cos(ηxt+ φx), y = cos(ηyt+ φy), z = cos(ηzt+ φz),

for integers ηx, ηy, ηz. A Lissajous link is a collection of disjoint Lissajous knots.

The fundamental question was asked in [BHJS94]: which knots are Lissajous?

One defines a billiard knot (or racquetball knot) as the trajectory inside a cube of a

ball which leaves a wall at rational angles with respect to the natural frame, and travels

in a straight line except for reflecting perfectly off the walls; generically it will miss the

corners and edges, and will form a knot. We will show that these knots are precisely the

same as the Lissajous knots. We will also speculate about more general billiard knots,

e.g. taking another polyhedron instead of the ball, considering a non-Euclidean metric,

or considering the trajectory of a ball in the configuration space of a flat billiard. We will

illustrate these by various examples. For instance, the trefoil knot is not a Lissajous knot
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but we can easily realize it as a billiard knot in a room with a regular triangular floor (1);

Fig. 0.1.

Fig. 0.1. The left handed trefoil knot in a room

with a regular triangular floor (“Odin’s triangle”)

In the third part of the paper we discuss the symmetry of billiard knots. We sharpen

the observation of [BHJS94] that a Lissajous knot is either strongly + amphicheiral or

Z2-periodic. We show that in the Z2-periodic case the linking number of an axis of the

Z2 action with the knot is equal to ±1. We use this to show that any Lissajous knot has

an Alexander polynomial congruent to a square modulo 2. We also study other billiard

knots which exibit symmetry (e.g. knots in a cylinder). Finally, in the fourth part, we

consider knots given by trajectories which are not time-reversible. We are motivated by

a movement in ponds of a unicellular slipper-shaped organism Paramecium Caudatum.

1. Deformation. We will consider here a family of curves which generalize Lissajous

and billiard curves. We will show how to deform Lissajous knots to billiard knots inside

this family.

Consider the family F of continuous fuctions f : R → R which satisfy the following

properties:

(i) f(t+ 1) = −f(t) (skew-period 1),

(ii) f(−t) = f(t) (even function),

(iii) f(0) = 1 (initial condition),

(iv) f is strictly decreasing on the interval (0, 1
2 ).

As a consequence of our conditions we immediately have the following:

(v) f has period 2; f(k) = (−1)k for any integer k.

(vi) f(12 + t) = −f(12 − t); i.e. f(12 + t)) is an odd function, in particular f(12 ) = 0.

(vii) F is in bijection with strictly decreasing functions from [0, 12 ] onto [1, 0].

(viii) F is a convex space; that is, if f, g ∈ F , then (1 − s)f + sg is in F for any

s ∈ [0, 1].

We show (vi) as an example: f(12+t) = −f(− 1
2+t) by (i) and −f(− 1

2+t) = −f(12−t)

by (ii).

(1) This same figure was, according to [Cro95], used by the Norse people of Scandinavia and

known as “Odin’s triangle” or “Walknot”.



LISSAJOUS KNOTS 147

The simplest examples of our fuctions are cos(πt) and the piecewise linear “sawtooth”

function p(t) = 2||t|−2E[ 12 |t|]−1|−1, where E[x] is the greatest integer part of x; Fig. 1.1.

Fig. 1.1

Consider now any f ∈ F .

Lemma 1.1. Let f1(t) = f(n1t + c1), f2(t) = f(n2t + c2), where n1, n2 are co-prime

integers. Then the closed curve (f1(t), f2(t)) : R → R2 has period 2 and one of the

following conditions is satisfied :

(a) For some integers k1, k2,

c2
n2

− c1
n1

=
n1k2 − n2k1

n1n2

and our curve reaches two corners of the square [−1, 1]× [−1, 1] at t0 = − c1
n1

+ k1

n1

and

t0+1 (bounces off at these corners). The curve restricted to [t0, t0+1] is locally embedded

with (n1 − 1)(n2 − 1)/2 double points.

(b) For t ∈ [0, 2] it describes a closed locally embedded curve with 2n1n2 − n1 − n2

double points for parameters t′, t′′ given by:

t′ =

(

k2
n2

+
k1
n1

)

− c2
n2

and t′′ =

(

k2
n2

− k1
n1

)

− c2
n2

and

t′ =

(

k2
n2

+
k1
n1

)

− c1
n1

and t′′ =

(

− k2
n2

+
k1
n1

)

− c1
n1

.

P r o o f. f(t1) = f(t2) iff t1 = ±t2+2k. This follows from the fact that f(t) is strictly

increasing on the interval [−1, 0] and strictly decreasing on the interval [0, 1], symmetric

with respect to the maximum and periodic. Therefore

f1(t
′) = f1(t

′′) and f2(t
′) = f2(t

′′)

reduces to

n1t
′ + c1 = ±n1(t

′′ + c1) + 2k1 and n2t
′ + c2 = ±n2(t

′′ + c2) + 2k2.

