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Abstract. We prove that the number of linearly independent Vassiliev invariants for an

r-component link of order n, which derived from the HOMFLY polynomial, is greater than or

equal to min{n, [(n+ r − 1)/2]}.

Introduction. Let Vn denote the vector space consisting of all Vassiliev knot invari-

ants of order less than or equal to n. There is a filtration

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ · · ·

in the entire space of Vassiliev knot invariants. Each Vn is finite-dimensional. Vassiliev

[V] studied for the special cases when n is small: V0 = V1, which consists of a constant

map (Propositions 3 and 5), and V2/V1 is a one-dimensional vector space, whose basis is

the second coefficient of the Conway polynomial. The dimensions for small n are found

by using the computer by Bar-Natan and Stanford (cf. [BN; B1, p. 282 ]): For n =

1, 2, 3, 4, 5, 6, 7, dimVn/Vn−1 = 0, 1, 1, 3, 4, 9, 14, respectively.

On the other hand, Bar-Natan (cf. [BN]) showed that the nth coefficient of the Conway

polynomial is of order less than or equal to n. Birman and Lin [BL] and Gusarov [G]

proved that the Jones, HOMFLY, and Kauffman polynomials of a knot can be interpreted

as an infinite sequence of Vassiliev knot invariants, and as a corollary they proved that

dimVn/Vn−1 ≥ 1 for every n ≥ 2 using the HOMFLY polynomial [BL, Corollary 4.2 (i)].
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Stanford [S1] generalized this for a link. In the special case of the Jones polynomial, the

statement is as follows: Let VK(t) be the Jones polynomial of a knot K. Set t = ex and

expand ex via its Taylor series to obtain a power series expansion of VK(t):

VK(ex) =

∞
∑

n=0

un(K)xn

Then the coefficient un(K) of xn is a Vassiliev invariant of order less than or equal to n.

Melvin and Morton [MM] have shown that the order is just n. From this, we see that the

nth derivative of VK(t) evaluated at 1, V
(n)
K (1), is a Vassiliev invariant of order n. See

Theorem 1.

In this paper, we study Vassiliev link invariants derived from the HOMFLY polynomial

in a similar form. Let P
(ℓ)
k (L; 1) be the ℓth derivative of the kth coefficient polynomial

of the HOMFLY polynomial of a link L evaluated at 1. In particular, Pk(L; 1) = ak(L),

the kth coefficient of the Conway polynomial. We show that P
(ℓ)
k (L; 1) is a Vassiliev

link invariant of order max{k + ℓ, 0}; in the following, P
(ℓ)
k indicates this Vassiliev link

invariant. Furthermore, we have:

Main Theorem. Let s = min{n, [(n+r−1)/2]}. Then the dimension of the subspace

of the Vassiliev invariants for an r-component link of order n spanned by the following

Vassiliev invariants is s:

P
(n+r−2i−1)
2i−r+1 , i = 0, 1, . . . , s.

Here [ ] denotes the greatest integer function.

Let us restrict attention to knots. This theorem gives a lower bound of the dimension

of the HOMFLY subspace of Vn/Vn−1 defined by Birman and Lin [BL, p. 264], where they

give the bound for n ≤ 4. Meng [Me] shows that the dimension of the HOMFLY subspace

of Vn/Vn−1 is [n/2] applying the bracket weight system. Also, Chmutov and Duzhin [CD]

show dimVn/Vn−1 ≤ (n−1)!, and more recently, Ng [N] shows dimVn/Vn−1 ≤ (n−2)!/2

if n ≥ 6.

This paper consists of seven sections. In Sect. 1, we define a Vassiliev link invariant

and give some properties following Birman and Lin [BL], Birman [B1, B2] and Stanford

[S1]. In Sect. 2, we show that P
(ℓ)
k is a Vassiliev link invariant of order max{k + ℓ, 0}

(Lemma 1). From the proof of this, we get a useful recursion formula (2.7) for calculating

the P
(ℓ)
k -value of the (k + ℓ)-configuration. Using this formula, we calculate a family of

configurations (Lemma 2), which is a key step for proving our main result. In Sect. 3, we

give some results analogous to those in Sect. 2 for the Jones polynomial. It is known that

Vassiliev knot invariants form an algebra, which means that the product of a Vassiliev

invariant of order ≤ p and one of ≤ q is a Vassiliev invariant of order ≤ p + q, which

is shown by Lin (unpublished) and Bar-Natan [BN]. In Sect. 4, we prove this for a link

(Theorem 2), and also give a formula for calculating the value of the product of Vassiliev

invariants for a (p + q)-configuration (Proposition 9). In Sect. 5, we give a basis for the

space V4 in terms of the invariants derived from the HOMFLY polynomial by making

use of the result of Birman and Lin [BL]. Using this we get various relations among

polynomial invariants regarding them as Vassiliev invariants of small order. In Sect. 6,
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we give a relation among P
(n−2i)
2i ’s (Theorem 3), which is obtained by generalizing some

formulas given in Sect. 5. This theorem, together with Lemma 2 in Sect. 2, implies Main

Theorem for a knot (Theorem 4). In Sect. 7, we generalize Theorem 4 to a link (Theorem

5), thereby completing the proof of Main Theorem.

Acknowledgements. The authors would linke to thank Hirozumi Fujii, who helped

them in drawing Fig. 10.

1. Vassiliev link invariants. An r-component link is the image of oriented r circles

under an embedding into an oriented 3-sphere S3. A knot is a 1-component link. An

r-component link is trivial if it is planar, which we denote by U r; U1 = U , which is a

trivial knot, and U0 = ∅.

An r-component singular link is the image of oriented r circles under an immersion into

S3 whose only singularities are transverse double points. We assume that a double point

on a singular link is a rigid (or flat) vertex, which means that there is a neighborhood

around each double point in which the singular link is contained in a plane. Two r-

component singular links with n double points are equivalent if there is an isotopy of S3

which takes one to the other and which preserves the orientation of each component and

the rigidity of each double point. This equivalence relation is called rigid vertex isotopy.

