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1. Introduction. We are now embarrassingly rich in knot and 3-manifold invariants.

We have to organize these invariants systematically and find out ways to make use of

them. The theory of finite type knot invariants, or Vassiliev invariants, has been very

successful in accomplishing the first task. Recently, an analogous theory of finite type

invariants of integral homology 3-spheres started to emerge. The analogy is mainly based

on the common goal of bringing some order to the multitude of invariants by finding

some universal properties they obey.

If we think of quantum 3-manifold invariants of Reshetikhin and Turaev [44] as non-

perturbative ones, their perturbative version [38] is the other source of motivation for

this developing theory of finite type invariants of integral homology 3-spheres. Non-

perturbative invariants are somehow packed together tightly so that they usually support

some very rich algebraic structures. Perturbative invariants, on the other hand, seem to

be quite independent with each other. One may see this from Theorem 3.1, the only new

result in this paper, which claims that the space of finite type invariants of integral homo-

logy 3-spheres is a polynomial algebra. This leads to the speculation that perturbative in-

variants may contain more geometrical or topological information than non-perturbative

ones, at least to compensate the loss of algebraic richness. The recent study of Ohtsuki’s

perturbative invariants in [30] supports this speculation (see Theorem 8.1).

As the title says, this is a survey of the developing theory of finite type invariants of

integral homology 3-spheres. Of course, the way we present the material and the questions

addressed depend on personal taste. But we do hope that we have sketched a more or

less complete picture of the current status of this theory.

This paper is based on the lectures given in the workshop on knot theory at Banach
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hospitality of Banach Center and local organizers. We also wish to thank Zhenghan

Wang for continuing stimulating conversations, and to Stavros Garoufalidis and Jerry

Levine for some comments.

2. Definitions and basic properties. Let λ be an invariant of oriented Z-homology

3-spheres (Z-HS’s in short). We may define a difference operation on λ with respect to a

knot K in a Z-HS M :

(D±λ)(M,K) = λ(M)− λ(MK,±1)

where MK,±1 is the Z-HS obtained from M by a ±1-surgery on K. Roughly speaking,

the invariant λ is said to be of finite type if it vanishes under a finite iteration of the

difference operation D±. See Definition 2.2 below. To be more specific, we proceed in a

slightly different direction first.

An algebraically split link (ASL in short) in a Z-HS M is a link with unoriented

and unordered components such that all its linking numbers are zero. Henceforth, all

3-manifolds will be oriented Z-homology 3-spheres and all links will be ±1-framed ASL’s.

We will denote by #L the number of components of a link L. If L is a link in a Z-HS M ,

we denote by ML the Z-HS obtained from surgery on L. In particular, if L is an empty

link, then ML = M .

Let I be the set of orientation preserving homeomorphism classes of Z-HS’s. Let M
be the vector space over Q with I as a basis. For M ∈ I and a link L in M , define an

element (M,L) ∈M by

(M,L) =
∑
L′⊂L

(−1)#L
′
ML′

where L′ runs through all sublinks (including the empty link) of L. Let Mk be the

subspace of M spanned by (M,L) for all M and all L with #L = k + 1. The space has

a natural stratification:

M =M−1 ⊃M0 ⊃ · · · ⊃ Mk−1 ⊃Mk ⊃ · · · .

For A,B ∈ Mk−1, we denote A ∼ B if A − B ∈ Mk. We have the following basic

lemmas from [39].

Lemma 2.1. For any (M,L) ∈Mk−1, there is a link J in S3 with #J = k such that

(M,L) ∼ (S3, J).

Lemma 2.2. (S3, L) ∼ (S3, J) if L and J are surgery equivalent.

Lemma 2.3. Let L and J be the same link in S3 with different ±1 framings. Let s(L)

be the product of framings of L. Then s(L)(S3, L) ∼ s(J)(S3, J).

We have to recall here the definition of surgery equivalence of links from [27].

Definition 2.1. A surgery modification on a link L in S3 is first to have a disk B

in S3 intersecting L only in its interior with zero algebraic intersection number. Then

perform a ±1 surgery on ∂B which will change L to another link J in S3. Two links L

and J are called surgery equivalent if one of them can be changed to another by a finite

sequence of surgery modifications.
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From the lemmas above, we may think of Mk−1/Mk as spanned by surgery equiva-

lence classes of ASL’s in S3 with k components, where an ASL L in S3 with k components

is regarded as an element (S3, L) ∈ Mk−1 with the understanding that the framings of

L are all +1.

