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Abstract. This paper discusses Penrose spin networks in relation to the bracket polynomial.

1. Introduction. This paper is an introduction to the relationship between Penrose

spin networks and the bracket polynomial. The paper is organised as follows. Section 2

recalls the bracket model for the Jones polynomial invariant of knots and links. In Section

3 we show how the bracket state model is a natural generalization of the original Penrose

spin networks, and how this model is related to the quantum group corresponding to

SL(2, C). In particular, we show how the binor identity of the spin networks, the skein

identity of the bracket polynomial (at a special value) and the trace identity

tr(AB) + tr(AB−1) = tr(A)tr(B)

of SL(2, C) are really all the same. The section continues with a discussion of the role of

these generalized networks in low dimensional topology. In particular we discuss the rela-

tionship of these nets with the evaluation of the Witten-Reshetikhin-Turaev invariant of

3-manifolds and corresponding relations with quantum gravity theories (Regge-Ponzano

in 2+1 and Ashtekar-Smolin-Rovelli in 3+1).

Acknowledgements. It gives the author pleasure to thank the National Science

Foundation for support of this research under NSF Grant DMS-2528707.

2. Recalling the bracket state summation and the Jones polynomial. The

bracket state summation [10], [11], is a model for the original Jones polynomial [9] as a

partition function defined in terms of combinatorial states of the link diagram.

This partition function will be referred to as the bracket state model for the Jones

polynomial. It is the purpose of this section to describe the bracket model. The next

section will show how this model is a perspicuous generalisation of the binor calculus of
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Roger Penrose [17]. The binor calculus forms the underpinning of the Penrose theory of

spin networks [18], and is directly related to the group SL(2, C).

The bracket polynomial is based on the structure of the two smoothings at a crossing

in a knot diagram. At a given crossing there are four local regions. Call two out of the

four local regions a pair if they meet only at the vertex. Call the pair that are swept out

by a counterclockwise turn of the overcrossing a line the A-pair . Call the remaining pair

the B-pair . The A-smoothing is the smoothing that joins the local regions of the A-pair.

The B-smoothing is the smoothing that joins the local regions of the B-pair. See Figure 1

for an illustration of this basic distinction.

Fig. 1. Smoothings and bracket expansion

The three-variable bracket polynomial is defined on link diagrams by the following

formulas:

1. 〈K〉 = A〈K1〉+B〈K2〉 where K1 and K2 are two diagrams obtained from a given

crossing in K by smoothing the crossing in the two possible ways illustrated in Figure 1.

with an A-smoothing in K1 and a B-smoothing in K2.
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2. 〈K⊔
D〉 = d〈K〉 where D denotes any Jordan curve that is placed into the com-

plement of the diagram K in the plane.

3. 〈D〉 = 1 for any Jordan curve D in the plane.

Here the small diagrams stand for otherwise identical parts of larger diagrams, and

the second formula means that any Jordan curve disjoint from the rest of the diagram

contributes a factor of d to the polynomial. This recursive description of the bracket is

well-defined so long as the variables A, B and d commute with one another.

The bracket can be expressed as a state summation where the states are obtained by

smoothing the link diagram in one of two ways at each crossing. A smoothing of type A

contributes a vertex weight of A to the state sum. A smoothing of type B contributes

a vertex weight of B to the state sum. The norm of a state S, denoted ||S||, is defined

to be the number of Jordan curves in S. It then follows that the bracket is given by the

formula

〈K〉 = ΣS〈K|S〉d||S||−1.

where the summation is over all states S of the diagram K, and 〈K|S〉 denotes the

product of the vertex weights for the state S of K.

In the variables A, B and d the bracket polynomial is not invariant under the Reide-

meister moves. However the following Lemma provides the clue to finding a specialization

of the polynomial that is an invariant of regular isotopy, the equivalence relation gener-

ated by the second and third Reidemeister moves [20].

Lemma. Let K∗∗ denote a diagram with the local configuration shown in Figure 2.

Let Kv and Kh denote the two local smoothings of this configuration as shown also in

Figure 2. Then

〈K∗∗〉 = AB〈Kv〉+ (ABd+A2 +B2)〈Kh〉.
P r o o f. The proof is illustrated in Figure 2.