Let v be an isotopy invariant of an r-component link, which takes values in the rational

numbers Q. Then v can be uniquely extended to an r-component singular link invariant

by the Vassiliev skein relation:

(1.1) v(L×) = v(L+)− v(L−),

where L× is a singular link with x a double point and L+, L− are ones obtained

from L× by replacing x by a positive crossing and a negative crossing, respectively; see

Fig. 1. Let Ln = Lx1,x2,...,xn
be a singular link with n double points x1, x2, . . . , xn, and

Lx1(ǫ1),x2(ǫ2),...,xn(ǫn) be a non-singular link obtained from Ln by replacing each double

point xi by a positive crossing xi(+) or a negative crossing xi(−). We see that v(Ln) is

a linear combination of the v-values of 2n links:

(1.2) v(Ln) =
∑

ǫi=±

(−1)µ(ǫ)v(Lx1(ǫ1),x2(ǫ2),...,xn(ǫn)),

where µ(ǫ) is the number of minus signs in ǫ1, ǫ2, . . . , ǫn; cf. [B2, (2)].

Fig. 1

We call v a Vassiliev (finite-type) link invariant if it satisfies the following axiom:

(1.3) There exists an integer n such that v(L) = 0 for any singular link L with more

than n double points.

The smallest such an integer n is the order of v. In the special case of a knot, this reduces

to Vassiliev’s knot invariant. Stanford [S1] introduces one more axiom in order to relate
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the values of v on links with different number of components, which we do not adopt in

this paper.

The following is an immediate consequence of (1.1).

Proposition 1. The value of a Vassiliev invariant of a singular link shown in Fig. 2

is zero.

Fig. 2

The n-configuration which an r-component singular link with n double points respects

is the n pairs of points on oriented r circles; cf. [BL, p. 240; B1, p. 273; B2, p. 4]. We use

a chord-diagram of order n to represent it, that is, oriented r circles with n chords joining

the paired points as in Figs. 4-6. We shall not distinguish strictly a chord-diagram from

a configuration.

The following is due to Stanford [S1, Proposition 1.1]; cf. [B1, Lemma 1; B2, Propo-

sition 1].

Proposition 2. Two r-component singular links with n double points become equiv-

alent after an appropriate series of crossing changes if and only if they respect the same

n-configuration.

In particular, any r-component link becomes trivial after an appropriate series of

crossing changes. Thus we have

Proposition 3. A Vassiliev link invariant of order 0 is a locally constant map (i.e.

it depends only on the number of components).

The singular link shown in Fig. 2 respects the configuration given in Fig. 3, which we

call inadmissible. A configuration is called admissible if it is not inadmissible. Thus for

any inadmissible configuration, there is a singular link respecting it whose value of any

Vassiliev link invariant is zero. (For a singular knot, such an immersion is called a good

model in [BL, p. 242].)

Fig. 3

Now we consider calculating a Vassiliev link invariant of a singular link with fixed

number of components. Let us suppose that we have made a list of the distinct admissible

j-configurations αj
i ; 1 ≤ i ≤ sj , j = 1, 2, . . ., and chosen, for each αj

i , a singular link

M j
i respecting it. By Proposition 2, using a resolution tree, the value of a Vassiliev

link invariant of a singular link is given as follows (cf. [LM, Proof of Theorem 2.4; B2,

Proposition 2]):

Proposition 4. Let v be a Vassiliev link invariant of order ≤ m, and Ln a singular

link respecting the admissible n-configuration αn
p , n ≤ m. Then

v(Ln) ≡ v(Mn
p ),
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where “≡” denotes equality up to a Z-linear combination of v(M j
i ), 1 ≤ i ≤ rj , n+ 1 ≤

j ≤ m. In particular , if m = n, then “≡” is “=”, and so the v-value of a singular link

with n double points depends only on its configuration.

Let v be a Vassiliev invariant of order ≤ n, and αn an n-configuration. Then by virtue

of this proposition, we define v(αn) by the v-value of any singular link respecting αn.

Since any 1-configuration is inadmissible, we have (cf. [CD, Examples 1.2.2 and 1.2.3]):

Proposition 5. A Vassiliev knot invariant of order ≤ 1 is a constant map; V0 = V1.

There are linear relations among the v-values of singular links. It is known [V, S1,

BN] that the finite set of 4-term relations suffice to determine a Vassiliev link invariant

of order m. Thus we can find a consistent set of rational numbers {v(M j
i )|1≤ i≤sj, j=

1, 2, . . . ,m} such that we can determine an invariant; this assignment is called an actuality

table for a Vassiliev link invariant. The method for making an actuality table for a knot

is explained in [BL, B2].

2. The HOMFLY polynomial. The HOMFLY polynomial P (L; t, z) ∈ Z[t±1, z±1]

[FYHLMO, PT] is an invariant of a link L, which is defined, as in [J], by the following

formulas:

P (U ; t, z) = 1;(2.1a)

t−1P (L+; t, z)− tP (L−; t, z) = zP (L0; t, z),(2.1b)

where L+, L−, L0 are three links that are identical except near one point where they are

as in Fig. 1; L+ is obtained from L− by changing the crossing, and L0 is obtained by

smoothing the crossing.

By [LM, Proposition 22], the HOMFLY polynomial of an r-component link L =

K1 ∪K2 ∪ . . . ∪Kr is of the form

(2.2) P (L; t, z) =
N
∑

i=1

P2i−1−r(L; t)z
2i−1−r,

where P2i−1−r(L; t) ∈ Z[t±1] is called the (2i−1−r)th coefficient polynomial of P (L; t, z)

and the powers of t which appear in it are either all even or odd, depending on whether

r is odd or even. Let P
(ℓ)
k (L; t) be the ℓth derivative of Pk(L; t). Note that P

(ℓ)
k (L;−t) =

(−1)k+ℓP
(ℓ)
k (L; t). By [Kw, Lemma 1.7], if 1 ≤ i ≤ r − 1, then P2i−1−r(L; t) is divisible

by (t−1 − t)r−i. In particular, by [LM, Proposition 22],

(2.3) P1−r(L; t) = t2λ(t−1 − t)r−1
r
∏

j=1

P0(Kj ; t),

where λ is the total linking number of L defined by λ =
∑

i<j lk(Ki,Kj), and for a knot

K, P0(K; 1) = 1. Thus we have

Proposition 6. If L is an r-component link , r ≥ 2, then

P
(mi)
2i−1−r(L; 1) =

{

(r − 1)!(−2)r−1 if i = 1, m1 = r − 1;
0 if 1 ≤ i ≤ r − 1, 0 ≤ mi ≤ r − i− 1.
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Lemma 1. P
(ℓ)
k (L; 1) is a Vassiliev link invariant of order less than or equal to

max{k + ℓ, 0}.

