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Abstract.We review the appearance of the braid group in statistical physics. In particular,

we explain its relevance to the anyon model of fractional statistics and conformal field theory.

This short contribution reviews two theories in statistical physics: conformal field

theory and the anyon model. Our research has concerned studies of the duality equation

in conformal theories and the energy spectrum in the anyon model. While our interests

have concentrated on physical issues, both of these subjects have intimate connections

with the braid group. This article will expand our oral presentation to discuss those

mathematical connections. We hope that a review format, where one of the principle goals

is to clarify the origin of braid statistics, will aid the present audience and encourage it

to address the unanswered mathematical issues presented.

The remainder of this contribution is organized as follows. The first section of the

article presents some generalities on braid group statistics that are relevant to both

theories. The second section describes the anyon model. We have chosen to start with

it, because it is inherently simple and does not require discussions of advanced topics in

physics. The third section considers correlation functions in conformal field theory. The

physical origins of this theory are briefly presented. Then, we develop in some detail the

machinery that has led to the construction of correlation functions. The braid group only

occurs in the tools of this construction, i.e. the conformal blocks. We end by illustrating

the connection with the duality equation.
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The presentation avoids technical developments in some places. We have tried to

indicate where. We have attempted to retain enough details so that the logic is not lost.

A reader who wants to have more information should look at one of the longer reviews:

[4] on anyons, [8] on conformal field theory, and [14] on the relation between conformal

theory and braids and further connections to knots.

1. Braid group statistics. We will be interested by generalized forms of statistics

in systems of identical particles. In quantum mechanics, the behavior of N identical

particles is described by the wave function, a complex function of the particle coordinates

~xj (~xjǫR
d, j = 1, 2 . . .N). For identical particles, one might expect that the wave function

is invariant under all permutations, P , of the particle names, i.e. transformations of the

form ~x → ~xP (j). The real situation is more complicated, because wave functions differing

only by a constant phase describe the same physical system. Thus, the wave function

can be in a nontrivial one dimensional representation of the permutation group. There

are two such representations, the symmetric and anti-symmetric representations. They

correspond to multiplication of the wave function by +1 or −1 under a transposition of

the coordinates of any two particles:

Ψ(~x1, . . . , ~xi, . . . , ~xj , . . .) = ±Ψ(~x1, . . . , ~xj , . . . , ~xi, . . .).(1)

This gives the two well-known ”statistics” for identical particles. Symmetric wave

functions describe Bose particles, and anti-symmetric wave functions describe Fermi par-

ticles. Though all physical theories of N identical particles fall into one of these two

classes, we will find it profitable to try to find generalizations.

In the late 1970’s, Leinaas and Myrheim described a different way of defining the

statistics of the wave function [1]. The basic idea is to replace permutations of the particle

coordinates with continuous transformations. First, we will study the situation for the two

particle system. It is convenient to introduce the center of mass, ~Z = ~x1+~x2, and relative,
~X = ~x1 − ~x2, coordinates. A transposition of the two particles only acts on the relative

coordinate, i.e. ~X → − ~X. To generalize permutations to continuous transformations, we

introduce the vector functions ~F (t) satisfying ~F (0) = ~X and ~F (1) = − ~X, t ∈ [0, 1]. In

generalized statistics the sign in (1) is replaced by a phase. The phase change of the wave

function as ~X is moved along the path ~F (t) defines the statistics.

Ψ(~Z, ~X) = eiα(
~F )Ψ(~Z,− ~X)(2)

The statistics should not depend on the detailed form of the path. Thus, we require

that the phase function eiα(
~F ) only depend on the equivalence class of the path ~F (t).

Finally, the phase change of a function is additive as its coordinate is transported first

along one path and then along a second one. A consistent definition of statistics requires

that the defining phase in (2) satisfy a similar additivity property on paths that can be

decomposed into several paths.