Since Kv is obtained from K∗∗ by a second Reidemeister move, it follows that 〈K〉
can be made invariant under the second Reidemeister move if we take B = A−1, and

d = −A2 − A−2. In fact, with this specialization, 〈K〉 is also invariant under the third

Reidemeister move, and it behaves multiplicatively under the first Reidemeister move.

This allows the normalization

fK = (−A3)−w(K)〈K〉.

fK is an invariant of ambient isotopy for links in three space. Here w(K) is the sum of

the signs of the crossings of the oriented link K.

Theorem [10]. fK(t−1/4) = VK(t) where VK(t) is the original Jones polynomial [9].

3. Spin networks. The original Penrose spin networks [17], [18] were devised to

create a diagrammatic and combinatorial substrate for the recoupling theory of quantum

mechanical angular momentum. The key to this diagrammatics is a system of abstract

tensors based on the properties of a classical epsilon (the definition will be given below)

and adjusted to obtain topological invariance under planar deformations of the diagrams.
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It is this adjustment in the direction of topological invariance that makes these networks

a special case of the bracket state model for the Jones polynomial [12].

Fig. 2. Bracket invariance

The classical epsilon is defined by the equations ǫ12 = 1, ǫ21 = −1 and ǫij = 0 if

i = j. The indices are in the set {1, 2}. Note that the Kronecker delta is defined by the

equation δab = δab = δba = 1 if a = b and 0 if a 6= b. Epsilons and deltas are related by

the fundamental equation

ǫabǫcd = δac δ
b
d − δadδ

b
c .

We shall refer to this equation as the epsilon identity. It is natural to diagram this relation

by letting a vertical line represent a single Kronecker delta, a cup (a local minimum, see

Figure 3) represent an epsilon with upper indices, a cap (a local maximum, see Figure 3)

represent an epsilon with lower indices. Note that in such a convention δac δ
b
d is represented

by vertical parallel lines, while δadδ
b
c is represented by vertical crossed lines. The key to

topological invariance is that the cups and the caps should satisfy the cancellation to a

delta as in

CAPaiCUP
ib = δba
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(with implicit summation over i). This is accomplished in this formalism with

CAPab = iǫab, CUP ab = iǫab.

Here i2 = −1. Finally it is convenient to introduce a minus sign at the the crossing of two

diagrammatic lines. With these conventions we obtain the binor identity as illustrated in

Figure 3.

Fig. 3. Epsilons and the binor identity

Notational warning. We have used i both as a matrix index and as the notation for

the square root of minus one. This difference is clear from context - the square root of

minus one never occurs as an index, the index i never occurs as a separate variable!

The reader will note that the binor identity is exactly the exchange identity for the

bracket polynomial when A = −1 = B and d = −A2 −A−2 = −2. Note particularly that

the loop value -2 coincides with the loop value in abstract tensors as shown in Figure 3.

This loop value is ΣabCUP
abCAPab = −1 − 1 = −2 The binor identity is the basis of

the original Penrose spin nets.
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The use of the epsilon tensor in the spin networks is directly related to the group

SL(2, C). The algebraic reason for this is that for any 2 × 2 matrix P with commuting

entries,

PǫP t = det(P )ǫ

where ǫ is regarded as a 2 × 2 matrix, and P t denotes the transpose of the matrix P .

Thus SL(2, C) is the set of 2× 2 matrices P over C such that

PǫP t = ǫ.

The ǫ identity that is at the basis of the binors is then easily seen to be the source of the

following fundamental lemma about SL(2, C):

Lemma. If A and B are matrices in SL(2, C) and tr denotes the standard matrix

trace, then

tr(AB) + tr(AB−1) = tr(A)tr(B).

P r o o f. In this proof we will use the Einstein summation convention for repeated

indices (i.e. we sum over all values in the index set {1, 2} whenever an index occurs twice

in a given expression). Note that if A is in SL(2, C), then

AǫAt = ǫ.

Note that

ǫ−1 = −ǫ.
Therefore

A = −ǫ(At)−1ǫ.