P r o o f. First we prepare the formula (2.5) below. The equation (2.1b) implies

(2.4) Pk(L+; t)− Pk(L−; t) = (t2 − 1)Pk(L−; t) + tPk−1(L0; t).

Differentiating the both sides ℓ times, we obtain

P
(ℓ)
k (L+; t)− P

(ℓ)
k (L−; t)

= (t2 − 1)P
(ℓ)
k (L−; t) + 2ℓtP

(ℓ−1)
k (L−; t) + ℓ(ℓ− 1)P

(ℓ−2)
k (L−; t)

+ tP
(ℓ)
k−1(L0; t) + ℓP

(ℓ−1)
k−1 (L0; t).

Substituting t = 1, this becomes

P
(ℓ)
k (L+; 1)− P

(ℓ)
k (L−; 1)(2.5)

= 2ℓP
(ℓ−1)
k (L−; 1) + ℓ(ℓ− 1)P

(ℓ−2)
k (L−; 1) + P

(ℓ)
k−1(L0; 1) + ℓP

(ℓ−1)
k−1 (L0; 1).

We use induction on k + ℓ. If k+ ℓ ≤ 0, then the lemma follows from Prosposition 5.

Suppose that the lemma is true for k + ℓ < n. Let Ln+1
× be a singular link with n + 1

double points x1, x2, . . . , xn, xn+1, and L
n
+, L

n
−, L

n
0 be three singular links with n double

points obtained from Ln+1
× ; Ln

+ and Ln
− by changing xn+1 to a positive crossing xn+1(+)

and a negative crossing xn+1(−), respectively, and Ln
0 by smoothing xn+1.

From (1.2), we have

P
(ℓ)
k (Ln+1

× ; 1) =
∑

ǫ=(ǫ1,...,ǫn,ǫn+1)

(−1)µ(ǫ)P
(ℓ)
k (Lx,xn+1(ǫn+1); 1)

=
∑

ǫ′=(ǫ1,...,ǫn)

(−1)µ(ǫ
′)
(

P
(ℓ)
k (Lx,xn+1(+); 1)− P

(ℓ)
k (Lx,xn+1(−); 1)

)

,

where x = (x1(ǫ1), x2(ǫ2), . . . , xn(ǫn)). Using (2.5), this becomes

P
(ℓ)
k (Ln+1

× ; 1)

=
∑

ǫ′=(ǫ1,...,ǫn)

(−1)µ(ǫ
′)
(

2ℓP
(ℓ−1)
k (Lx,xn+1(−); 1) + ℓ(ℓ− 1)P

(ℓ−2)
k (Lx,xn+1(−); 1)

+P
(ℓ)
k−1(Lx,xn+1(0); 1) + ℓP

(ℓ−1)
k−1 (Lx,xn+1(0); 1)

)

.

Again using (1.2), we have

(2.6) P
(ℓ)
k (Ln+1

× ; 1)

= 2ℓP
(ℓ−1)
k (Ln

−; 1) + ℓ(ℓ− 1)P
(ℓ−2)
k (Ln

−; 1) + P
(ℓ)
k−1(L

n
0 ; 1) + ℓP

(ℓ−1)
k−1 (Ln

0 ; 1).

If k + ℓ = n, then by the inductive hypothesis, the right-hand side is zero, thereby

completing the proof.

If k + ℓ = n+ 1, then (2.6) implies the recursion formula:

(2.7) P
(ℓ)
k (αn+1) = 2ℓP

(ℓ−1)
k (αn

−) + P
(ℓ)
k−1(α

n
0 ),
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where αn+1, αn
−, α

n
0 are the configurations respecting Ln+1

× , Ln
−, L

n
0 , respectively. Regard

αn+1, αn
−, α

n
0 as chord-diagrams. Then αn

− is obtained from αn+1 by deleting the chord

c corresponding to the double point xn+1, and αn
0 is obtained from αn+1 by chainging

the chord c as in Fig. 4. Thus the P
(ℓ)
k -value of any configuration of order k + ℓ is given

as a Z-linear combination of P
(r)
−r (U

r+1; 1), which is equal to r!(−2)r by Proposition 6.

Fig. 4

Example 1. Let σ2 and τ1 be the chord-diagrams shown in Fig. 5. Deleting a chord

from σ2, it becomes inadmissible. So using (2.7), we have

P
(2)
0 (σ2) = P

(2)
−1 (τ

1) = 4P
(1)
−1 (U

2) = −8.

Fig. 5

The Conway polynomial ∇L(z) ∈ Z[z] [C] of an oriented r-component link L is given

by

∇L(z) = P (L; 1, z),

and is of the form

∇L(z) =
N
∑

i=0

ar+2i−1(L)z
r+2i−1,

where ar+2i−1(L) ∈ Z.

From Lemma 1, an(L)(= P
(0)
n (L; 1)) is a Vassiliev link invariant of order ≤ n. The

recursion formula, which follows from (2.7), is easy:

(2.8) an(α
n) = an−1(α

n−1
0 ).

Since

a0(U
r) =

{

1 if r = 1;
0 if r > 1,

the an-value of any n-configuration is either 1 or 0.

Example 2. Let σn and τn−1 be the chord-diagrams shown in Fig. 6. Applying (2.8),

we have

an(σ
n) = an−1(τ

n−1) = an−2(σ
n−2).
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Since a1(σ
1) = 0 and a0(σ

0) = a0(U) = 1, we obtain

an(σ
n) = an−1(τ

n−1) =
{

1 if n is even;
0 if n is odd.

Fig. 6

Let An
i , n ≥ 2, 1 ≤ i ≤ n − 1, be an n-configuration for a circle and Bn

i , n ≥ 1,

1 ≤ i ≤ n, be one for two circles, which are represented by the chord-diagrams shown in

Figs. 7(a) and 7(b), respectively.

Fig. 7

Lemma 2. Suppose that n = k + ℓ.

(i) P
(ℓ)
k (An

i ) =







(i− 1)!2i−1 if ℓ = i− 1;
−(i+ 1)!2i+1 if ℓ = i+ 1;
0 otherwise,

where k = 0, 2, . . . , 2[n/2].

(ii) P
(ℓ)
k (Bn

i ) =







(i− 1)!2i−1 if ℓ = i− 1;
−(i+ 1)!2i+1 if ℓ = i+ 1;
0 otherwise,

where k = −1, 1, . . . , 2[(n+ 1)/2]− 1.