Thus one has to consider four possibilities:

(++) n1t
′ + c1 = n1t

′′ + c1 + 2k1, n2t
′ + c2 = n2t

′′ + c2 + 2k2.

Therefore t′ − t′′ = 2k1

n1

= 2k2

n2

. Thus 2k1n2 = 2k2n1 and because n1 is relatively prime

with respect to n2, we have k1 as a multiple of n1 and k2 of n2. Finally t′ − t′′ = 2m for
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some integer m, so our closed curve has no double points related to the equalities (++).

(+−) n1t
′ + c1 = n1t

′′ + c1 + 2k1, n2t
′ + c2 = −n2t

′′ − c2 + 2k2.

Thus t′ = ( k2

n2

+ k1

n1

)− c2
n2

and t′′ = ( k2

n2

− k1

n1

)− c2
n2

.

If k1 is a multiple of n1 then t′ ≡ t′′ mod 2 so we do not deal with a crossing. Thus

to count all crossings we have to consider k1 ∈ [1, n1− 1], k2 ∈ [0, n2 − 1]. These describe

(n1 − 1)n2 crossings, and the crossings are all different since for pairs parametrizing

crossings (t′1, t
′′
1) and (t′2, t

′′
2 ), one has to have |t′1 − t′2| < 2 and t′1 6= t′′2 .

(−+) n1t
′ + c1 = −n1t

′′ − c1 + 2k1, n2t
′ + c2 = n2t

′′ + c2 + 2k2.

Thus t′ = ( k2

n2

+ k1

n1

)− c1
n1

and t′′ = (− k2

n2

+ k1

n1

)− c1
n1

. The consideration of (+−) remains

valid, only the roles of f1 and f2 are interchanged. Thus we get here (n2 − 1)n1 different

crossings obtained for t′ and t′′ such that k1 ∈ [0, n1 − 1], k2 ∈ [1, n2 − 1].

(−−) n1t
′ + c1 = −n1t

′′ − c1 + 2k1, n2t
′ + c2 = −n2t

′′ − c2 + 2k2.

Thus n1c2 −n2c1 = n1k2 −n2k1, or equivalently
c2
n2

− c1
n1

= k2

n2

− k1

n1

. This corresponds to

case (a) of Lemma 1.1. One can comment on this condition:

First of all, it is independent of t; thus for any t′ there is a unique (up to period 2) t′′

(t′′ = −t′ − 2c1
n1

+ 2k1

n1

) such that f1(t
′) = f1(t

′′), and we can say that our curve “bends

on itself” (see Fig. 1.2). To see this clearly, notice that our curve reaches two corners of

Fig. 1.2. The curve (f(6t + 1), f(7)) bounces at corners and bends on itself.

the square [−1, 1]× [−1, 1], namely reparametrize our curve (f1(t), f2(t)) by changing t

to t − c1
n1

+ k1

n1

(which by above is the same as changing t to t − c2
n2

+ k2

n2

). In the new

parametrization we get the curve (f(n1t+ k1), f(n2t+ k2)), so it reaches corners at t = 0

and t = 1, then bounces at these corners and “bends on itself” (by condition (ii) and the

fact that f(1 + t) = f(1 − t)). In particular if n1 and n2 are odd then the curve goes

through 0.

To finish the proof of Lemma 1.1 we have to analyse when crossings described in the

(+−) and (−+) cases are different.
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Let

(t′1, t
′′
1) =

((

k2
n2

+
k1
n1

)

− c2
n2

,

(

k2
n2

− k1
n1

)

− c2
n2

)

and

(t′2, t
′′
2) =

((

k′2
n2

+
k′1
n1

)

− c1
n1

,

(

− k′2
n2

+
k′1
n1

)

− c1
n1

)

be parameters giving crossings in (+−) and (−+), respectively. Thus t′1 = t′2 or t′′1 = t′2
if and only if

c2
n2

− c1
n1

=
k2 − k′2

n2
− k′1 ± k1

n1
.

This is exactly the (a) case of Lemma 1.1 and it was analysed in case (−−); that is, a

pair of crossings coincide because our curve “bends on itself”.

If the crossings of cases (+−) and (−+) are different, we have (n1−1)n2+(n2−1)n1 =

2n1n2 − n1 − n2 of crossings. This completes the proof of Lemma 1.1.

Let f ∈ F and consider a closed curve in a 3-dimensional cube, parametrized by

F (t) = (f1(t), f2(t), f3(t)), where fi(t) = f(nit+ ci). Of course, our curve has period 2.

Lemma 1.2. F (t), for t ∈ [0, 2], parametrizes a simple closed curve (a knot) unless

(i) c2
n2

− c1
n1

= m
n1n2

, or

(ii) c3
n3

− c1
n1

= m′

n1n3

, or

(iii) c3
n3

− c2
n2

= m′′

n2n3

for some integer m (or m′ or m′′).

Furthermore if (i) (resp. (ii) or (iii)) holds but not all three, then we deal with a

singular knot with n3 − 1 (resp. n2 − 1 or n1 − 1) double points.