Hence

tr(AB) = AikBki = −Airǫrs((B
t)−1)slǫli = −Air((B

t)−1)sl(ǫrsǫli)

= −Air((B
t)−1)sl(δrlδsi − δriδsl)

= −Air((B
t)−1)slδrlδsi +Air((B

t)−1)slδriδsl

= −Ail((B
t)−1)il +Aii((B

t)−1)ll = −tr(AB−1) + tr(A)tr(B−1).

This completes the proof.

R ema r k. This lemma shows that the SL(2) identity tr(AB)+tr(AB−1)=tr(A)tr(B)

is essentially a matrix algebraic expression of the binor identity, and hence equivalent to

the corresponding identity for the bracket polynomial at the special value A = −1. This

explains the relationship of the bracket polynomial with SL(2, C) that is found in the work

of Bullock [1]. It also suggests the possibility of generalising Bullock’s work to the corre-

sponding quantum group, just as the introduction to the variable A into the bracket poly-

nomial corresponds to the movement from SL(2, C) to the quantum group (See [13] for

more details on the relationship of the bracket polynomial to the SL(2) quantum group.)

In Figure 4 we illustrate how a deformation of the epsilon matrix, via the variable A,

leads to a model of the bracket polynomial. It is customary to call this a q-deformation

where
√
q = A. In the deformation, ǫ is replaced by ǫ̃, a matrix that is a function of A.
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The quantum group SL(2)q arises by generalising the equation PǫP t = ǫ to

P ǫ̃P t = ǫ̃ and P tǫ̃P = ǫ̃.

The entries of P become elements of a non-commutative algebra. It is this algebra that is

called SL(2)q. As illustrated in Figure 4, the binor identity generalises to the smoothing

identity for the bracket polynomial, and the crossing of lines deforms to the under or over

crossing of strands in a knot diagram.

Fig. 4. Bracket polynomial and deformed epsilons

3.1. Classical spin networks . This subsection is a quick resume of the classical theory

of (Penrose) spin networks. As we have seen, the binor identity (Figure 3) can be regarded

as an expression of the basic epsilon identity

ǫabǫcd = δac δ
b
d − δadδ

b
c .

In the binor expression for the epsilon identity the diagrams can be manipulated topo-

logically in the plane, without changing the values of the corresponding evaluations. The

topological manipulation that we refer to is regular homotopy augmented by a projection
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of the first Reidemeister move. This provides the basis for a more complex theory of

network evaluations.

A key ingredient in the full theory is the use of network lines that stand for multi-

plicities of parallel strands. Such a line is labelled with a positive integer to indicate the

multiplicity of strands. Then permutations , symmetrizers and antisymmetrizers are in-

troduced. A permutation takes the form of the projection of a braid to the plane. That is,

a permutation (as a network) consists in n start points and n end points. Each strand in

the network connects one start point to a unique endpoint. The mapping of start points

to end points is the corresponding permutation. The strands can cross one another in

the planar representation, and being subject to augmented regular homotopy, really only

represent this permutation. Since the binor identity allows us to resolve a crossing in

a permutation, we see that the permutation network can be rewritten as a sum of flat

tangles that have no crossings. See Figure 6. The permutation is expressed in terms of the

diagrammatic Temperley Lieb algebra [13]. In the original Penrose nets, the expansion

into networks free of crossings was central to the network evaluations.

Fig. 5. Permutations and traces
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Fig. 6. Antisymmetrizers

A symmetrizer or antisymmetrizer is a formal sum of permutations with appropriate

coefficients. Thus if [σ] denotes the network permutation corresponding to the permuta-

tion σ in the symmetric group Sn, then we denote by [[n]] the antisymmetrizer net

[[n]] = ΣσǫSn
(−1)t(σ)[σ]

where t(σ) denotes the least number of transpositions needed to transform σ to the iden-

tity permutation. See Figures 5 and 6. In Figure 5 we illustrate properties of these nets

where the only tensors under consideration are Kronecker deltas. In this formalism the

trace of a matrix is diagrammed by connecting the top and the bottom of the diagram-

matic tensor. Figure 5 shows how, with an integer N valued loop (positive N -dimensional

underlying vector space) the trace of the antisymmetrizer is given by the formula

tr([[n]]) = CN
n

where CN
n denotes the binomial coefficient that counts the number of choices of n items

from N items. Letting N = −2, we obtain the trace value for the corresponding antsym-
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metrizer in the binor calculus. The result is:

CN
n = N(N − 1)(N − 2)...(N − n+ 1)/n!,

C−2
n = (−2)((−2)− 1)((−2)− 2)...((−2)− n+ 1)/n!.