There is a constraint on eiα(
~F ) coming from the dimension, d, of physical space. To

see this, we make the transport along the path defined by: ~F ′(t) = ~F (2t) for 0 ≤ t ≤ 1
2

and ~F ′(t) = − ~F (−1 + 2t) for 1
2 ≤ t ≤ 1. Along this closed path, the wave function gets



BRAIDS 223

a total phase change:

eiα(
~F ′ ) = e2iα(

~F )(3)

Since ~F ′(t) is a closed path and the phase is independent of its detailed form, the first

homotopy group gives a classification of the possible phases e2iα(
~F ). If this is to result in

a generalization of normal statistics, the phase in (3) must not be identically zero. For

this to be possible, there must be nontrivial homotopy classes.

The individual particle coordinates ~x1 and ~x2 are points in Rd. But, physical conside-

rations1 impose a constraint on the total configuration space: ~x1 6= ~x2. Thus, the relative

coordinate ~X is a point in Rd \ {~0}. On Rd \ {~0} , the first homotopy group is trivial

for d = 3, 4, . . .. This implies that e2iα(
~F ) = 1. Thus, for all open paths eiα(

~F ) = ±1,

and the only possibilities are Bose or Fermi statistics. The case of d = 2 is special. The

first homotopy group on R2 \ {~0} is Z. Thus, there is no constraint on the statistics

parameter e2iα(
~F ). We have found that generalized statistics are only possible in two

dimensions.

In two dimensions, the N -particle configuration space becomes Q = (R2)N\D. Again,

D is the subspace of (R2)N where ~xj = ~xj for any two particles i and j. It must be

removed for the same physical reasons invoked above. The transformation of the N -

particle wave function can be defined by introducing a set of N nonintersecting paths

on
(

R2
)N

, i.e. ~Fj(t) with j = 1, 2, . . .N . The ~Fj(t) form a N -braid if ~Fj(0) = ~xj and
~Fj(1) = ~xP (j). The statistics is defined by the transport of the wave function’s coordinates

along the braid.

Ψ(~x1, . . . , ~xj , . . . , ~xN ) = eiα(
~F )Ψ(~F1(1), . . . , ~Fj(1), . . . , ~FN (1))(4)

Again, the phase change of the wave function only depends on the particular braid

along which the coordinates are transported. Furthermore, a consistent definition of stati-

stics in (4), requires that the phase eiα(
~F ) be additive on braids that can be decomposed

into successively traversed braids. Different choices for the phase function will lead to

different generalized statistics.

Since the phase function eiα(
~F ) is additive on braids that are successively traversed,

the wave function is in a one dimensional representation of the braid group. This leads to

constraints on the phases. All elements of the braid group can be made from fundamental

interchanges, σj , i.e. the twists:

(~x1, . . . , ~xj , ~xj+1, . . . , ~xN ) → (~x1, . . . , ~xj+1, ~xj , . . . , ~xN ).

They satisfy the following relations [2]:

σiσj = σjσi for |i− j| ≥ 2 and σi+1σiσi+1 = σiσi+1σi(5)

These equations constrain the phases defining the one dimensional representation to

satisfy eiα(σi) = eiα(σj) for all i and j. The single remaining value of eiα(σ) will define the

generalized statistics of the particles.

1There is always a short distance repulsion between particles that forbids any two from

occupying the same point.
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We close this section with one remark. Since generalized statistics only occurs in 2

dimensions, we can use complex coordinates to designate the position of the particles. In

those coordinates, generalized statistics will require that wave functions have cuts at the

position of each particle.

2. Anyon model of fractional statistics. The anyon model is a quantum me-

chanical theory of identical particles which realizes braid group statistics. The quantum

properties of any system of N particles come from solutions of an eigenvalue equation,

HΨ[a](~x1, . . . , ~xN ) = E[a]Ψ[a](~x1, . . . , ~xN ). These equations determine both the statio-

nary state wave functions Ψ[a](~x1, . . . , ~xN ) and the energies E[a]. For a nonrelativistic

free particle system the operator H has the form H = 1
2M

∑N
j=1(i

~∂j)
2, M is the particle

mass. The eigefunctions are well-known for the free Bose and Fermi cases. They are the

plane wave states2.