P r o o f. First, we consider the case i = 1. In the same way as Example 1, we have

P
(ℓ)
k (An

1 ) = P
(ℓ)
k−1(B

n−1
1 ) = P

(ℓ)
k−2(A

n−2
1 ).

So if i = 1, the lemma is true by Examples 1 and 2.

Suppose that i > 1. Applying (2.7), we have

P
(ℓ)
k (An

i ) = 2ℓP
(ℓ−1)
k (An−1

i−1 ), P
(ℓ)
k (Bn

i ) = 2ℓP
(ℓ−1)
k (Bn−1

i−1 ),
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which are equal to

2i−1 ℓ!

(ℓ− i+ 1)!
P

(ℓ−i+1)
k (An−i+1

1 );

2i−1 ℓ!

(ℓ− i+ 1)!
P

(ℓ−i+1)
k (Bn−i+1

1 ),

respectively. From the i = 1 case, we obtain the results.

Let γn−1 be an (n−1)-configuration, and c1 and c2 be its two chords. Let γni , i = 1, 2,

be an n-configuration obtained from γn−1 by adding a new chord parallel to ci as shown

in Fig. 8. Applying (2.7) and (2.8), we have immediately

Proposition 7. If k + ℓ = n, then

P
(ℓ)
k (γn1 ) = P

(ℓ)
k (γn2 ).

In particular ,

an(γ
n
1 ) = an(γ

n
2 ) = 0.

Fig. 8

Let An(i1, i2, . . . , ip) be an n-configuration represented by the chord-diagram shown

in Fig. 9, where p is even, i1+ i2+ · · ·+ ip = n, and i1, i2, . . . , ip ≥ 1. When p = n− j+1,

i1 = i2 = . . . = in−j = 1 and in−j+1 = j, it coincides with An
j . Therefore, Proposition 7

implies that if k + ℓ = n, then

(2.9) P
(ℓ)
k (An(i1, i2, . . . , in−j+1)) = P

(ℓ)
k (An

j ).

Fig. 9

3. The Jones polynomial. The Jones polynomial V (L; t)∈Z[t±1/2] [J] of an ori-

ented link L is given by

(3.1) V (L; t) = P (L; t, t1/2 − t−1/2).
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The aim of this section is to prove the following:

Theorem 1. V (n)(L; 1) is a Vassiliev link invariant of order n.

Noting that

(3.2) V (L; 1) = (−2)r−1

for an r-component link L [J, (12.1)], we can prove the following in the same way as

Lemma 1.

Lemma 3. V (n)(L; 1) is a Vassiliev link invariant of order less than or equal to n.

From the proof of Lemma 3, we get the recursion formula which is similar to (2.7)

and (2.8):

(3.3) V (n+1)(αn+1) = 2(n+ 1)V (n)(αn
−) + (n+ 1)V (n)(αn

0 ),

where αn+1, αn
−, α

n
0 are the same as in (2.7). Using (3.2) and (3.3), we may calculate the

V (n)-values of the configurations given in Fig. 7 (cf. Lemma 2):

Lemma 4.

V (n)(An
i ) = V (n)(Bn

i ) = −3 · 2i−1(n!).

Using this, we obtain an analogous result to Proposition 7:

Proposition 8.

V (n)(γn1 ) = V (n)(γn2 ) = 2nV (n−1)(γn−1).

This yields an analogous formula to (2.9):

(3.4) V (n)(An(i1, i2, . . . , in−j+1)) = V (n)(An
j ).

Let αn be an n-configuration, and αn ⊔ U denote the n-configuration represented by

the disjoint union of αn and a circle. Then we have:

Lemma 5.

V (n)(αn ⊔ U) = −2V (n)(αn).

P r o o f. If L is a link, then

V (L ⊔ U ; t) = (−t1/2 − t−1/2)V (L; t),

and so

V (n)(L ⊔ U ; t) =

n
∑

i=0

(−t1/2 − t−1/2)(i)V (n−i)(L; t).

By Lemma 3, if k < n, then

V (k)(αn) = 0,

and thus we obtain the result.

P r o o f o f T h e o r em 1. By Lemma 3, it suffices to show that there exists an

n-configuration αn for r circles such that V (n)(αn) 6= 0 for each n and r. Lemma 4 shows

this for r = 1, 2. Note that V1 = V0. For r > 2, we have

V (n)(Bn
i ⊔ U r−2) =

(

−3 · 2i−1(n!)
)

(−2)r−2 6= 0

by Lemmas 4 and 5, and thus the proof is complete.
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Rema r k. Melvin and Morton [MM] prove Theorem 1 for a knot using the configu-

ration An
n−1.

4. The product of Vassiliev link invariants. Let v and w be Vassiliev link in-

variants. Then the product v · w is defined by (v · w)(L) = v(L)w(L), for a non-singular

link L.

Lemma 6. Let Ln = Lx1(×),x2(×),...,xn(×) be a singular link with n double points x1(×),

x2(×), . . ., xn(×). Then

(v · w)(Ln) =
∑

(ǫi,ǫ′i)

v(Lx1(ǫ1),x2(ǫ2),...,xn(ǫn))w(Lx1(ǫ′1),x2(ǫ′2),...,xn(ǫ′n)
),

where each pair (ǫi, ǫ
′
i) is either (+,×) or (×,−), and the sum runs over the 2n possible

choices.

P r o o f. We prove by induction on n. When n = 0, the lemma is just the definition.

Suppose that the lemma is true for n. By the Vassiliev skein relation (1.1), we have

(v · w)(Lx1(×),x2(×),...,xn(×),xn+1(×))

= (v · w)(Lx1(×),x2(×),...,xn(×),xn+1(+))− (v · w)(Lx1(×),x2(×),...,xn(×),xn+1(−)).