Hence

C−2
n = (−2)(−3)(−4)...(−(n+ 1))/n! = (−1)n(n+ 1).

At the loop value −2 the trace of the antsymmetrizer on n lines is the integer

(−1)n(n + 1). The reader may glimpse from this example why Penrose called the bi-

nors a calculus of “negative-dimensional” tensors! The trace calculation that we have

shown is a miniature example of the so called chromatic method of spin network evalu-

ation. In making the transition to the q-deformed networks, the integer value of C−2
n is

replaced by a “quantum integer”. See [14] for the details of this transition.

Fig. 7. Three-vertices

With the machinery of the permutation nets, we can define three-vertices . A three-

vertex is a meeting of three multiple lines with multiplicities a, b and c. These lines are
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interconnected according to the schema shown in Figure 7. Each line contains an anti-

symmetrizer, and the lines emanating from the three antisymmetrizers are interconnected

as shown in Figure 7. This entails the condition that a+ b+ c is even and that the sum

of any two members of the set {a, b, c} is greater than the value of the remaining third

member. A spin network is a trivalent graph (possibly with some free ends) such that

each vertex is assigned a specific cyclic order, and each edge is labelled with a natural

number. (An edge labelled with zero can be deleted from the net.)

Fig. 8. Special nets and recoupling

Spin networks without free ends are evaluated by expanding them as sums of signed

products of loop evaluations. Each loop evaluates to −2. Such direct evaluations can be

done in principle, but in practice it is useful to have a calculus of network recombination

to help in the evaluations. In Figure 8 I have indicated some of the main features of this

recombination calculus. These formulas insure that any network can be evaluated by just

knowing the values of the “theta” and “tetrahedral” nets (as illustrated in Figure 8). The

recombination formulas are a direct analogue of corresponding structures in the theory of

angular momentum associated with the groups SU(2) and SL(2, C). In fact, the three-
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vertex, as we have described it, is a combinatorial version of taking the tensor product

of two irreducible representations of SU(2), and projecting the result into an irreducible

factor of the tensor product. The spin network calculus shows that this theory, based

on SU(2) has a completely combinatorial expression that is intimately related to the

topology of plane nets (via the binor identity).

One of the most interesting features of the classical spin nets is that they can be

evaluated by a method that counts certain colorings of the loops in the graph of the

network. These “chromatic evaluations” of the spin nets were originally described by

Penrose and Moussouris in [16]. The reader can find an accounting of this point of view in

[14] along with a comparison of the analogous situation for the q-deformed spin networks

that we use in studying invariants of three-manifolds. It is not obvious how to fully

generalise the chromatic method to the q-deformed spin nets.

4. Spin geometry and the geometry of spin networks. The bracket polynomial

provides a natural generalization or deformation of the classical spin networks where the

polynomial variable A becomes a deformation parameter. In fact, this mode of generaliza-

tion carries over on all levels of the structure. The group SL(2, C), naturally associated

with the spin networks is generalized to a corresponding quantum group (Hopf algebra).

The flat networks projected into the plane become woven networks in three dimensional

space. The symmetrizers and apparatus of recoupling theory have braided analogs that

can be expressed purely diagrammatically and in terms of the quantum groups.

In Figure 9 we have indicated some of the changes that occur in deforming the classical

spin nets. In particular, we have illustrated the definition of the deformation of the

antisymmetrizer as a sum over permutations that are lifted to braids. For the details of

this theory the reader can consult [13], [14], [2], [5], [3].

One of the key facts about the classical spin networks is the Penrose Spin Geome-

try Theorem [17], [16]. This theorem states that for sufficiently large and well-behaved

networks , the properties of three dimensional space (in particular , properties of angles)

emerge of their own accord from the network structure. In this way the networks pro-

vide a combinatorial background for the emergence of properties of space and time. The

emergence of space-time from such networks is not yet fully articulated.