Anyons are nonrelativistic Bose particles having a self-interaction. The interaction

between the anyon at ~xj and the other N − 1 anyons can be written through a gauge

field ~A(~xj) and an anyon charge α. Thus, for N anyons, the operator H is:

H =
1

2M

N
∑

j=1

(i ~∂j − α ~A(~xj))
2.(6)

The field ~A(~xj) is a normal electromagnetic potential, but its form is very special.

~A(~xj) =
∑

i6=j

~n× (~xj − ~xi)

|~xi − ~xj |2
.(7)

Here the unit vector ~n is perpendicular to the plane on which the particles move.

We have written the form of ~A(~xj) for anyons moving on R2. Its form will be somewhat

different if one introduces periodic boundary conditions to discretize the spectrum of H ,

i.e. see footnote 2.

The field potential will tell us something about the character of anyons. One sees this

by calculating the local magnetic field, B, felt by the particle at ~xj . Using the definition

of the magnetic field, B(~x) = ~∇× ~A(~x) , one finds that3:

B(~xj) = 2π
∑

i6=j

δ2(~xj − ~xi).(8)

Thus, the magnetic field is a sum of point sources localized at the position ~xi of each

anyon. The anyon gas is a collection of point magnetic fluxes of intensity 2π that interact

due to the fact that they also carry a charge α, see fig. 1.

The anyons that we have described are normal Bose particles, and their wave function

is symmetric under the exchange of any two. As such, anyons are interacting. It is also

2To solve these equations one introduces boundary conditions that make the operator H

hermitian. One choice is periodic conditions: Ψ[a](~x1, . . . , ~xj , . . .) = Ψ[a](~x1, . . . , ~xj + ~L, . . .)

with ~L ∈ {(0, L) , (L, 0)}. Bose, (+1)P , and Fermi, (−1)P , solutions are: Ψ[~k1,...,~kN ] =
∑

P
(±1)P exp(i

∑

j
~kj · ~xP (j)), E[~k1,...,~kN ] =

1
2M

∑

j
k2
j , ~kj ∈ 2π(n,m)/L.

3In this calculation, we use: ~∇ · (~x/x2) = 2πδ2(~x) with δ2(~x) the 2D Dirac delta function.
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Fig. 1. Picture of a system of 5 anyons as magnetic flux tubes

possible to express the anyon model in an equivalent form which involves ”free” particles

with braid statistics. The ”free” form occurs, because the vector potential of (7) is the

gradient of a function. We will show this in the two particle case. In the coordinates

(x, y) = (x1 − x2, y1 − y2), the vector potential is (Ax, Ay) = (−y/r2, x/r2). In radial

coordinates, (x, y) = (r cosΘ, r sinΘ) , this can be rewritten as (Ax, Ay) = (∂xΘ, ∂yΘ).

Θ is the angle that the vector (x, y) makes with the x-axis. Thus, ~A is the gradient of a

function, but this function, Θ , is multi-valued on the plane. Usually, ~A’s that are gradi-

ents can be totally removed by a gauge transformation. Here, the gauge transformation

will be multi-valued like Θ; it will change the statistics. Gauge transformations are uni-

tary transformations that act on both ~A and the wave function. They leave the energy

eigenvalues, E[a], invariant. It is easily seen that the eigenvalue equation,

HΨ[a](~x1, . . . , ~xN ) = E[a]Ψ[a](~x1, . . . , ~xN ),

is invariant under any local transformation of the form:

~A′(~xj) = ~A(~xj)−
1

α
~∂jΛ(~xj) and Ψ′

[a] = eiΛ(~xj)Ψ[a](~x1, . . . , ~xN )(9)

Since ~A(x, y) = ~∂Θ(x, y), the choice Λ (x, y) = αΘ(x, y) is very interesting in the two

particle case. From (9) , we see that this gauge transformation will make ~A vanish. For

this choice, the primed form of the anyon model is a ”free” theory, i.e. H ′Ψ′(~x1, ~x2) =