P r o o f. We want to find all possible self-crossings of the curve F (on [−1, 1]), so we

have to solve the system of equations

f1(t
′) = f1(t

′′), f2(t
′) = f2(t

′′), f3(t
′) = f3(t

′′),

or equivalently

n1t
′+c1 = ±n1t

′′+c1+2k1, n2t
′+c2 = ±n2t

′′+c2+2k2, n3t
′+c3 = ±n3t

′′+c3+2k3.

We have to consider 8 possibilities, which we can denote succinctly as (ε1, ε2, ε3) where

εi = ±. We base our analysis on Lemma 1.1 and its proof.

(++ε) If two ε’s are +, say ε1, ε2, then by case (++) of the proof of Lemma 1.1, we

will not produce a self-crossing.

(−−−) From case (−−) of the proof of Lemma 1.1 applied to any pair fi, fj, we get

the system of equations

c2
n2

− c1
n1

=
k2
n2

− k1
n1

,
c3
n3

− c2
n2

=
k3
n3

− k2
n2

,
c1
n1

− c3
n3

=
k1
n1

− k3
n3

;

of course, only two of these are independent. Observe, as in case (−−), that by repa-

rametrizing the curve by a shift t → (t − c1
n1

− k1

n1

), one gets the curve (f(n1t − k1),

f(n2t− k2), f(n3t− k3)) and that this curve hits corners at t = 0 and t = 1 then bounces

at these corners and “bends on itself”.
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(−−+) If two ε’s are −, say ε1, ε2, then by case (−−) of the proof of Lemma 1.1,

c2
n2

− c1
n1

=
k2
n2

− k1
n1

, t′ = −t′′ − 2c1
n1

+
2k1
n1

and by case (−+) applied to (f1, f3) and (f2, f3),

t′ =

(

k3
n3

+
k1
n1

)

− c1
n1

and t′′ =

(

− k3
n3

+
k1
n1

)

− c1
n1

, and

t′ =

(

k3
n3

+
k2
n2

)

− c2
n2

and t′′ =

(

− k3
n3

+
k2
n2

)

− c2
n2

.

From the first and the second conditions, one gets

t′ =
k3
n3

+
k1
n1

− c1
n1

.

k1 and k2 are determined, so the only choice we have is for k3, thus we get k3 − 1 double

points. Assuming that (−−−) cannot be satisfied, these are the only double points of our

closed curve.

This completes the proof of Lemma 1.2.

Theorem 1.3. For given integers n1, n2, n3 and real numbers c1, c2, c3 the knot (up

to ambient isotopy) F (t) = (f1(t), f2(t), f3(t)), where fi(t) = f(nit+ ci), does not depend

on the choice of f ∈ F . This theorem also holds for the case of a singular knot.

P r o o f. Let f0, f1 ∈ F . Consider the homotopy between f0 and f1: fs = (1− s)f0 +

sf1. By convexity of F , fs ∈ F . Thus we have also the homotopy Fs = (1 − s)F0 +

sF1 between F0(t) = ((f0)1(t), (f0)2(t), (f0)3(t)) and F1(t) = ((f1)1(t), (f1)2(t), (f1)3(t)).

Furthermore if F0 is a knot, Ft is also a knot and thus represents the same topological

type. Similarly, if F0 is a singular knot, then Fs has double points for the same parameters

t as F0 for any s (by Lemma 1.1). The proof of Theorem 1.3 is complete.

Corollary 1.4. Lissajous and billiard knots are the same up to ambient isotopy.

2. General billiards. There is extensive literature devoted to billiards, including

3-dimensional billiard tables [GKT94, Ta95]. The problem of closed trajectories has also

been widely studied [BGKT94, GSV92, KMS86, Ta95]. Apparently, however, the problem

of knots as trajectories of a ball in a billiard table has not been studied before (2).

We give, in this section, some examples of knots as billiard trajectories and formulate

a few conjectures, but the field is widely open for future research; and as a new field, it

has plenty of possible directions and problems (from easy to very difficult ones).

We start from the general definition.

Definition 2.1 ([Ta95]). A billiard table (or racquetball room) is a Riemannian ma-

nifold M with a piecewise smooth boundary. The billiard dynamical system in M is

generated by the free motion of a mass-point (called a billiard ball) subject to elastic

reflection off the boundary. This means that the point moves along a geodesic line in M

with a constant speed until it hits the boundary. At a smooth boundary point the billiard

(2) For us the initial motivation was the possiblity of the hand drawing of Lissajous knots.
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ball reflects so that the tangential component of its velocity remains the same, while the

normal component changes its sign. If the billiard ball hits a corner, its further motion is

usually not defined (for us the important exception is a right dihedral angle at an edge

and a cubic corner in the polyhedron in R3).