More precisely, the Spin Geometry Theorem gives a method of determining an “angle”

between two subnetworks of the larger network by considering the results of exchanges

of spin between the subnetworks in relation to global network evaluations. The theorem

states that these angles obey the dependency relations expected of angles in three dimen-

sional Euclidean space. It is in this way that the angular properties of three dimensional

space begin to emerge from the combinatorics of the nets.

With the Spin Geometry Theorem in mind, it is quite significant to see what is added

by going to the topological spin nets with their deformation parameter A. When A is

a root of unity, the topological networks can be used to describe invariants of three

dimensional manifolds. These invariants are defined in terms of surgery on links in three

space, but the prescription of the three manifold structure is actually purely combinatorial

in terms of the link diagrams. The evaluation of these diagrams in terms of topological spin
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networks is accomplished via generalised recoupling theory, and it expresses everything

in terms of evaluations of trivalent networks with appropriate spin assignments on their

edges. In this way, certain small spin networks encode deep topological properties of three

dimensional manifolds. These results should be regarded as adding another dimension to

the philosophy behind the Spin Geometry Theorem.

Fig. 9. Deformation

The first combinatorial appearance of these three manifold invariants was in the work

of Reshetikhin and Turaev [21] who showed how to construct invariants of three manifolds

from invariants of knots and links by using the representation theory of quantum groups.

In the case of the quantum group associated with SU(2) (equivalently SL(2, C)) it is

possible to rephrase the Resehtikhin-Turaev work in terms of spin networks associated

with the bracket polynomial [12], [13], [14]. It is to this version of the invariant that we

refer when we speak of the spin network invariant of three-manifolds.

In Figure 10 we have indicated some of the features of this spin network invariant

of three-manifolds. We show the formula for the unnormalised invariant (of the three-
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manifold obtained from surgery on the given link diagram) as a sum over generalised

bracket invariants of knots labelled with (q-deformed) antisymmetrizers. A recoupling

formula rewrites the crossings in the knot diagrams as sums of trivalent graph evaluations.

The result is a formula for the three-manifold invariant in terms of evaluations of trivalent

graphs. This is one version of the spin network evaluation for the three-manifold invariant.

There are a number of other reformulations of this basic set-up. We refer the reader to

[14] for an account of the the Kirillov-Reshetikhin shadow world in this context. This

shadow world performs a translation of the knot diagrams into spin nets, showing that the

invariant can be computed by a state summation with labels on the regions as well as on

the lines. The vertex weights then involve tetrahedral net evaluations at the crossings and

theta nets at the edges. This puts the general invariant in line with ( its product with its

complex conjugate) the Turaev-Viro invariant. The Turaev-Viro invariant has a beautiful

description as a state summation on the triangulation of the three manifold. This gives

a direct relationship between the spin network approach and the combinatorial structure

Fig. 10. Invariants of three-manifolds
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of the associated three-manifold. It also motivates a generalisation to four-manifolds that

gives a state summation formula for the signature of a four manifold (again via the

q-deformed spin nets) [5].

If there were a generalisation of the Penrose-Moussouris chromatic evaluation of spin

nets to this category, there would be significant global formulas for these invariants. The

search for such formulas is tied in with our next topic.

4.1. Witten’s functional integral . Simultaneously and independently of Reshetikhin

and Turaev, Edward Witten devised a presentation of three-manifold invariants via func-

tional integrals. (Witten had a precursor in the 1978 work of A. Schwarz [23]. Schwarz

showed how to express the Ray-Singer-Reidemeister torsion of a three manifold as a func-

tional integral. Witten generalizes Schwarz.) Witten’s work adds a significant dimension

to the spin network approach. His integral formula is expressed as follows:

Z(M3,K) =
\
dAe(ik/4π)

T
M

tr(AdA+(2/3)A3)tr(Pe
D
K

A).

The integration is over all gauge potentials modulo gauge equivalence for SU(2) gauge

at the fundamental representation. A is a gauge potential on three dimensional space with

values in this representation of SU(2). The Chern-Simons Lagrangian,

L =
\
M

tr(AdA + (2/3)A3),

provides the formally correct weighting factor against which to integrate the Wilson loop,

tr(Pe
D
K

A), to obtain a function Z(M3,K) of a three manifold M containing a link K. This

function is, up to a normalization related to framing, an invariant of the three manifold,

link pair. We shall refer to Z(M3,K) as the Witten invariant of the three-manifold. In

particular, we shall write

Z(M3) =
\
dAe(ik/4π)

T
M

tr(AdA+(2/3)A3)

for the corresponding functional, defined on a three manifold without a specified link

embedded within it.