By the inductive hypothesis, this becomes:
∑

(ǫi,ǫ′i)

v(Lx,xn+1(+))w(Lx′,xn+1(+))−
∑

(ǫi,ǫ′i)

v(Lx,xn+1(−))w(Lx′,xn+1(−)),

where x = (x1(ǫ1), x2(ǫ2), . . . , xn(ǫn)) and x
′ = (x1(ǫ

′
1), x2(ǫ

′
2), . . . , xn(ǫ

′
n)). This is equal

to
∑

(ǫi,ǫ′i)

(

v(Lx,xn+1(+))w(Lx′,xn+1(+))− v(Lx,xn+1(−))w(Lx′,xn+1(−))
)

=
∑

(ǫi,ǫ′i)

(

v(Lx,xn+1(+))w(Lx′,xn+1(+))− v(Lx,xn+1(+))w(Lx′,xn+1(−))

+v(Lx,xn+1(+))w(Lx′,xn+1(−))− v(Lx,xn+1(−))w(Lx′,xn+1(−))
)

=
∑

(ǫi,ǫ′i)

(

v(Lx,xn+1(+))
(

w(Lx′,xn+1(+))− w(Lx′,xn+1(−))
)

+
(

v(Lx,xn+1(+))− v(Lx,xn+1(−))
)

w(Lx′,xn+1(−))
)

.

Again from the Vassiliev skein relation, this becomes
∑

(ǫi,ǫ′i)

(

v(Lx,xn+1(+))w(Lx′,xn+1(×)) + v(Lx,xn+1(×))w(Lx′,xn+1(−))
)

=
∑

(ǫi,ǫ′i)

v(Lx,xn+1(ǫn+1))w(Lx′,xn+1(ǫ′n+1
)).

We have completed the proof of Lemma 6.
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This lemma implies immediately the following, which is proved for a knot by Lin

(unpublished) and Bar-Natan [BN].

Theorem 2. If v and w are Vassiliev link invariants of orders less than or equal to p

and q, respectively, then the product v · w is a Vassiliev link invariant of order less than

or equal to p+ q.

Let αp+q be a chord-diagram of order p + q for r circles, and C the set of its p + q

chords. For a subset S of C with #S = p, let αp
S denote a chord-diagram of order p

consisting of r circles and the chords in S.

Proposition 9. Let v and w be Vassiliev link invariants of orders p and q, respectively.

Then

(v · w)(αp+q) =
∑

S⊔S̄=C

v(αp
S)w(α

q

S̄
),

where S ⊔ S̄ is the disjoint union of S and S̄.

P r o o f. This follows from Lemma 6 when n = p+ q.

Example 3. We calculate a22(= a2 · a2), the square of a2, the coefficient of z2 in the

Conway polynomial. Let α4 be a chord-diagram for a circle with C = {c1, c2, c3, c4} a set

of its chords. Applying Proposition 9, we have

a22(α
4)

= 2
(

a2(α
2
{c1,c2}

)a2(α
2
{c3,c4}

) + a2(α
2
{c1,c3}

)a2(α
2
{c2,c4}

) + a2(α
2
{c1,c4}

)a2(α
2
{c2,c3}

)
)

.

Using this, we obtain the following:

a22(σ
4) = 6a2(σ

2)2 = 6;

a22(A
4
1) = 2a2(σ

2)2 = 2;

a22(A
4
3) = 0;

a22(A
4(2, 2)) = 4a2(σ

2)2 = 4,

where σ2 and σ4 are given in Figs. 5 and 6 (Exapmles 1 and 2), A4
1 and A4

3 in Fig. 7, and

A4(2, 2) in Fig. 9.

R ema r k. Hoste [H] gives a formula for ar−1(L) with L an r-component link in terms

of the linking numbers; more precisely, ar−1(L) is a polynomial of degree r − 1 in the

linking numbers of the sublink of L. In particular, if r = 2, then a1(L) is the linking

number of L (cf. [Kf, p. 24]). By Theorem 2 and the result in [S2], we see that ar−1(L)

is a Vassiliev invariant of order less than or equal to r − 1.

5. Vassiliev knot invariants of order ≤ 4. In this section, we study a Vassiliev

knot invariant of order≤ 4, making use of the result of Birman and Lin [BL, Example 3.9].

The only admissible 2-configuration is σ2 shown in Fig. 5, which are denoted by the

symbol 22 in [BL]. LetM2 be the singular knot of order 2 shown in Fig. 10 respecting it.

There are two admissible 3-configurations: A3
2 (Fig. 7) and σ3 (Fig. 6). In [BL], they

are denoted by the symbols 232 and 333, respectively, and it is shown that if v3 is a
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Fig. 10

Vassiliev invariant of order 3, then

(5.1) v3(σ
3) = 2v3(A

3
2).

Let M3
1 and M3

2 be the singular knots of order 3 shown in Fig. 10 respecting A3
2 and σ3.

Let v be a Vassiliev knot invariant of order ≤ 4 and K be a knot. There are seven

admissible 4-configurations, and the v-value of any 4-configuration is determined by those

of the three 4-configurations A4
3, A

4(2, 2), A4
1 shown in Figs. 7 and 9. They are denoted

by the symbols 2442, 3533, and 2332, respectively in [BL]. Let M4
1 , M

4
2 , M

4
3 be the

singular knots of order 4 shown in Fig. 10 respecting them.

Therefore, Proposition 4 implies

(5.2) v(K) = [ v(U) v(M2) v(M3
1 ) v(M4

1 ) v(M4
2 ) v(M4

3 ) ]















1
p
q
r1
r2
r3















,

where p, q, r1, r2, r3 are integers.

Let 31, 41, 51, 52 be the knots in the table of [R]. We denote by K! the mirror image

of the knot K. So 31 and 31! denote the left- and right-hand trefoil knots, respectively,

and 41 is the figure-eight knot. Using the Vassiliev skein relatin (1.1), we have

(5.3) [ v(M2) v(M3
1 ) v(M4

1 ) v(M4
2 ) v(M4

3 ) ]

= [ v(U) v(31!) v(31) v(41) v(51!) v(52!) ]















−1 −2 3 −4 0
1 1 −3 1 1
0 0 0 1 0
0 1 −1 2 0
0 0 0 0 1
0 0 1 0 −2















In Table 1, we give the values of the Vassiliev invariants of order less than or equal

to 4 derived from the HOMFLY and the Jones polynomials. Many of them are already

given in Examples 1–3.
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a2 P
(2)
0 V (2) P

(1)
2

P
(3)
0
24

V
(3)

18 a4 P
(2)
2

P
(4)
0
24

V
(4)

24 a22

31! 1 −8 −6 2 −1 −1 0 2 −1 −1 1

41 −1 8 6 0 −1 −1 0 0 5 4 1

M2 1 −8 −6 2 −1 −1 0 2 −1 −1 1

M31 0 0 0 2 −2 −2 0 2 4 3 2

M41 0 0 0 0 0 0 0 8 −16 −12 0

M42 0 0 0 0 0 0 0 8 −16 −12 4

M43 0 0 0 0 0 0 1 −8 0 −3 2

Table 1

From (5.2) and Table 1, we have:













a2(K)

P
(3)
0 (K; 1)/24
a2(K)2

a4(K)

P
(4)
0 (K; 1)/24













=











1 0 0 0 0
−1 2 0 0 0
1 2 0 4 2
0 0 0 0 1
−1 4 −16 −16 0





















p
q
r1
r2
r3











,

and thus we have

(5.4)











p
q
r1
r2
r3











=











1 0 0 0 0
−1/2 −1/2 0 0 0
−3/16 −3/8 −1/4 1/2 −1/16

0 1/4 1/4 −1/2 0
0 0 0 1 0























a2(K)

P
(3)
0 (K; 1)/24
a2(K)2

a4(K)

P
(4)
0 (K; 1)/24













.