A billiard knot (or link) is a simple closed trajectory (trajectories) of a ball in a

3-dimensional billiard table. (3) The simplest billiards to consider would be polytopes

(finite convex polyhedra in R3). But even for Platonian bodies we know nothing of the

knots they support except in the case of the cube. It seems that polytopes which are the

products of polygons and the interval ([−1, 1]) (i.e. polygonal prisms) are more accessible.

This is the case because diagrams of knots are billiard trajectories in 2-dimensional tables.

We will list some examples below.

Example 2.2. (i) The trivial knot and the trefoil knot are the trajectories of a ball in

a room (prism) with an acute triangular floor. In Fig. 2.1(a), the diagram of the trivial

knot is an inscribed triangle ∆I whose vertices are the feet of the triangle’s altitudes. If

we move the first vertex of ∆I slightly, each of its edges splits into two and we get the

diagram of the trefoil. We should be careful with the altitude of the trajectory: We start

from level 1 at the vertex close to the vertex of ∆I and opposite to the shortest edge

of ∆I . Then we choose the vertical parameter so that the trajectory has 3 maxima and

three minima (Fig. 2.1(b)).

Fig. 2.1

(ii) The trivial knot is a trajectory of a ball in a room with a right triangular floor,

Fig. 2.2.

(iii) If the floor of a room is a general obtuse triangle, it is an open problem whether

any knot can be realized as the trajectory of a ball in it. However we have the general

theorem that periodic points are dense (in the phase space of the billiard flow) in a

rational polygon (that is, all polygonal angles are rational with respect to π) [BGKT94].

(3) One can also consider closed trajectories in the phase space of a 2-dimensional billiard

table but we will not pursue this possibility here.
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Fig. 2.2. The trivial knot can be realized as a trajectory of a ball in

any room with a right triangular floor.

Example 2.2(i) is of interest because it was shown in [BHJS94] that the trefoil knot is

not a Lissajous knot and thus it is not a trajectory of a ball in a room with a rectangular

floor. More generally we show in Section 3 that no nontrivial torus knot is a Lissajous

knot. However, we can construct infinitely many torus knots in prisms and in the cylinder.

Fig. 2.3
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Example 2.3. (i) Any torus knot (or link) of type (n, 2) can be realized as a trajectory

of a ball in a room whose floor is a regular n-gon (n ≥ 3). Fig. 0.1 shows the (3, 2) torus

knot (trefoil) in the regular triangular prism; Fig. 2.3(a) depicts the (4, 2) torus link in

the cube; and Fig. 2.3(b)(c) illustrates the (5, 2) torus knot in a room with a regular

pentagonal floor.

Fig. 2.4

Fig. 2.5. The torus knot of type (7, 3) realized as a trajectory of a ball in a room

with a regular heptagonal floor.
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(ii) The (4, 3) torus knot is a trajectory of a ball in a room with regular octagonal

floor; Fig. 2.4(a).

(iii) Figures 2.4(b) and 2.5 illustrate how to construct a torus knot (or link) of type

(n, 3) in a room with a regular n-gonal floor for n ≥ 7.

(iv) Any torus knot (or link) of type (n, k), where n ≥ 2k + 1, can be realized as a

trajectory of a ball in a room with a regular n-gonal floor. The pattern generalizes that

of Figures 2.3(b), 2.4(b) and 2.5. Edges of the diagram go from the center of the ith edge

to the center of the (i+k)th edge of the n-gon. The ball bounces from walls at altitude 0

and its trajectory has n maxima and n minima. The whole knot (or link) is Zn-periodic.

Example 2.4. Let D be a closed billiard trajectory on a 2-dimensional polygonal

table. If D is composed of an odd number of segments, then we can always find the

“double cover” closed trajectory D(2) in the neighborhood of D (each segment will be

replaced by two parallel segments on the opposite sides of the initial segment). This idea

can be used to construct, for a given billiard knot K in a polygonal prism (the projection

D of K having an odd number of segments), a 2-cable K(2) of K as a billiard trajectory

(with projection D(2)). This idea is illustrated in Fig. 2.1 and 2.3(c) (the (5,2) torus knot

as a 2-cable of a trivial one). Starting from Example 2.3(iv) we can construct a 2-cable

of a torus knot of the type (n, k) in a regular n-gonal prism, for n odd and n ≥ 2k + 1.

It follows from [BHJS94] that 3-braid alternating knots of the form (σ1σ
−1
2 )2k are not

Lissajous knots as they have a non-zero Arf invariant (see Section 3). For k = 1 we have

the figure eight knot and for k = 2 the 818 knot [Ro76].

Example 2.5. (i) The Listing knot (figure eight knot) can be realized as a trajectory

of a ball in a room with a regular octagonal floor, Fig. 2.6 (4).

Fig. 2.6. The Listing (figure eight) knot as a trajectory of a ball in a room

with a regular octagonal floor.

(4) This drawing was motivated by R. Randell’s drawing at his talk at Banach Center in

August 1995 and ascribed to E. Flapan, M. Meissen and J. Van Buskirk.
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(ii) Fig. 2.7 describes the knot 818 as a trajectory of a ball in a room with a regular

octagonal floor. This pattern can be extended to obtain the knot (or link) which is the

closure of the three braid (σ1σ
−1
2 )2k in a regular 4k-gonal prism (k > 1).