In [27], Levine showed that the surgery equivalence classes of ASL’s with oriented and

ordered components are classified by Milnor’s triple µ- invariants. To be more specific,

surgery equivalence classes of ASL’s with k oriented and ordered components are in one-

one correspondence with collections of integers {µ(i1i2i3)}, where i1, i2, i3 are distinct

indices among 1, . . . , k, such that{
µ(i1i2i3) = µ(i2i3i1) = µ(i3i1i2)

µ(i1i2i3) = −µ(i2i1i3)

Such a collection of integers {µ(i1i2i3)} is realized by an ASL with k oriented and order

components in the following way: First, for each unordered triple of indices {i1, i2, i3} with

µ(i1i2i3) 6= 0, we construct an ASL with three oriented components named by i1, i2, i3,

respectively, such that its triple Milnor µ-invariant is the given one µ(i1i2i3). This can

be done by using (some variations of) the Borromean rings. Then, by some appropriate

band sums, we connect all circles with the same name together to get the desired ASL.

In [39], Ohtsuki showed that dim (Mk−1/Mk) < ∞. The proof of this finiteness

theorem from the point of view of Levine’s classification of surgery equivalence classes of

ASL’s were given in [8] and [13]. We quote here the version in [13].

Theorem 2.1. In Mk−1/Mk, each ASL can be expressed as a linear combination of

ASL’s whose collections of triple µ-invariants satisfy the following conditions:

1. each µ(i1i2i3) is either 0 or 1 for certain fixed cyclic order of indices;

2. each index appears in at most two non-zero µ(i1i2i3)’s.

Thus, we see that Mk−1/Mk has a spanning set in one-one correspondence with

graphs having k edges such that

• each vertex is of valence either 1 or 3;

• each edge connects two distinct vertices;

• no three edges have the same set of end points;

• no edges are isolated.

Furthermore, it was proved in [8] that Mk−1/Mk has a spanning set in one-one

correspondence with graphs having k edges such that

• each connected component is either a graph whose vertices are all of valence 3 or a

graph with three edges and one valence 3 vertex, like the letter Y;

• each edge connects two distinct vertices;

• no three edges have the same set of end points.

Thus, we have the following theorem.

Theorem 2.2 (Garoufalidis-Levine). M3n =M3n+1 =M3n+2.

Now let us consider rational Z-HS invariants. Such an invariant extends naturally to

a linear functional on M.
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Definition 2.2 (Ohtsuki [39]). A rational Z-HS invariant λ is said to be a finite type

invariant of order ≤ k if λ|Mk = 0.

Obviously, the set Ok of all finite type Z-HS invariants of order ≤ k form a finite

dimensional vector space over Q. In fact, Ok is the dual of M/Mk by definition. As a

corollary of Theorem 2.2, we have the following theorem.

Theorem 2.3 (Garoufalidis-Levine). O3n = O3n+1 = O3n+2.

In [7], a variation of Definition 2.2 was introduced. It is based on the notion of boun-

dary links. A boundary link in a 3-manifold M is a link whose components bound disjoint

Seifert surfaces. Obviously, a boundary link is an ASL but not vice versa. Let Wn be the

subspace ofM spanned by pairs (M,L) where L is a boundary link in M with n+1 com-

ponents. A Z-HS invariant λ is said of order ≤ n in the sense of Garoufalidis if λ|Wn = 0.

We denote by Gn the vector space of invariants of order ≤ n in the sense of Garoufalidis.

Theorem 2.4 (Garoufalidis-Levine [9]). O3n ⊆ Gn.

It is conjectured in [9] that Gn = O3n.

Apparently, the space Gn is harder to work with than O3n and much less is known

about it than about O3n. But its relationship with Heegaard splittings of 3-manifolds

might provide some additional useful information about finite type invariants and the

topology of 3-manifolds.

3. The space of finite type invariants as a polynomial algebra. As observed

in [7], if λ ∈ Ok and λ′ ∈ Ol, then λλ′ ∈ Ok+l. Thus, the space of all finite type Z-HS

invariants is a graded commutative algebra. The purpose of this section is to show that

the graded algebra of all finite type Z-HS invariants is actually a graded commutative

and cocommutative Hopf algebra. By the structure theorem of graded commutative and

cocommutative Hopf algebras [34], we conclude that the graded algebra of all finite type

Z-HS invariants is a polynomial algebra generated by primitive invariants. Furthermore,

our construction of the coproduct implies that primitive invariants are exactly those

which are additive under the connected sum of 3-manifolds.