Also we have:

(5.5)





















P
(2)
0 (K; 1)

V
(2)
K (1)

P
(1)
2 (K; 1)

V
(3)
K (1)/18

P
(2)
2 (K; 1)

V
(4)
K (1)/24





















=















−8 0 0 0 0
−6 0 0 0 0
2 2 0 0 0
−1 −2 0 0 0
2 2 8 8 −8
−1 3 −12 −12 −3

























p
q
r1
r2
r3











.

Substituting (5.4) to (5.5), we obtain:

P
(2)
0 (K; 1) = −8a2(K);(5.6)

V
(2)
K (1) = −6a2(K) ([Mu1]);(5.7)

P
(1)
2 (K; 1) = a2(K)−

1

24
P

(3)
0 (K; 1) ([Mi]);(5.8)

V
(3)
K (1) =

3

4
P

(3)
0 (K; 1) ([Mi]);(5.9)

P
(2)
2 (K; 1) = −

1

2
a2(K)−

1

12
P

(3)
0 (K; 1)− 8a4(K)−

1

48
P

(4)
0 (K; 1);(5.10)

V
(4)
K (1) = −6a2(K)− 72a4(K) + 18P

(4)
0 (K; 1).(5.11)
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Combining (5.2)–(5.4), we obtain:

(5.12) v(K) = [ v(U) v(31!) v(31) v(41) v(51!) v(52!) ]X

















1
a2(K)

P
(3)
0 (K; 1)/24
a2(K)2

a4(K)

P
(4)
0 (K; 1)/24

















,

where

X =















1 −9/16 −9/8 −7/4 7/2 −3/16
0 17/16 7/8 1 −1 3/16
0 0 1/4 1/4 −1/2 0
0 −5/16 3/8 3/4 −3/2 1/16
0 0 0 0 1 0
0 −3/16 −3/8 −1/4 −3/2 −1/16















.

We consider v2, a Vassiliev knot invariant of order ≤ 2. Then (5.2) becomes

(5.13) v2(K) = v2(U) + pv2(M
2).

Then using (5.3) and (5.4), we have

(5.14) v2(K) = [ v2(U) v2(31!) ]

[

1 −1
0 1

] [

1
a2(K)

]

.

This is given in [La, Proposition 4.2.9], where V2(K) = a2(K) and v2(U) is determined

to be zero.

Next, we consider v3, a Vassiliev knot invariant of order ≤ 3. Then (5.2) becomes

(5.15) v3(K) = v3(U) + pv3(M
2) + qv3(M

3
1 ).

Then using (5.3) and (5.4), we have

(5.16) v3(K) = [ v3(U) v3(31!) v3(41) ]





1 0 1
0 1/2 −1/2
0 −1/2 −1/2









1
a2(K)

P
(3)
0 (K; 1)/24





Substituting (5.8) to (5.16), we obtain

(5.17) v3(K) = [ v3(U) v3(31!) v3(41) ]





1 1 −1
0 0 1/2
0 −1 1/2









1
a2(K)

P
(1)
2 (K; 1)



 ,

which is the first formula in [La, Proposition 4.3.10] with V3(K) = P
(1)
2 (K; 1)/2.

Substituting (5.1) to (5.2), we have

(5.18) v3(K) = v3(U) + pv3(M
2) +

q

2
v3(M

3
2 ).

Using the Vassiliev skein relation (1.1), we have

(5.19) v3(M
3
2 ) = v3(31!)− v3(31),

and thus we obtain

(5.20) v3(K) = [ v3(U) v3(31!) v3(31) ]





1 −1 0
0 3/4 −1/4
0 1/4 1/4









1
a2(K)

P
(3)
0 (K; 1)/24



 .
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Substituting (5.8) to (5.20), we obtain the second formula in [La, Proposition 4.3.10]:

(5.21) v3(K) = [ v3(U) v3(31!) v3(31) ]





1 −1 0
0 1/2 1/4
0 1/2 −1/4









1
a2(K)

P
(1)
2 (K; 1)



 .

6. A relation among P
(ℓ)
k . From (5.6), (5.8) and (5.10), we have

1

2!22
P

(2)
0 (K; 1) + a2(K) = 0;

1

3!23
P

(3)
0 (K; 1) +

1

2
P

(1)
2 (K; 1) =

1

2
a2(K);

1

4!24
P

(4)
0 (K; 1) +

1

2!22
P

(2)
2 (K; 1) + a4(K) = −

5

16
a2(K) +

1

4
P

(1)
2 (K; 1).

We can generalize these formulas. Let ϕm be a Vassiliev invariant for an r-component

link L defined by

ϕk−r+1(L) =

[k/2]
∑

i=0

1

(k − 2i)!2k−2i
P

(k−2i)
2i−r+1(L; 1).

By Lemma 1, ϕk−r+1 is a Vassiliev link invariant of order ≤ max{k− r+1, 0}. However,

we shall prove:

Theorem 3. ϕk−r+1, k = 0, 1, 2, . . ., is a Vassiliev invariant for an r-component link

of order less than or equal to max{k − r, 0}.

In order to prove Theorem 3, we study a Vassiliev link invariant of order less than or

equal to one, which may be derived from [Mu2]. The only admissible 1-configuration for

an r circles, r ≥ 2, is represented by the union of τ1 (Fig. 4) and r− 2 circles, τ1 ⊔U r−2.

Using this, we show the following:

Proposition 10. Let v be a Vassiliev invariant of order less than or equal to one for

an r-component link , r ≥ 2. Then for an r-component link L, it holds that

v(L) = v(U r) + λv(τ1 ⊔ U r−2),

where λ is the total linking number of L.