Fig. 2.7. The knot 818 [Ro76], realized as a trajectory of a ball in a room

with a regular octagonal floor.

We do not know if any polytope will support an infinite number of different knot

types, however such is the case for the cylinder D2 × [−1, 1].

Example 2.6. (i) Any torus knot (or link) of type (n, k), where n ≥ 2k + 1, can be

realized as a trajectory of a ball in the cylinder; compare Fig. 2.3(b), Fig. 2.4(b) and

Fig. 2.5.

(ii) Every knot (or link) which is the closure of the three braid (σ1σ
−1
2 )2k can be

realized as the trajectory of a ball in the cylinder. See Fig. 2.6(b) for the case of k = 1

(Listing knot) and Fig. 2.7 for the case of k = 2 and the general pattern.

Any type of knot can be obtained as a trajectory of a ball in some polyhedral billiard

(possibly very complicated). To see this, consider a polygonal knot in R3 and place

“mirrors” (walls) at any vertex, in such a way that the polygon is a “light ray” (ball)

trajectory.

Conjecture 2.7.Any knot type can be realized as the trajectory of a ball in a polytope.

Conjecture 2.8. Any polytope supports an infinite number of different knot types.

Problem 2.9. 1. Is there a convex polyhedral billiard in which any knot type can be

realized as the trajectory of a ball?

2. Can any knot type be realized as the trajectory of a ball in a room with a regular

polygonal floor?

3. Which knot types can be realized as trajectories of a ball in a cylinder (D2×[−1, 1])?

3. Symmetry of billiard knots. Until now we have been unable to classify all

billiard knots in any nontrivial 3-dimensional billiard (trivial being for example D3 which

has only the trivial knot as a trajectory). We can, however, exclude some knot types as
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closed trajectories in some billiards, due to symmetry principles. This was first observed

for Lissajous knots in [BHJS94]. Namely, let f ∈ F (see Section 1), and fi(t) = f(nit+ci),

i = 1, 2, 3. We can assume that n1, n2 are odd. We call the knot described by (f1, f2, f3)

even if n3 is even and odd otherwise.

Definition 3.1. (i) A knot in R3 is called strongly+amphicheiral if it has a realization

in R3 which is preserved by a central symmetry ((x, y, z) → (−x,−y,−z)) (this symmetry

changes orientation of R3). “Plus” means that the involution preserves the orientation of

the knot.

(ii) A knot is called n-periodic if there exists an action of Zn on S3 which preserves

the knot and the set of fixed points of the action is a circle disjoint from the knot.

Because f(t+ 1) = −f(t) we have

Theorem 3.2. An even Lissajous knot is Z2-periodic and an odd Lissajous knot is

strongly + amphicheiral.

We will strengthen the above theorem by showing the following:

Theorem 3.3. In the even case the linking number of the axis of the Z2-action with

the knot is equal to ±1.

S k e t c h o f p r o o f (5). Consider f1, f2 defined as before (n1, n2 are co-prime odd

numbers).

Lemma 3.4. (f1, f2)(t) goes through 0 if and only if

c2
n2

− c1
n1

=
k

n1n2
for some integer k.

P r o o f. (i) If (f1, f2)(t) goes through 0, then for some integers h1, h2,

n1t+ c1 =
1

2
+ h1, n2t+ c2 =

1

2
+ h2,

thus

t = − c1
n1

+
1

2n1
+

h1

n1
= − c2

n2
+

1

2n2
+

h2

n2
.

Finally

c2
n2

− c1
n1

=
h2n1 − h1n2

n1n2
+

n1 − n2

2n1n2
=

k

n1n2

for some integer k.

(ii) If

c2
n2

− c1
n1

=
k

n1n2
,

then we can find h1 and h2 such that k = h2n1 − h1n2 +
1
2 (n1 − n2). Then, if we choose

t such that n1t+ c1 = 1
2 + h1, then n2t+ c2 = 1

2 + h2. For this t, f1(t) = f2(t) = 0.

Lemma 3.5. If (f1, f2) does not go through zero then there is a well defined linking

number , lk(f1, f2), of the curve with 0, and it is equal to +1 or −1.

(5) The detailed proof will be given elsewhere; see [Pr95].
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P r o o f. The idea of the proof is as follows: We show that for a generic ci the assump-

tion of the theorem holds; and in the degenerate case, when the curve goes through 0, it

also reaches antipodal corners of the square at which it bounces and “bends on itself”.

A small deformation of the parameters ci naturally gives the linking number ±1 and any

deformation omitting 0 does not change this linking number.

More precisely: As proven in Section 1, the case of c2
n2

− c1
n1

= k
n1n2

is exactly the

case when the curve reaches two antipodal corners of the square [−1, 1]× [−1, 1], bounces

off at these corners and “bends on itself”. In all other cases the curve (f1, f2)(t) has

2n1n2 − n1 − n2 double points and is embedded outside double points.