It might be of some interest to comment on the history of the proof, which we are going

to present, of the fact that the graded algebra of finite type Z-HS invariants is a graded

commutative and cocommutative Hopf algebra. The same argument applied to finite

type knot invariants was first presented by this author in an AMS regional conference

and the West Coast Topology Symposium at Stanford University in the spring of 1992.

Before that, it was known to Bar-Natan [2] that the graded algebra of weight systems on

chord diagrams is a graded commutative and commutative Hopf algebra. Kontsevich’s

work [21], which also appeared in the spring of 1992, surpassed our direct argument

by showing that the graded algebra of finite type knot invariants is isomorphic to the

graded algebra of weight systems on chord diagram (but see the remark at the end of

this section). Therefore, our direct argument that the graded algebra of finite type knot

invariants is a graded commutative and cocommutative Hopf algebra never appeared in

publication.
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In [11], the notion of weight systems for finite type invariants of Z-homology 3-spheres

was introduced and it was shown that these weight systems form a graded commutative

and cocommutative Hopf algebra. Since we don’t know yet whether we could integrating

every weight system in the sense of Garoufalidis and Ohtsuki to a Z-HS invariant as in

the case of knot invariants, it is worthwhile now to argue directly that the graded algebra

of finite type Z-HS invariants is also a graded commutative and cocommutative Hopf

algebra. It is obvious from the construction that the map from finite type invariants to

their weight systems is a graded Hopf algebra homomorphism .

To begin with, we denote by

O =

∞⋃
k=0

Ok

the space of all finite type Z-HS invariants.

Lemma 3.1. For λ ∈ Ok and λ′ ∈ Ol, let λλ′ be the multiplication of λ and λ′ as

linear functionals on M, we have λλ′ ∈ Ok+l.

P r o o f. If we think of λ|Mn−1 as the n-th difference of λ as in the case of knot

invariants [3], this lemma is simply a corollary of the Leibniz formula for differences of

the product of two functionals. 2

Let λ be a Z-HS invariant. We denote by M#N = N#M the connected sum of two

oriented 3-manifolds, which inherits an orientation from that of M and N . Fix the factor

N in the connected sum and we will get a new Z-HS invariant λN :

λN (M) = λ(M#N).

Lemma 3.2. If λ ∈ Ok, then λN ∈ Ok.

P r o o f. This comes directly from the definition of Ok. 2

We will chose a basis for O in the following way. Since

O0 ⊂ O1 ⊂ · · · ⊂ Ok−1 ⊂ Ok ⊂ · · ·

and each Ok/Ok−1 is finite dimensional, there is a basis {ω0, ω1, . . . , ωn, . . .} of O such

that for a certain sequence of non-negative integers n0 ≤ n1 ≤ · · · ≤ kn ≤ · · ·, {ω0, ω1, . . .

. . . , ωnk
} is a basis forOk. Furthermore, we assume that ω0 = 1, i.e. the constant invariant

assigning to every Z-HS the number 1, and ωn(S3) = 0 if n > 0.

Now let λ ∈ Ok, then λN ∈ Ok. We write

λN = φ0(N)ω0 + φ1(N)ω1 + · · ·+ φnk
(N)ωnk

where the coefficients φ0(N), φ1(N), . . ., and φnk
(N) can be thought of as Z-HS inva-

riants.

Lemma 3.3. The Z-HS invariants φ0, φ1, . . . , φnk
are of finite type. More precisely, if

the order of ωl is ≤ r, then the order of φl is ≤ k − r.

P r o o f. The first conclusion is very easy to obtain: Simply notice that ω0, ω1, . . . , ωnk

are linearly independent and λN (M) = λ(M#N) by definition. Since λ ∈ Ok, for every
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ASL L in N with k + 1 components, we have

λ(N,L)(M) = λ(M#(N,L)) = 0

for all M . This implies that

φ0((N,L)) = φ1((N,L)) = · · · = φnk
((N,L)) = 0.