P r o o f. From Proposition 4, we have

v(L) = v(U r) +mv(τ1 ⊔ U r−2),

where m is an integer. Since V (1)(L; 1) is a Vassiliev invariant of order ≤ 1, we have

V (1)(L; 1) = V (1)(U r; 1) +mV (1)(τ1 ⊔ U r−2).

By applying (3.3), this becomes

V (1)(L; 1) = V (1)(U r; 1) + 2mV (U r; 1) +mV (U r−1; 1).

Using (3.2) and V (1)(L; 1) = −3(−2)r−2λ [J, (12.2); Mu1], we obtain

−3(−2)r−2λ = 2m(−2)r−1 +m(−2)r−2,

from which we get m = λ, and the proof is complete.
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P r o o f o f T h e o r em 3. We prove by induction on k. If k ≤ r−1, then this follows

from Lemma 1. We show that ϕ1 is of order zero. Let L be an r-component link. If r=1,

then

ϕ1(L) =
1

2
P

(1)
0 (L; 1) = 0.

Suppose that r ≥ 2. Since the order of ϕ1 is ≤ 1, from Proposition 10, we have

ϕ1(L) = ϕ1(U
r) + λϕ1(τ

1 ⊔ U r−2).

Using (2.7), we have

P
(r−2i)
2i−r+1(τ

1 ⊔ U r−2) = 2(r − 2i)P
(r−2i−1)
2i−r+1 (U r; 1) + P

(r−2i)
2i−r (U r−1; 1),

and so

ϕ1(τ
1 ⊔ U r−2) =

[r/2]
∑

i=0

(

P
(r−2i−1)
2i−r+1 (U r; 1)

(r − 2i− 1)!2r−2i−1
+
P

(r−2i)
2i−r (U r−1; 1)

(r − 2i)!2r−2i

)

,

which is zero by Proposition 6. Therefore, ϕ1 is a constant map.

From (2.2), we have

(6.1) P (L; y + 1, y) =

n
∑

i=0

P2i−r+1(L; y + 1)y2i−r+1.

We expand P2i−r+1(L; y + 1) via its Taylor series:

(6.2) P2i−r+1(L; y + 1) =

∞
∑

j=0

P
(j)
2i−r+1(L; 1)

j!
yj .

Then we obtain a power series expansion of P (L; y + 1, y):

(6.3) P (L; y + 1, y) =
∞
∑

k=0

Φk−r+1(L)y
k−r+1,

where

(6.4) Φk−r+1(L) = 2k−r+1ϕk−r+1(L).

The equation (2.1b) implies

(6.5) P (L+; y + 1, 2y)− P (L−; y + 1, 2y)

= (y2 + 2y)P (L−; y + 1, 2y) + 2(y2 + y)P (L0; y + 1, 2y).

Then from (6.3), we have

(6.6) Φℓ(L+)− Φℓ(L−) = Φℓ−2(L−) + 2Φℓ−1(L−) + 2Φℓ−2(L0) + 2Φℓ−1(L0).

Assume that Φk is a Vassiliev invariant of order ≤ max{k − 1, 0} for each k(< ℓ). Then

using (6.6), we can prove that Φℓ(L) is of order ≤ ℓ− 1 in a similar way to the proof of

Lemma 1. This completes the proof of Theorem 3.

From this theorem, for a knot K we have

[n/2]
∑

i=0

1

(n− 2i)!2n−2i
P

(n−2i)
2i (K; 1) ≡ 0

in Vn/Vn−1. Therefore, by Lemma 2 (i), we obtain:
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Theorem 4. The dimension of the subspace of Vn/Vn−1 spanned by the following

Vassiliev invariants of order n is [n/2]:

P
(n−2i)
2i (K; 1), i = 0, 1, . . . , [n/2].

Now we reconsider the Jones polynomial of a knot K. From (2.2) and (3.1), we have

V (K; t) =

N
∑

k=0

ψk(t)P2k(K; t),

where ψk(t) = (t1/2 − t−1/2)2k. Then we obtain

V (n)(K; t) =

N
∑

k=0

(

n
∑

i=0

(

n

i

)

ψ
(i)
k (t)P

(n−i)
2k (K; t)

)

.

Since

ψ
(i)
k (1) =

{

0 if i < 2k;

(−1)i i!(i−k−1)!
(i−2k)!(k−1)! if i ≥ 2k,

we obtain

V (n)(K; 1) = P
(n)
0 (K; 1) +

[n/2]
∑

k=1

(

n
∑

i=2k

(

n

i

)

ψ
(i)
k (1)P

(n−i)
2k (K; 1)

)

(6.7)

= P
(n)
0 (K; 1) +

[n/2]
∑

k=1

(

n
∑

i=2k

(−1)i
n!(i− k − 1)!

(n− i)!(i − 2k)!(k − 1)!
P

(n−i)
2k (K; 1)

)

.

In particular, we obtain

V
(2)
K (1) = P

(2)
0 (K; 1) + 2a2(K);

V
(3)
K (1) = P

(3)
0 (K; 1) + 6P

(1)
2 (K; 1)− 6a2(K);

V
(4)
K (1) = P

(4)
0 (K; 1) + 12P

(2)
2 (K; 1)− 24P

(1)
2 (K; 1) + 24a2(K) + 24a4(K),

cf. (5.6)–(5.11). Furthermore, combining with Theorem 3, we have

(6.8) V (n)(K; 1) ≡

[n/2]
∑

k=1

n!(1 − 22k)

(n− 2k)!
P

(n−2k)
2k (K; 1)

in Vn/Vn−1.

7. The link case. Let V r
n denote the vector space consisting of all Vassiliev invariants

for an r-component link of order less than or equal to n. We consider the subspace of V r
n

that is spanned by

P
(n+r−2i−1)
2i−r+1 , i = 0, 1, . . . ,

[

n+ r − 1

2

]

.

By Theorem 3, these are linearly dependent in V r
n /V

r
n−1. If r−n ≥ 3, then by Proposition

6, P
(n+r−2i−1)
2i−r+1 is a zero-map for i = n+ 1, . . . , [(n+ r − 1)/2].