The functional integral is, at this point in time, a purely formal approach to this

invariant of links and three manifolds. Nevertheless it does follow fromWitten’s work that

the invariant under discussion must be identical to that invariant that we have described

as computed from generalised spin networks associated with the bracket polynomial. (If

A = eiπ/2r, then the coupling constant k in Witten’s integral corresponds to r (up to a

fixed finite shift).) The verification of this fact is indirect, relying on an understanding

of the behaviour of the Witten invariant under surgery on links in the three manifold.

It is an open problem to derive this relationship between the Witten invariant and the

spin network invariant by an appropriate discretization of the functional integral. Such a

derivation would shed light on the nature of both the spin networks and the integration

process.

Once the invariant has been expressed in terms of the functional integral, many con-

jectures and relationships about the spin network evaluations come forth. For example,

the large k limit of the functional integral is asymptotically approximated by sums over

flat gauge potentials, leading to specific formulas for the asymptotic approximation of the
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spin nets as the order of the root of unity goes to infinity. See [6], [8], [15],[22]. These con-

jectures have been verified in many special cases, but the general problem remains open.

It is quite possible that this problem will be elucidated by an appropriate generalisation

of the chromatic method of spin network evaluation [18], [12], [14].

Another remarkable relationship is noted by Witten in [27]. The product of Z(M3)

and its complex conjugate can be expressed as an integral that naturally interprets as a

functional integral for 2+1 quantum gravity with a cosmological constant:

|Z(M3)|2 =
\
dAdBe(ik/4π)

T
tr(AdA+(2/3)A3−BdB−(2/3)B3)

=
\
dedωei

T
tr(eR+(λ/3)e3)

where e = (k/8π)(A − B), ω = (1/2)(A + B), R = dω + ω2 and λ = (4π/k)2. Here e is

interpreted as a metric. while ω is interpreted as a connection so that R is the curvature.

We know that this functional integral is a topological invariant (up to standard nor-

malization) of the 3-manifoldM , and furthermore the invariant can be computed by spin

network methods from any triangulation of M via the Turaev-Viro state summation [25]

(See also [14]). The first hint that such a state summation might be related to gravity

appeared in the work of Regge-Ponzano [19] and Hasslacher-Perry [7]. These authors in-

vestigated analogous state sums using approximations to classical recoupling coefficients.

They found that the state summations give approximations to simplicial quantum grav-

ity in the Regge calculus. The Chern-Simons functional integral formulation shown above

suggests that there should be a simplicial quantum gravity with cosmological constant

that corresponds to the topological invariant |Z(M3)|2.This means that there should be

an appropriate formulation of 2+1 quantum gravity that can be done simplicially and

that involves either the deformed spin networks or (equivalently) the quantum group

corresponding to SL(2, C) with deformation parameter a root of unity. These are open

problems.

2+1 quantum gravity is related to a three dimensional topological quantum field

theory. The analog for 3+1 quantum gravity is equally tantalizing, but unfulfilled due to

a lack, at present time, of combinatorial models for topological quantum field theories

in dimension four. We refer the reader to [4], [3] and [5]. Perhaps amplitudes for 3+1

quantum gravity will correspond to relative topological invariants of four dimensional

manifolds.

Finally, we mention the long-standing work of Ashtekar,Rovelli and Smolin that starts

with the loop representation of the Ashtekar formulation of quantum gravity. In this

theory of quantum gravity the wave functions ψ are functions ψ(A) of (the equivalent

of) a gauge potential A on three dimensional space. Smolin and Rovelli consider the loop

transform

ψ̂(K) =
\
dAψ(A)tr(Pe

D
K

A).

This formal transform rewrites the theory in terms of functionals on knots and links

in three dimensional space. Recent work [24] develops quantum gravity directly in terms

of knots, links and spin networks. It remains to be seen how this form of quantum gravity

will interface with topological quantum field theories in dimension four.
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