The second conclusion is obtained using the same argument, but taking into conside-

ration the way we chose the basis {ω0, ω1, . . . , ωnk
}. We will consider links J in M and

L in N such that #J + #L = k + 1. We have

λ(N,L)((M,J)) = λ((M#N, J
∐

L)) = 0.

Then, we may argue as before to finish the proof. 2

We define a coproduct ∆ : O → O ⊗O preserving the grading by

∆(λ) = ω0 ⊗ φ0 + ω1 ⊗ φ1 + · · ·+ ωnk
⊗ φnk

.

Lemma 3.4. The coproduct defined above is cocommutative. Moreover, if order (λ)>0,

we have

∆(λ) = 1⊗ λ+ λ⊗ 1 +
∑
i,j

αi ⊗ βj

with homogeneous elements αi, βj of positive orders such that order (αi) + order (βj) =

order (λ).

P r o o f. The first conclusion is because of the commutativity of the connected sum

of 3-manifolds.

For the second conclusion, we first get φ0 = λ by taking M = S3. So, we get the

summand 1 ⊗ λ in ∆(λ). The summand λ ⊗ 1 then comes from the cocommutativity

of ∆. 2

A Z-HS invariant λ is called additive if

λ(M#N) = λ(M) + λ(N).

A Z-HS invariant λ ∈ O is called primitive if

∆(λ) = 1⊗ λ+ λ⊗ 1.

Lemma 3.5. λ ∈ O is additive iff it is primitive.

P r o o f. This directly follows from the definition of the coproduct ∆. 2

Now we may summarize the previous discussion into the following theorem.

Theorem 3.1. O is a polynomial algebra generated by additive invariants.

P r o o f. By the previous lemmas, O is a graded commutative and cocommutative

Hopf algebra. By the structure theorem of graded commutative and cocommutative Hopf

algebras [34], we know O is a polynomial algebra generated by primitive invariants. The

theorem follows since primitive invariants are exactly additive invariants. 2

R e m a r k. Instead of defining M as a vector space over a field (say Q) spanned by

all Z-HS’s, we may define it as the free R-module generated by all Z-HS’s, where R is a

commutative ring with unit 1. The subspaces Mk then become submodules. As pointed
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out by Józef Przytycki, similar to the case of knots discussed in [40], the completion of

M with respect to the stratification {Mk} is a commutative and cocommutative R-Hopf

algebra. Again similar to the case of knots, the obvious question is whether the modules

Mk/Mk+1 are torsion free.

4. Basic examples: Ohtsuki’s invariants. We are mainly talking about genera-

lities so far and haven’t had any non-trivial finite type Z-HS invariants yet. Our basic

examples come from Ohtsuki’s work [38]. In [38], Ohtsuki extracted a series of rational

Z-HS invariants from the SU(2) quantum invariants of Reshetikhin and Turaev [44].

Physically, they correspond to the coefficients of the asymptotic expansion of Witten’s

Chern-Simons path integral at the trivial connection as shown by Rozansky [41, 42]. Ro-

zansky has also argued, based on some physical considerations, that Ohtsuki’s invariants

are all of finite type.

Let first us explain briefly how Ohtsuki’s invariants are derived.

Let τr(M) be the SU(2) quantum invariant of Reshetikhin and Turaev at the r-th

root of the unit q = e2π
√
−1/r, as normalized in [20]. From [37], we know that if M is a

Z-HS, τr(M) ∈ Z[q] when r is an odd prime. So we may write

τr(M) = ar,0 + ar,1(q − 1) + · · ·+ ar,n(q − 1)n + · · ·

for ar,n ∈ Z. We will fix n and think of ar,n as a function of r. We ask whether there is

a rational number λn, independent of r, such that

ar,n ≡ λn mod r(4.1)

is true for all odd primes r sufficiently large. Of course, since q is not an indeterminant,

ar,n here is not well defined. Nevertheless, as qr = 1, ar,n is well defined modulo r and

our question is thus well posed.

The situation here is rather like the one dealt with in the so-called Fermat’s little

theorem: Fix an integer a, ar−1 ≡ 1 mod r for all odd primes r sufficiently large. From

elementary number theory [16], we know that things are not always so nice. For example,

( r−12 )! mod r depends on r. For this reason, we call in [30] the formal power series

∞∑
n=0

λn(t− 1)n

the Fermat limit of τr(M) if (4.1) is true for every n, and we denote

f-lim τr(M) =

∞∑
n=0

λn(t− 1)n.