(−1/2M)(~∂2
1+

~∂2
2)Ψ

′(~x1, ~x2). Now, we will see that the price for rewriting the anyon model

as a free theory is braid statistics. To find the statistics of the new wave function, we recall

that the original wave function was bosonic: Ψ(~x1, ~x2) = +Ψ(~x2, ~x1). The transformation

from Ψ to Ψ′ involved a multi-valued phase factor eiΛ(x,y) = eiαΘ(x,y). Thus, the primed

wave function transforms differently than the unprimed one (Bose) under the exchange

of the two particles. It satisfies:

Ψ′(~x1, ~x2) = eiα[Θ(~F (1))−Θ(~F (0))]Ψ′(~x2, ~x1) ≡ e±iαπΨ′(~x2, ~x1)(10)

In this equation, the angle Θ(~F (1)) − Θ(~F (0)) is a function of the 2-braid, ~F (t),

that defines the exchange of ~x1 and ~x2. The last equality in (10) is correct for the σ-
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twists of (5). The ± sign ambiguity is determined by whether ~x1 is braided around ~x2

in a clockwise or anti-clockwise sense. The primed ”free” wave functions form a one

dimensional representation of braid group except when α = 0 (Bose statistics) or α = 1

(Fermi statistics). Varying α from 0 to 1 smoothly changes the model from free Bose

particles to free Fermi particles.

In the primed theory, the energies 2ME[a] are given by the eigenvalues of the free

4D Laplacian, −~∂2
1 − ~∂2

2 . The eigenfunctions are representations of the 2-braid group

with statistics eiα(σ) = eiαπ , see sec. 1. One can use circular box boundary conditions,

Ψ′||~x1−~x2|=R = 0, with R the radius of the box, to define the eigenfunctions of the

Laplacian. With these boundary conditions, one finds the following eigenfunctions [1][3]:

Ψ′
~p(r,Θ) = ei(n+α)ΘJn+α(pr) where E = p2/M(11)

The boundary conditions fix pR to be the zeros of the Bessel function: Jn+α(pR) = 0.

The doublets [n, p], with n integer, are the quantum numbers that label the states and

their energies. The dependence of the solutions on the center of mass ~Z = ~x1 + ~x2 is

trivial and has not been indicated. These explicit solutions for the ”free” version of the

anyon theory’s wave functions transform, as shown in (10), under the braid group.

The N -anyon energy eigenstates can also be obtained by solving the eigenvalue prob-

lem of a free Laplacian. The eigenfunctions form a one dimensional representation of the

N -braid group. To see this, we notice that the vector potential of N -anyons can also

be written as a pure gradient, i.e. ~A(~xj) = ~∂j(
∑

k<q Θkq) with k, q = 1, . . . , N . Θkq is

the angle that the vector ~xk − ~xq makes with the x-axis. This ”pure gauge” form is

easily verified from the 2-particle case. It tells us that there also exists a gauge trans-

formation (9), in the N -particle case, that transforms the Hamiltonian to a free form,

i.e. H ′ = (1/2M)
∑N

j=1(−
~∂2
j ). The gauge transformation to the ”free” primed theory has

the parameter Λ(~x1, . . . , ~xN ) = α
∑

k<q Θkq(~xk −~xq). One can easily see that the primed

eigenfunctions, Ψ′(~x1, . . . , ~xN ), form 1D representations of the N -braid group (5) with

statistics eiα(σ) = eiαπ. Clearly, this ”free” theory smoothly interpolates between the free

Bose model at α = 0 and the free Fermi model at α = 1 exactly as in the 2-anyon case.