For simplicity (e.g. for better visualization of the curve but without loss of generality)

let us consider the case of billiard curves. Then (f1, f2)(t) is a piece-wise linear curve

without horizontal segments. We can visualize the linking number by drawing an interval

from (0, 0) to (0, 1) and counting signed intersections of the interval with segments of the

billiard trajectory. (f1, f2) is a continuous function with respect to parameters ci. Fix

c1 (we can assume c1 = 0) and consider a curve (f1, f
′
2) with parameter c′2 = c2 + ǫ for

small ǫ. When we move from ǫ = 0 to ǫ close to (but different than) zero, then every

segment splits into two segments symmetric with respect to (0, 0) (we also create new

segments close to corners where the curve was “bent on itself”). With the exception of

the segments which arise from the one going through (0, 0) all other split segments will

cancel their contributions to the linking number. Thus the linking number will be ±1.

Any further deformation omitting (0, 0) will preserve the linking number.

Corollary 3.6. The Alexander polynomial of every Lissajous knot is a square mod-

ulo 2.

P r o o f. For a strongly+ amphicheiral knot the Alexander polynomial is a square by

Hartley and Kawauchi [HK79]. For Z2-periodic knots we can use the following theorem

of Murasugi (assuming k = ±1).

Theorem 3.7 ([Mu71]). Let L be an r-periodic oriented link with linking number k

with the fixed point set axis. Then

∆L(t) ≡ ∆r
L∗

(t)(1 + t+ t2 + . . .+ t|k|−1)r−1 mod r

where L∗ = L/Zr and r is a prime number.

Corollary 3.8. (i) ([BHJS94]) The Arf invariant of the Lissajous knot is 0.

(ii) A nontrivial torus knot is not a Lissajous knot.

(iii) For ηz = 2 a Lissajous knot is a two bridge-knot and its Alexander polynomial is

congruent to 1 modulo 2.

P r o o f. (i) It follows from Corollary 3.6 and the fact that the Arf invariant is, mo-

dulo 2, the first nontrivial coefficient of the Conway–Alexander polynomial.

(ii) The Alexander polynomial of a nontrivial torus knot is not a square modulo 2.

(iii) A Lissajous knot with ηz = 2 has two maxima so it is a two-bridge knot. If we

divide it by the Z2-action we get a one-bridge knot as an orbit (thus trivial knot). Finally,

we use the Murasugi theorem (∆L∗
= 1).

Motivated by the case of Z2-periodic knots we propose
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Conjecture 3.9. Turks head knots (e.g. the closure of the 3-string braids (s1s̄2)
2k+1)

are not Lissajous. (Observe that they are strongly + amphicheiral.)

We do not think, as the above conjecture shows, that the converse to Theorem 3.2

holds. However for Z2-periodic knots it may hold (the method sketched in Section 0.4 of

[BHJS94] may work).

Problem 3.10. Let K be a Z2-periodic knot , such that the linking number of the axis

of the Z2-action with K is equal to ±1. Is K an even Lissajous knot?

The first prime knots (in the knot tables [Ro76]) which may or may not be Lissajous

are 75, 83, 86.

We can divide billiard knots in the cylinder into two classes, even and odd, depending

on the number of segments in the projection into the base. Let f1,2(t) parametrize the

projection of the knot into the base, and f3(t) describe the vertical direction, where

t ∈ [−1, 1]. We have f1,2(t +
2
n
) = e2π

k

n f1,2(t), where n > 2k; and f3(t +
1
m
) = −f3(t).

n is the number of segments in the projection of the knot into the base and m is the

number of maxima of the trajectory of K.

Theorem 3.11. An even billiard knot in a cylinder is either Z2-periodic or strongly+

amphicheiral , depending on whether it has an even or odd number of maxima. In the

Z2-periodic case the linking number of an axis of the Z2 action with the knot is equal

to ±k.

P r o o f. For even n one has f1,2(t + 1) = −f1,2(t) and f3(t + 1) = f3(t) or −f3(t)

depending on whether the knot has an even or odd number of maxima; t is considered

modulo 2. The value of the linking number is immediately visible from the diagram

(compare Fig. 2.4(b) for the case n = 8, k = 3). Thus Theorem 3.11 follows.

A similar result also holds for an isosceles right triangular prism.

Fig. 3.1

Let ∆ABC denote a floor (isosceles right triangle) of the prism. We choose coordinates

A = {−1,−1}, B = {1,−1}, and C = {−1, 1} for the vertices of the triangle; Fig. 3.1(a).

Let f1,2(t) (t ∈ [−1, 1]) be a parametrization of a closed trajectory of a ball in ∆ABC

disjoint from corners of the triangle. This trajectory can be “unfolded” into the trajectory

in the square 2ABCD = ([−1, 1] × [−1, 1]); Fig. 3.1(b), which can be parametrized by
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(f1(t), f2(t)) where fi(t) = f(nit + ci) and f(t) is the “sawtooth” function of Fig. 1.1.