Certainly, if the Fermat limit of τr(M) exists, it is unique.

Theorem 4.1 (Ohtsuki [38], see also [30]). The Fermat limit of τr(M) exists. In par-

ticular, we get a sequence of rational Z-HS invariants λn = λn(M).

It is quite easy to get λ0 = 1. If we denote by λC the Casson invariant of Z-HS’s [1],

we have the following theorem.

Theorem 4.2 (Murakami [37]). λ1 = 6λC .
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The first example of non-trivial finite type Z-HS invariants comes from λC , or equ-

ivalently, λ1. We combine many known facts into the following theorem. See [39, 7].

Theorem 4.3. We have

1. O0 = O1 = O2
∼= Q and it is spanned by the constant invariant 1;

2. O3 = O4 = O5
∼= Q2 and it is spanned by 1 and λC .

Following Theorem 2.3, we only need to explain why λC is of order ≤ 3. We proceed

using the surgery formula of λC given in [17].

Let ∇(L; z) be the Conway polynomial [19] of a link L in S3. Then,

∇(L; z) = z#L−1(1 + a2(L)z2 + a4(L)z4 + · · ·+ a2n(L)z2n).

If L be a ±1-framed ASL, we will denote by fL the product of framings of L.

Theorem 4.4 (Hoste [17]). Let L be a ±1-framed ASL in S3, then

λC(S3
L) =

∑
L′⊂L

fL′a2(L′).

The following is a very interesting property of the link invariant a2 on ASL’s.

Lemma 4.1 (Hoste [17]). If L is an ASL with #L > 3, then a2(L) = 0.

We will leave it as an exercise for the reader to show that λC is of order ≤ 3 using

Theorem 4.4 and Lemma 4.1. Since λC is not a constant invariant, it is of order 3.

It seems to be a common belief that λn should be of order 3n in general, and this has

been verified physically by Rozansky [41, 42]. Surgery formulae for λn were given in [30].

Unfortunately, some coefficients in these formulae can only be determined recursively.

We don’t have close formulae yet to express these coefficients appeared in the surgery

formulae for λn when n > 2. This makes it difficult to prove that λn is of order 3n for

n > 3. On the other hand, the explicit surgery formula for λ2 in [30] makes it possible to

prove that λ2 is of order 6.

Theorem 4.5 (Lin-Wang [31]). λ2 is of order 6.

We will briefly explain the proof of this theorem in the next section when the surgery

formula for λ2 is given.

In [11], it is estimated that dimO6 ≤ 4 by using some relations among trivalent graphs

representing Z-HS’s. On the other hand, a simple computation using the surgery formula

for λ2 (see (5.1) below) shows that λ21 and λ2 are linearly independent order 6 invariants.

Thus,

O6 = O7 = O8
∼= Q4

and it is spanned by 1, λ1, λ
2
1, λ2.

5. The surgery formula for λ2. We will denote by O the unknot and ∅ the empty

link.

The Jones polynomial V (L; t) ∈ Z[t±
1
2 ] of a link L in S3 is defined by

V (O; t) = 1;

V (∅; t) = (t
1
2 + t−

1
2 )−1;

tV (L+; t)− t−1(L−; t) = (t
1
2 − t− 1

2 )V (L0; t).
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Here, as usual, L+, L− and L0 are three links which have plane projections identical

to each other except in one small disk where their projections are a positive crossing, a

negative crossing and an orientation smoothing of that crossing, respectively. Note that

the Jones polynomial we use here differs from the usual definition in [18] with a change

of variable t to t−1 and a factor of (−1)#L−1.

We put

X(L; t) =
V (L; t)

(t
1
2 + t−

1
2 )#L−1

and

Φ(L, t) =
∑
L′⊂L

(−1)#L−#L
′
X(L′; t)

where the sum runs through all sublinks of L. We need to use the derivatives of Φ(L; t)

at t = 1:

Φi(L) =
diΦ(L; t)

dti

∣∣∣∣
t=1

.

The basic link invariants used in formulae for λn’s are

φi(L) =
(−2)#L

(#L+ i)!
Φ#L+i(L)

for i = 1, 2, . . . (see [30]). According to Murakami [37], we have

φ1(L) = 6a2(L)

if L is an ASL.