The energy eigenvalues for 3 and 4 anyons have been studied, but the results are

very incomplete [5]. The connection with free Laplace eigenfunctions having braid group

statistics has only been exploited in the 2-anyon case. A knowledge of the eigenvalues

of the N -particle case would allow a calculation of the thermodynamic properties of

the anyon gas at high densities. Like the perfect Bose and Fermi gas, the anyon gas is

”perfect” or ”free.” It is a perfect gas with arbitrary statistics. The quantum mechanics

of all three gases require finding the eigenvalues of the 2N -dimensional Laplacian. The

Bose and Fermi cases were, however, simpler as the wave functions are representations of

the permutation group – the so-called plane wave solutions (footnote 2). The anyon gas

must have an energy spectrum which is quite different from either of these two limiting

cases. Widely believed approximate results say that at high density and for α = 1/s,

with s ∈ Z, gaps appear in the energy spectrum [6]. This does not happen in either the

Bose or Fermi gases. An understanding of plane wave solutions that obey braid group

statistics would have to explain these results.
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3. Correlation functions in conformal field theory and braids. We introduce

conformal theories by way of an example which is one of the successes of statistical physics,

the Ising model. It is the simplest of a family of models with short range interactions.

It has only one dynamical field, the spin Sj , defined at each site j of a regular lattice Γ.

The spin takes two values ±1. The interaction between spins is determined by the form

of the energy E = −J
∑

<i,j> SiSj. The interaction has strength J and is only nonzero

between spins at nearest neighbor sites < i, j >. Even in this simple model, the number

of microscopic states is enormous, equal to 2N where N is the number of lattice sites. In

statistical physics the major goal is to find a simple macroscopic description from this

microscopic complexity.

The macroscopic comportment of the Ising model is typical of many systems. It has

two phases – a high temperature phase where the macroscopic average spin vanishes:
∑

j∈Γ << Sj >>= 0, the disordered phase4, and a low temperature phase with a nonzero

macroscopic spin
∑

j∈Γ << Sj >> 6= 0, the ordered phase. The transition from zero to

nonzero average spin occurs at a precise temperature Tc. Near the transition point, the

model is characterized by two macroscopic dimensionful quantities –
∑

j∈Γ << Sj >>

and (T − Tc). Nevertheless, exactly at Tc exactly
∑

j∈Γ << Sj >>= 0 in the Ising

model. Thus, there are no ”dimensionful” macroscopic quantities that characterize the

model at Tc. Transitions involving no dimensionful parameters are called second order

phase transitions. For this type of transition, physical properties show distinctly different

behavior at Tc, the critical point, and away from Tc. As an example, one can look at

correlation functions for two spins. Away from Tc, they depend on a length scale ξ(T−Tc),

falling off exponentially with the distance between the spins, i.e. << S~0S~r >>≃ e−r/ξ.

At Tc, there is no dimensionful scale, i.e. at Tc ξ(0) → ∞, and the correlation exhibits

power law behavior, i.e. << S~0S~r >>≃ r−4∆S . There is direct experimental evidence of

this fundamental distinction. At critical point, the no-scale correlation function indicates

the presence of fluctuations at all length scales, this greatly enhances light scattering.

This effect has been observed, and it is called critical opalescence.

The scale invariance of critical points led to several profound ideas on the relationship

between the macroscopic descriptions and the microscopic statistical models – universal-

ity, renormalization group and conformal field theory. Universality says that many details

of the microscopic model are washed out at Tc. Many different microscopic models are

described by the same ”effective” critical theory. This is the reason that a simple the-

ory like the Ising model can describe real physical systems. The renormalization group

was one of the most important tools in the calculation of macroscopic quantities from

the underlying models. Its most important predictions were exponents like ∆S defining

the 2-spin correlation function. Conformal field theories exploit the group theory of local

scale transformations to obtain the ”effective” macroscopic theory. For 2D systems, they

have given an explicit implementation of universality – an almost ”complete” classifica-

tion of macroscopic critical theories. This led to two types of predictions – the values of

exponents like ∆S and the form of correlation functions involving more than two fields.