If (f1,2(t), f3(t)) describes a knot in the prism then the associated “unfolded” curve

(f1(t), f2(t), f3(t)) describes a knot in a cube. In particular n1, n2, and n3 are pairwise

relatively prime integers.

Theorem 3.12. Let (f1,2(t), f3(t)) describe a knot , K, in an isosceles right triangular

prism. If n1 and n2 are odd then:

(i) n3 has to be odd , except for the degenerate case desribed in Fig. 3.1(c). Here

n3 = 2 and n1 = n2 = 1; furthermore, the knot in the triangualar prism is trivial , but

the “unfolded knot” in the cube has one singularity (at the point (0, 0, s) for some s).

(ii) K is Z2-periodic and the linking number of an axis of the Z2-action with the knot

is equal to ±1.

P r o o f. (i) Since (f1, f2)(t+1) = −(f1, f2)(t), it follows that if (f1, f2)(t) is in ∆ABC

then (f1, f2)(t+1) is in ∆ADC . Thus f1,2(t+1) and f1,2(t) are symmetric with respect to

the diagonal (−1,−1), (1, 1). Furthermore the above symmetry preserves the orientation

of the trajectory (in ∆ABC). If n3 is even then f3(t+1) = f3(t) and therefore the knot K

is symmetric with respect to the plane of the rectangle [(−1,−1), (0, 0)]× [−1, 1] and the

symmetry preserves the orientation of K. The only way for n3 to be even is for K to be

disjoint from the symmetry plane or fully to lie on the plane. The first case is impossible

and the second leads to the degenerate situation described in Theorem 3.12(i).

(ii) If n3 is odd then f3(t+1) = −f3(t) and thus the line going through (−1,−1, 0) and

(0, 0, 0) is the axis of symmetry for K, disjoint from K. Therefore K is Z2-periodic. To

find the linking number of the axis with K we follow the method of the proof of Theorem

3.3 and, in particular, the proof of Lemma 3.5. Our knot is a deformation of the singular

closed curve whose projection goes through (0, 0), reaches to the corners of the square

where it bounces and “bends on itself”. A small deformation of the parameters naturally

gives the linking number ±1 and any deformation omitting (0, 0) does not change this

linking number.

4. Further speculations. One possibility of extending the family of billiard knots

in a cube is to relax the condition on F from the first section. We no longer require

that our trajectories are time-reversible. We will give two examples below, the second

motivated by movement in ponds of a unicellular organism Paramecium Caudatum also

called Slipper Animalcule.

Definition 4.1. Consider the family F ′ of continuous fuctions f : R → R which

satisfy the following properties:

(i) f(t+ 1) = −f(t) (skew-period 1),

(ii) f(0) = 1 (initial condition),

(iii) f is strictly decreasing on the interval [0, 1].

As before, we define fi(t) = f(ni(t) + ci). We say that a knot is an F ′ knot if it can

be parametrized by (f1(t), f2(t), f3(t)).

As a consequence of our conditions we immediately have the following:
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(iv) f has period 2; f(k) = (−1)k for any integer k.

(v) For any f ∈ F ′, there is a unique number b ∈ (0, 1) such that f(b) = f(b+1) = 0.

(vi) F ′ is a convex space; that is, if f, g ∈ F ′, then (1 − s)f + sg is in F ′ for any

s ∈ [0, 1].

We do not know whether every F ′ knot is a billiard knot but we can extend Theorem

3.2 to this family of knots.

Theorem 4.2. If (f1(t), f2(t), f3(t)) parametrize a knot K in R3 then:

(i) If all ni’s are odd then K is strongly + amphicheiral .

(ii) If the ni’s are pairwise relatively prime numbers and n3 is even then K is a

Z2-periodic knot and the linking number between the axis of the Z2-action and K is equal

to ±1.

P r o o f. (i) We use the condition (i) to get fi(t+1) = −fi(t); thus K is preserved by

the central symmetry of R3.

(ii) As in the case of the proof of Theorem 3.2, the proof of Theorem 4.2(ii) will be

completed if we prove the following lemma.

Lemma 4.3. If a closed planar curve (f1(t), f2(t)), for co-prime odd integers n1, n2,

does not go through (0, 0) then the linking number , lk(f1, f2), of the curve with (0, 0) is

equal to +1 or −1.

P r o o f. The closed planar curve (f1(t), f2(t)) goes through 0 if and only if n1t+c1 =

b+ h1 and n2t+ c2 = b+ h2 for some integers h1, h2. Thus

c2
n2

− c1
n1

=
h2

n2
− h1

n1
+ b

(

n1 − n2

n1n2

)

.