Given a link L and a positive integer m, we denote by Lm the 0-framed m-parallel of L,

i.e. each component in L is replaced by m parallel copies having linking number zero with

each other. So Lm is an ASL if L is. Sublinks of Lm will be assumed to be in one-one

correspondence with #L-tuples (i1, i2, . . . , i#L), in such a way that the corresponding

sublink L′ will have iξ parallel copies of the ξ-th component of L, 0 ≤ iξ ≤ m. If L is a

framed link, Lm and all its sublinks will inherit a framing from that of L.

Theorem 5.1 (Lin-Wang [30]). Let L be a ±1-framed ASL. Then

λ2(S3
L) =

∑
L′⊂L

φ1(L′)fL′
#L′

2
+
∑
L′⊂L2

φ2(L′)fL′
1

2s2(L′)
.(5.1)

Here, if L′ ⊂ L corresponds to the #L-tuple (i1, i2, . . . , i#L), s2(L′) = #{iξ ; iξ = 2}.

Similar to the proof that λC is of order ≤ 3, the following lemma together with

Theorem 5.1 implies that λ2 is of order ≤ 6. A little more computation will then establish

Theorem 4.5.

Lemma 5.1 (Lin-Wang [31]). If L is an ASL with #L > 6, then φ2(L) = 0

The proof of this lemma is based on studying the colored Jones polynomial [44]. A

generalization of (the first part of) the so-called Melvin-Morton conjecture [33, 5] for

ASL’s turns out to be crucial.
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6. Induced knot invariants. Let λ be a Z-HS invariant. It induces a knot invariant

in the following way: For a knot K in S3, we assign to it the framing 1. Then we define

a knot invariant ψλ by

ψλ(K) = λ(S3
K).

Lemma 6.1. If λ is of finite type, so is ψλ as a knot invariant.

This is quite obvious: A crossing change crossings can be accomplished by a±1-surgery

on an appropriately positioned unknot. In fact, the proof of this lemma shows that if λ

is of order ≤ k, then ψλ is of order ≤ k− 1. The fact that the order of a finite type Z-HS

invariant must be a multiple of 3 (Theorem 2.3) somehow implies a stronger estimate on

the order of the induced knot invariant.

Theorem 6.1 (Habegger [15], see also [9]). If λ is a Z-HS invariant of order 3n, ψλ
is a knot invariant of order ≤ 2n.

For example, the induced knot invariant of λC is a2, i.e. the second coefficient of the

Conway polynomial. The induced knot invariant of λ2 is slightly more complicated but

can be obtained using (5.1). To express it using classical knot invariants, we denote

vi(L) =
diV (L; eh)

dhi

∣∣∣∣
h=0

.

Let ψ2 be the knot invariant induced by λ2, we have

ψ2(K) =
3

2
v2(K)− 1

3
v3(K) +

5

3
v22(K)− 60a4(K).(6.1)

7. More on Ohtsuki’s invariants: their integrality. A priori, Ohtsuki’s invari-

ants λn are rational invariants. From Theorem 4.2, we see that λ1 ∈ 6Z. The following

theorem follows from the surgery formula (5.1) for λ2 and a careful study of the coeffi-

cients of the colored Jones polynomial of ASL’s.

Theorem 7.1 (Lin-Wang [30]). λ2 ∈ 3Z.

In [30], it is conjectured that n!λn ∈ 6Z. This conjecture is certainly motivated by

Theorems 4.2 and 7.1. But we do have some other evidence supporting this conjecture.

For example, it is proved in [30] that the denominator of λn can always be factored by

some powers of 2, 3, . . . , n.

8. Some applications of Ohtsuki’s invariants. Formula (5.1) allows us to com-

pute λ2 quite easily. We may then use the invariant λ2 to distinguish various Z-HS’s.

For example, if M is the Poincaré homology 3-sphere Σ(2, 3, 5) (+1-surgery on the right-

handed trefoil knot), we have λ2(M) = 39. And if M is the homology 3-sphere Σ(2, 3, 7)

(+1-surgery on the left-handed trefoil knot), we have λ2(M) = 63. In general, we may

use λ2 to distinguish Z-HS’s obtained from 1/n-surgeries on a knot K and its mirror

image K∗, respectively, provided that v3(K) 6= 0.

Theorem 8.1 (Lin-Wang [30]). If v3(K) 6= 0, then S3
K,1/n 6= S3

K∗,1/n for each n 6= 0.