4<<A>> designates the thermal average of any object, i.e. <<A>> ≡
∑

a∈states
Ae−Ea/kT .
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In 1970, Polyakov postulated that the scale invariance of a critical point implied that

the macroscopic theory had conformal symmetry [7]. The finite conformal group conta-

ins rotation, scale, translation, and special conformal transformations. The infinitesimal

transformations with parameters Mij = −Mji, Λ, ~a and ~b have the form:

x′
k = xk +

d
∑

j=1

Mkjxj , x′
k = xk + Λxk, x′

k = xk + ak, x′
k = xk + x2bk − 2~b · ~xxk(12)

Polyakov showed that all correlation functions of local fields were strongly constrained

by conformal invariance. Using this symmetry, he was able to find the form of the two

and three point correlations up to some exponents and constants, Cijk, the structure

constants5.

<< φi(~x1)φj(~x2) >>=
Niδi,j

|~x1 − ~x2|4∆i
(13)

<< φi(~x1)φj(~x2)φk(~x3) >>=(14)
√

NiNjNkCijk

|~x1 − ~x2|2(∆i+∆j−∆k)|~x2 − ~x3|2(∆j+∆k−∆i)|~x3 − ~x1|2(∆k+∆i−∆j)

The fields φj(~x) are the primary fields of the model. In the Ising model, they are

Sj and the local energy density Ej = −J
∑

~k=~j+~n S~kS~j .
6 The constants Cijk and expo-

nents are universal objects defined uniquely by the critical theory. This has been shown

constructively in 2 dimensions, but it took 14 years to formulate the proof.

The proof is based on an extension of conformal symmetry to an infinite group [8].

This extended symmetry is the foundation of modern conformal field theory. Further

developments based on the infinite conformal symmetry group led to the calculation of

the exponents [9] and structure constants [8][10] of many models (ex. CSSE = 1/2, ∆E =

1/2, ∆S = 1/16 in the Ising model). These predictions have been tested in numerical

simulations [11].

In 2 dimensions, one can show that the invariance of a field theory under the finite

group guarantees invariance under a much larger symmetry group [8]. The full symmetry

group is easier to write if we use complex coordinates (z, z) to describe the position of

local fields like the spin, S(z, z) , and the energy density, E(z, z). The infinitesimal trans-

formations of the full symmetry group are all analytic or anti-analytic transformations

on (z, z).

z′ = z +
∑

n∈Z

anz
n and z′ = z +

∑

n∈Z

anz
n(15)

Here, an and an are the independent parameters of the transformation and are

defined7 for negative and positive integers n. On functions of (z, z), these transforma-

5At Tc, we replace << A >>→< 0 |A | 0 >. Under the transformation of (12), the critical

ground state |0 > is invariant, but fields transform: φ′
j(~x) = |∂x′

k/∂xl|
∆jφ(~x′). The Nj ’s are

dropped from here on. They are only relevant to experimental measurements.
6~n are the primitive lattice vectors generating Γ.
7For physical reasons, conformal field theories are actually defined on the plane without

origin. Thus, the transformations can be singular at z = 0.
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tions are generated by Ln = −zn+1∂z and Ln = −zn+1∂z. Their commutators satisfy the

Virasoro algebra, actually two copies one from the Ln’s and one from the Ln’s.

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn,−m(16)

On normal functions, this algebra does not contain the second term on the right hand

side, i.e. c = 0. In conformal field theory, one constructs a representation of this algebra

on physical fields , φ∆,∆
(z, z) and a nonzero central charge c appears.

The dynamics of a conformal field theory are defined by the transformation properties

of its physical primary fields under the Ln and Ln Virasoro algebras. The primary fields

transform under (15) as φ′
∆,∆

(z, z) =
(

∂z′

∂z

)∆ (
∂z′

∂z

)∆

φ∆,∆
(z′, z′). Thus, their commuta-

tors with the Ln are:
[

Ln, φ∆,∆
(z, z)

]

= zm+1∂zφ∆,∆
(z, z) + ∆(m+ 1)zmφ∆,∆

(z, z)(17)

Similar relations hold for Ln commutators. The central charge and the numbers

(∆,∆), which define the representations by the primary fields φ∆,∆
(z, z), characterize

the conformal field theory. The primary fields form highest weight representations of

these algebras.