One should notice that h1, h2 are unique in the sense that if for different t (say t′) one gets

h′
1, h

′
2 then h′

1 = h1 + sn1 and h′
2 = h2 + sn2 for some integer s. Thus t′ is congruent to

t or t+1 modulo 2. Without loss of generality we can assume that c1 = 0. Now consider

the open annulus parametrized by c2 ∈ [0, 2]/(0 ∼ 2), b ∈ (0, 1). We are considering all

b corresponding to functions f ∈ F ′, f(b) = 0. The subspace of the annulus for which

(f1, f2) goes through 0 is of codimension 1. This is a collection of intervals given by the

condition b(n1−n2) = n1c2−n1h2+n2h1. Each of the components of the complement of

the intervals contains a point with coordinate b equal to 1
2 . Thus the theorem reduces to

the case f(12 ) = 0, as the linking number for every path-connected region of the annulus

is constant. Now consider a function g which satisfies also g(−t) = g(t) (for example

cos(πt)), and let gs = sg(t) + (1 − s)f(t). Of course gs(12 ) = 0, thus for given c2, if f(t)

omits zero then gs(t) also omits zero. Therefore, by homotopy invariance of the linking

number and by Lemma 3.5, lk(f1(t), f2(t)) = lk(g1(t), g2(t)) = ±1 as required.

Paramecium Caudatum. Members of the genus Paramecium are unicellular orga-

nisms and hence placed in the phylum Protozoa. Paramecium Caudatum is the “slipper-

shaped animalcule” of the early microscopists that is widely distributed and extensively

studied. It commonly measures 170-290 microns. The species is world-wide in distribution

and commonly found in ponds and bodies of stagnant and fresh water. The Paramecium

Caudatum can swim in a straight line. When it strikes a solid object, it backs away and
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tries a new direction [Wi53]. According to J. Dembowski, the angle of reflection off the

object is approximately constant.

We will propose two types of trajectories, motivated by movement of Paramecium

Caudatum, and so relaxing the condition that the angle of incidence be equal to the

angle of reflection.

Definition 4.4. (i) We consider a Paramecium room to be a Cartesian productM×N

of a 2-dimensional Riemannian manifold M (with a piecewise smooth boundary) and a

1-dimensional Riemannian manifold N . A Paramecium moves along a geodesic line in

M ×N with constant speed until it hits the boundary. Then it reflects in such a way that

in a horizontal direction the reflection angle is constant (say α ≤ π/2) when a vertical

wall is hit, and the vertical component changes its sign when the floor or ceiling is hit.

(ii) A room of constant reflection angle is a Riemannian manifold M with a piecewise

smooth boundary such that a particle moves along a geodesic line in M with constant

speed until it hits the boundary. Then it reflects in such a way that it stays on the plane

of the vector normal to the boundary and the trajectory before the reflection, and the

value of the reflection angle is constant. If the particle hits a corner or hits a boundary

along the vector normal to the boundary, its further motion is usually not defined.

The natural setting for Paramecium knots (simple closed trajectories in a Paramecium

room) is a polygonal prism. The advantage of the Paramecium knot setting is that the

segments of the projection of the trajectory have only a finite number of directions, so the

case of irrational polygons is not much more difficult than the rational one. We will end

this section by showing that the set of Paramecium knots (with α = π/4) in rectangular

prisms is the same as the set of billiard knots in a cube (or, according to Corollary 1.4,

Lissajous knots). Fig. 4.1(b) represents the knot of type 52 [Ro76], as a billiard knot in a

cube (f1(t) = f(2t− 1
6 ), f2(t) = f(3t), f3(t) = f(7t+ 1

4 )). Fig. 4.1(a) represents the knot

52 as a Paramecium knot (α = π/4) in a rectangular prism.

Fig. 4.1. The knot 52.

Theorem 4.5. There is a bijection between billiard knots (in a cube) of type n1, n2, n3

and Paramecium knots in a rectangular prism ([−n2, n2]×[−n1, n1]×[−1, 1]), for α = π/4.
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P r o o f. Consider the automorphism (homothety) of R3 given by (x, y, z) → (n2x,

n1y, z). Then a billiard trajectory in a cube is sent to a Paramecium trajectory in a

rectangular prism (with α = π/4). The map is a bijection between the trajectories so the

proof is complete.

A similar fact also holds for constant reflection angle knots.

Theorem 4.6. There is a bijection between billiard knots (in a cube) of type n1, n2, n3

and constant reflection angle knots in the rectangular prism ([−n2n3, n2n3]×[−n1n3, n1n3]

× [−n1n2, n1n2]), for α = π/4.

In Figure 4.2, we show an interesting example of a billiard link (also a Paramecium

link with α = π/3) in a regular triangular prism. This 3-dimensional figure of the link

9224 [Ro76] was made by M. Veve. This link is interesting because A. Hatcher and A. Reid

[Re91] showed that its complement has a hyperbolic structure and the group of the knot

is an arithmetic group (subgroup of PSL2(O2), where O2 is the ring of integers in the

imaginary quadratic number field Q(
√
−2)).

Fig. 4.2. The link 9224 as a billiard (also Paramecium) link.
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