Notice that these two Z-HS’s S3
K,1/n and S3

K∗,1/n can not be distinguished using the

Casson invariant.
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Needless to say, we don’t know what kind of geometrical or topological obstruction

the invariant λ2 represents which prevents these two Z-HS’s from being homeomorphic.

See [30] for more on this kind of applications of Ohtsuki’s invariants.

9. Open questions. Compare with the well developed theory of finite type knot

invariants [3, 6, 14, 28, 21, 45, 47], much less have been done in the study of finite type

Z-HS invariants. Many questions have been asked in the literature of this subject. We

will address a few questions here which are either not asked before or, in the case they

are, picked up again because of their significance in our point of view.

Question 1. Is there any other justification for Definition 2.2 besides its analogy

to the definition of finite type knot invariants and the fact that it works for the coeffi-

cients of the asymptotic expansion of Witten’s Chern-Simons path integral at the trivial

connection [41, 42]?

One of the original sources of the definition of finite type knot invariants is the study

of the topology of the singularities in some functional spaces [47]. See also [45] and

[28] for treatments using only elementary topology in 3-dimension. Such a topological

interpretation provides us the most natural explanation of the 4-term relation and why

it alone suffices essentially to define a “weight system”. We don’t have such a picture yet

for the definition of finite type Z-HS invariants.

Question 2. Does M/Mk constitute an abelian group under the connected sum?

What is the most natural operation which changes a Z-HS to another one preserving the

value of any finite type Z-HS invariant up to a fixed order? If we have such an operation on

Z-HS’s, is there any topological property of Z-HS’s which is preserved by this operation?

The first question here is certainly motivated by Gusarov’s work [14] and the second

by, among others, say, Stanford’s work [46]. The operation on knots defined by Stanford

is to insert a pure braid commutator somewhere in a given knot. Notice that Gusarov has

reported (Oberwolfach, September 1995) that Stanford’s operation actually generates all

knot with the same value for any finite type invariant up to a fixed order. Finally, the

answer to the last question above seems to be not known even for Stanford’s operation

on knots. Because of its significance, it seems to be worthwhile to repeat it again: Is there

any topological property of knots which is preserved by Stanford’s operation?

Question 3. Does λ2/3 count algebraically any geometrical or topological objects

related with the Z-HS in question?

This is certainly motivated by the fact that λ1/6 is the Casson invariant, which counts

algebraically the number of conjugacy classes of irreducible representations into SU(2)

of the fundamental group of the Z-HS in question [1]. Probably, the only way to answer

this question is to define some counting invariants for Z-HS’s first and then identify it

with λ2 using the surgery formula (5.1).

Notice that the geometric definition of the Casson invariant together with its surgery

formula leads to a criterion for detecting knots with property P. An answer to Question

3 will provide us another such criterion.
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Question 4. Is it true that if λ is a Z-HS invariant of order ≤ k, then there is a

constant C such that for every ASL L in S3 with µ components, we have

|λ(S3
L)| ≤ Cµk?

Do Ohtsuki’s invariants λn have this property?

A similar estimate for finite type knot invariants is conjectured in [29] and proved in

[4]. The question to λn, with some additional control over the constants C involved, is

probably related with the convergence problem of the formal power series

∞∑
n=0

λn(t− 1)n.

See [22] for examples of 3-manifolds for which this formal power series does converge.

10. New developments. There have been some major new developments since the

submission of this article in October, 1995. In what follows, for the reader’s convenience,

we give brief summaries of these new works.

10.1. In an important work of Le, Murakami and Ohtsuki [25], a universal 3-manifold

invariant Ω(M) is constructed, which takes values in the completed, graded commutative

and cocommutative Hopf algebra of trivalent graphs subject to the AS and IHX rela-

tions. To start with, let us denote by A(X) the graded vector space generated by graphs

with univalent and trivalent vertices supported on X where

• X can be the empty space ∅, a set of m ordered points (which will be denoted

simply by m), and the disjoint union of oriented circles
∐
S1;

• all univalent vertices are on X;

• when X is a set of m ordered points, points in X are all we have for univalent

vertices, and when X =
∐
S1, there should be no separate subgraphs with only

trivalent vertices;

• a cyclic ordering of the edges at every trivalent vertex is given;

• the grading is given by a half of the number of vertices;

• linear combination of graphs are subject to the AS and IHX relations, and the

STU relations if X =
∐
S1 (see [3]).