n > 0 Lnφ∆,∆
(z, z) | 0 >= 0, L0φ∆,∆(z, z) | 0 >= ∆φ∆,∆

(z, z) | 0 >(18)

n > 0 Lnφ∆,∆
(z, z) | 0 >= 0, L0φ∆,∆

(z, z) | 0 >= ∆φ∆,∆
(z, z) | 0 >

∆ and ∆ are independent real eigenvalues of L0 and L0 respectively. The physical states8

are created by the action of L−|n| and L−|m| on | 0 >. The states have the following form:

φ
[n,m]

∆,∆
| 0 >= L−|n1| . . . L−|nk| . . . L−|m1| . . . L−|mp|φ∆,∆

| 0 >(19)

Physical considerations and unitarity, constrain the central charge and the dimensions

(∆,∆) to special rational values9 [8][9]. The limitation on allowed dimensions leads to

a fundamentally important result. The space of states over each primary field contains

nontrivial null vectors [12]. The simplest example is the state:
[

L−2 +
3

2(2∆+ 1)
(L−1)

2

]

φ∆,∆
| 0 >= 0(20)

From (16), (18) and the proper conjugation on the Ln’s (L†
n = L−n), the reader can

easily show that this state has zero norm for ∆ = 1
16 [5 − c ±

√

(1− c)(25− c)]. There

are different null vectors in the space of states above every primary field. V. Kac has

classified all the null vectors [12].

The null vectors lead to differential equations that are crucial to the construction of

the correlation functions. The derivation of these equations requires a detailed knowledge

8| 0 >, the ground state, is also a highest weight state, i.e. L|n| | 0 >= L|n| | 0 >= 0. Invariance

of | 0 > under the finite conformal group already required: Ln | 0 >= Ln | 0 >= 0 for n = −1, 0, 1.

See equation (12) and accompanying text.
9For 0 < c < 1 the result is: c = 1 − 6

m(m+1)
, ∆rs = [r(m+1)−sm]2−1

4m(m+1)
with 1 ≤ r ≤ m − 1,

1 ≤ s ≤ r and m = 2, 3, 4, . . ..
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of field theory. A simple understanding of their origin can be obtained if one recalls that

any coordinate transformation on fields can be generated through the action of the energy-

momentum tensor (Noether’s Theorem). This includes the conformal transformations of

(15). Thus, the energy-momentum tensor must be related to the Ln’s and the Ln’s that

generate the two Virasoro algebras. If the theory is conformally invariant, one can show

that these operators are the Laurent expansion coefficients of the energy-momentum

tensor. One can use this identification and the explicit form of conformal transformations

on primary fields (see below (16)) to rewrite the action of the L−n and L−n’s with

differential operators [8]. This involves a long calculation using operator product results

(17)-(18). One finally obtains the following equation for a correlation function with P

primary fields φ∆j,∆j
(zj , zj) , j = 1, . . . , P and L−nφ∆,∆

(z, z):

<<
(

L−nφ∆,∆
(z, z)

)

φ∆1,∆1
(z1, z1), . . . , φ∆P,∆P

(zP , zP ) >>= (−1)n−1 ×(21)

P
∑

j=1

(

(1 + n)∆j

(z − zj)
n −

1

(z − zj)
n−1

∂

∂zj

)

<< φ∆,∆
(z, z)φ∆1,∆1

(z1, z1), . . .

. . . , φ∆P,∆P
(zP , zP ) >>

If we substitute these differential operator forms in null vector equations, like (20), we

obtain homogeneous equations. The resulting equations are extremely powerful. Since the

correlation functions solve these equations, they must be linear combinations of the gen-

eral solutions. The independent solutions that are analytic in the zj are called conformal

blocks. For the rational models there are only a finite number, and they transform under

the braid group. The form of the conformal blocks are known for all rational conformal

theories [10].

The Ising model affords us with a simple example. It has central charge c = 1/2.