Theorem 5. Let s = s(n, r) = min{n, [(n+ r − 1)/2]} and r ≥ 2. The dimension of

the subspace of V r
n /V

r
n−1 spanned by the following Vassiliev invariants of order n is s:

P
(n+r−2i−1)
2i−r+1 , i = 0, 1, . . . , s.
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We prove this theorem by making use of the space of singular links, which is dual to

the space of Vassiliev link invariants. This space, which we denote by (V r
n )

∗, is the vector

space over Q generated by equivalent classes of r-component singular links, subject to

the following relations:

L× = L+ − L−;(7.1)

L = 0 if L has more than n vertices.(7.2)

First we consider the knot case. Put

ej =
1

(n− 2j)!2n−2j
(An

n−1 +An
n−3 + · · ·+An

n−2j+1).

Then from Lemma 2 (i), we have

P
(n−2i)
2i (ej) = δij ,

where i, j = 1, 2, . . . , [n/2] and δij denotes the Kronecker delta. Namely, e1, e2, . . . , es

is the dual basis of P
(n−2)
2 , P

(n−4)
4 , . . ., P

(n−2s)
2s , where s = [n/2]. Note that P

(1)
0 is a

zero-map.

The following is analogous to Lemma 5.

Lemma 7. Suppose that k + ℓ = n. Then

P
(ℓ)
k (αn ⊔ U) = −2ℓP

(ℓ−1)
k+1 (αn).

We denote by αn ⊢ U an (n+ 1)-configuration obtained by joining αn and a circle U

with a new chord.

Lemma 8. Suppose that k + ℓ = n+ 1. Then

P
(ℓ)
k (αn ⊢ U) = −4ℓ(ℓ− 1)P

(ℓ−2)
k+1 (αn) + P

(ℓ)
k−1(α

n).

P r o o f. Applying (2.7), we have

P
(ℓ)
k (αn ⊢ U) = 2ℓP

(ℓ−1)
k (αn ⊔ U) + P

(ℓ)
k−1(α

n).

Using Lemma 7, we obtain the result.

P r o o f o f T h e o r em 5. It is sufficient to prove: There exist vectors ej in (V r
n )

∗

such that

P
(n+r−2i−1)
2i−r+1 (ej) = δij , P

(n+r−1)
1−r (e1) 6= 0,

where i, j = 1, 2, . . . , s.

We shall use induction on r (≥ 2). Put

ej =
1

(n− 2j + 1)!2n−2j+1
(Bn

n +Bn
n−2 + · · ·+Bn

n−2j+2).

Then from Lemma 2 (ii), we have

P
(n−2i+1)
2i−1 (ej) = δij ,

where i, j = 1, 2, . . . , [(n+ 1)/2]. Also

P
(n+1)
−1 (e1) =

−(n+ 1)!2n+1

(n− 1)!2n−1
= −4n(n+ 1).

Thus the statement holds for r = 2.
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Suppose that the statement holds for an r-component singular link. Put s = s(n, r).

We have two cases:

(i) s(n, r + 1) = s.

(ii) s(n, r + 1) = s+ 1.

Case (i). First note that n+ r is odd. Using Lemma 7, we have

P
(n+(r+1)−2i−1)
2i−(r+1)+1 (ej ⊔ U) = P

(n+r−2i)
2i−r (ej ⊔ U)

= −2(n+ r − 2i)P
(n+r−2i−1)
2i−r+1 (ej)

= −2(n+ r − 2i)δij;

P
(n+(r+1)−1)
1−(r+1) (e1 ⊔ U) = P

(n+r)
−r (e1 ⊔ U)

= −2(n+ r)P
(n+r−1)
1−r (e1)

6= 0,

where i, j = 1, 2, . . . , s. Thus

−1

2(n+ r − 2j)
(ej ⊔ U), j = 1, 2, . . . , s

is the desired vectors in (V r+1
n )∗.

Case (ii). The codition yields that n+ r is even and n ≥ (n+ r)/2 = s+1. We have

P
(n+(r+1)−2i−1)
2i−(r+1)+1 (ej ⊔ U)

=







−2(n+ r − 2i)δij if i, j = 1, 2, . . . , s;

−2(n+ r)P
(n+r−1)
1−r (e1)(6= 0) if i = 0, j = 1;

P
(0)
n (ej ⊔ U) = 0 if i = s+ 1, j = 1, 2, . . . , s.

Since s(n − 1, r) = s, by the inductive hypothesis, there exists f ∈ (V r
n−1)

∗ such that

P
(0)
n−1(f) = 1. Then using Lemma 8, we have P

(0)
n (f ⊢ U) = P

(0)
n−1(f) = 1. Thus from

ej ⊔ U (j = 1, 2, . . . , s) and f ⊢ U , we can construct desired set of vectors in (V r+1
n )∗.
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Math. (2) 39 (1993), 295–316.

[LM] W. B. R. Lickorish, and K. C. Mil lett, A polynomial invariant of oriented

links, Topology 26 (1987), 107–141.

[MM] P. Melvin and H. R. Morton, The coloured Jones function, Commun. Math.

Phys. 169 (1995), 501–520.

[Me] G. Meng, Bracket models for weight systems and the universal Vassiliev invari-

ants, Topology Appl. 76 (1997), 47–60.

[Mi] Y. Miyazawa, The third derivative of the Jones polynomial , J. Knot Theory

Ramifications, (to appear).

[Mu1] H. Murakami, On derivatives of the Jones polynomial , Kobe J. Math. 3 (1986),

61–64.

[Mu2] H. Murakami, Vassiliev type invariant of order two for a link , Proc. Amer.

Math. Soc. 124 (1996), 3889–3896.

[N] K. Y. Ng, Groups of ribbon knots, preprint.

[PT] J. H. Przytycki and P. Traczyk, Invariants of links of Conway type, Kobe J.

Math. 4 (1987), 115–139.

[R] D. Rolfsen, Knots and Links, Lecture Series no. 7, Publish or Perish, Berkeley,

1976.

[S1] T. Stanford, Finite-type invariants of knots, links, and graphs, Topology 35

(1996), 1027–1050.

[S2] T. Stanford, The functoriality of Vassiliev-type invariants of links, braids, and

knotted graphs, J. Knot Theory Ramifications 3 (1994), 247–262.

[V] V. A. Vassi l iev, Cohomology of knot spaces, Theory of Singularities and its

Applications (V. I. Arnold, ed.), Advances in Soviet Mathematics, Vol. 1, Amer.

Math. Soc., Providence, RI, 1990, pp. 23–69.