Denote by Â(X) the completion of A(X).

With these said, the construction in [25] proceeds as follows:

Step 1. Construct elements Tnm ∈ A(m−n)(m), which are invariant under cyclic per-

mutations of the m supporting points and characterized essentially by a certain kind of

“crossing change formulae”.

Step 2. For a framed link L, renormalize the universal invariant Ẑ(L) coming from

Kontsevich’s construction [23] to get an invariant Z̆(L) ∈ Â(
∐
S1), which is a “group-like

element”.

Step 3. Define a linear map

ιn : A(k)
(∐

S1
)
−→ A(k−n)(∅)
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by “installing” Tn2k onto each circle so that univalent vertices on both sides match in

cyclic order, and then drop off the circles. This extends to a linear map

ιn : Â
(∐

S1
)
−→ Â(∅).

Step 4. ιn(Z̆(L)) ∈ Â(∅), modulo Â(>n)(∅), turns out to be independent of the

orientation of L and invariant under the type II Kirby move on the framed link L. So,

an appropriate normalization of ιn(Z̆(L)) ∈ Â(∅) modulo Â(>n)(∅) gives us an invariant

Ωn(M) of the 3-manifold M obtained by surgery on L.

Step 5. The degree < n parts of Ωn(M) turn out to be determined by the top degree

k part of Ωk(M) denoted by Ω
(k)
k (M), for all k < n. So, finally, let

Ω(M) = 1 +

∞∑
n=1

Ω(n)
n (M) ∈ Â(∅).

It turns out that Ω(M) is also a “group-like element”.

More specifically, we have Ω
(≤n)
n+1 (M) = dΩn(M), where d equals the cardinality of

H1(M ;Z) if the first Betti number of M is 0 and d = 0 otherwise. So, if M is a Z-HS,

Ω(M) = 1 +

∞∑
n=1

Ωn(M).

When both M1 and M2 are Z-HS’s, we have

Ω(M1]M2) = Ω(M1)× Ω(M2)

It was proved in [26] that if M is a Z-HS, Ω1(M) is essentially the Casson invariant.

We remark that this construction of Le, Murakami and Ohtsuki has the similar feature

as the construction of SU(2) quantum invariants given by Lickorish [32]. The role played

by the elements Tnm in the Le-Murakami-Ohtsuki construction is very much like the

role played by the so-called Jones-Wenzl projectors in Lickorish’s construction. Are they

related in a certain way?

10.2. In [24], Le explored further the universal invariant Ω(M) in the case when M

is a Z-HS and made the combinatorial aspect of the theory of finite type invariants of

integral homology 3-spheres completely parallel to the theory of finite type invariants of

knots. Main results of [24] include (all manifolds below are Z-HS’s):

• Ωn(M) is an invariant of order ≤ 3n. This implies, via [11], that the algebra of

finite type invariants is isomorphic to the algebra of weight systems, where a weight

system is a linear functional on A(n)(∅).
• An operation on Z-HS’s is defined which does not alter the value any invariant of

order ≤ n. This operation is a straightforward generalization of Stanford’s opera-

tion.

• M/Mk constitutes an abelian group under the connected sum.

So parts of Question 2 in Section 9 have been answered.

10.3. In [12], the notion of finite type invariants of rational homology 3-spheres (Q-

HS’s) is introduced. It is shown that the space of finite type Q-HS invariants is a subspace

of finite type Z-HS invariants. In particular, the Casson-Walker invariant [48] of Q-HS’s
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is shown to be of order 3 using its surgery formula. In [24], Le also proved that Ωn(M)

is of order ≤ 3n for Q-HS’s.

10.4. The recent work of Garoufalidis and Levine [10] provides another perspective

to the theory of finite type Z-HS invariants. It relates the stratified vector spaceM with

the group algebras of some subgroups of the mapping class group completed by powers

of their argumentation ideals. The subgroups of the mapping class group are those which

are closely related with integral homology 3-spheres. For example, the Torelli group and

the subgroup of the mapping class group generated by Dehn surgeries on bounding curves

on surfaces (the main result is stated differently though in these two cases). Recall that

the structure of the latter subgroup has been used by S. Morita to recover the Casson

invariant [35, 36]. So, [10] will probably give us some hints as of how to generalize Morita’s

work to recover Ohtsuki’s invariant λ2 (see Question 3 of Section 9).
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