The local energy density, E(z, z), has conformal dimensions (∆,∆) = (1/2, 1/2). Thus,

correlations involving this field satisfy the equation:

(22) 0 =
P
∑

j=1

(

∆j

(z − zj)
2 +

1

(z − zj)

∂

∂zj
−

3

4
∂2
z

)

<< E(z, z)φ∆1,∆1
(z1, z1), . . .

. . . , φ∆P,∆P
(zP , zP ) >>

We write the two independent analytic conformal blocks for correlations involving four

E(zj , zj).

[x (1− x)]
2/3

(z1 − z3) (z2 − z4)
F (4/3, 3, 8/3;x) and

F (−2,−1/3,−2/3;x)

[x (1− x)] (z1 − z3) (z2 − z4)
(23)

The functions F (a, b, c, x) are hyper-geometric functions and x ≡ (z1−z2)(z3−z4)
(z1−z3)(z2−z4)

. They

are analytic functions with cuts for x ∼ 0. Using integral representations for F (a, b, c, x),

one can show that they transform nontrivially under the σ-braids of (5). For example,

F (−2,−1/3,−2/3;x) = 1 − x + x2. Thus, the braid transformation that exchanges z3
with z2, e.g. x −→ x−1, simply multiplies the second block by (−1).
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We can write the correlation function itself. In this case, it is the absolute square of

the second block of (23):

<< E(z1, z1) . . . E(z4, z4) >>=

(

1− x+ x2

z13z24(1− x)x

)(

1− x+ x2

z13z24(1− x)x

)

(24)

This correlation function is easily seen to be invariant under braid group transforma-

tions. This is the generic situation. The correlation functions are invariant under braiding,

but the conformal blocks transform in nontrivial and often multi-dimensional represen-

tations (see below). The null vector equations, (20) to (22) reduce the construction of

correlation functions to a problem in constructing invariants of the braid group.

Braid statistics enters conformal field theories through the concept of factorization.

This can already be seen in the 3-point correlations, (14), when written with complex

coordinates:

<< φi(z1, z1)φj(z2, z2)φk(z3, z3) >>= CijkW
ij
k (z1, z2, z3)W

ij

k (z1, z2, z3)

W ij
k (z1, z2, z3) =

1

(z1 − z2)
∆i+∆j−∆k × cyclic perm.

(25)

The W ij
k ’s are analytic in the coordinates and transform as one dimensional repre-

sentations of the braid group. For example, the σ- braid that twists z1 around z2 in a

clockwise sense gives:

σ1W
ij
k (z1, z2, z3) = eiπ(∆i+∆j−∆k)W ji

k (z2, z1, z3)(26)

A partial factorization also occurs for all higher correlation functions.

(27) << φj1 (z1, z1) . . . φjP (zP , zP ) >>

=
∑

k,l

AklF
j1...jP

l (z1, . . . , zP )F
j1...jP
k (z1, . . . , zP )

The sum over conformal blocks F j1...jP
l is labeled by the generic indices k and l.

The blocks are the complete set of analytic solutions to the null vector equations, i.e.

(20)–(22). Since there are only a finite number, the sums are finite. The transformation

properties of the conformal blocks under the braid group can be seen by writing them as

Coulomb gas contour integrals [10].

The remaining constants, Alk, can be determined by imposing the commutativity10

and associativity of products of fields on the forms in (27). The associativity comes from

a completeness relation. The product of any two fields can be expressed as a sum over

all primary fields and their conformal descendants (19).

φi(z1, z1)φj(z2, z2) =
∑

k,~n,~m

Cijkβ
ij
k,n (z1, z2)β

ij

k,m (z1, z2)φ
(~n,~m)

∆k,∆k

(z2, z2)(28)

Here, the constants Cijk are the structure constants from (14), and βij
k is an analytic

function of its arguments that can be determined from (17) and (18). In the following, it is

sufficient to consider the 4-point correlations at the special points: z1 = 0, z2 = x, z3 = 1,

10This results from the fact that all products of fields are actually time ordered, i.e. (φ1φ2)+ =

(φ2φ1)+ .
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and z4 = ∞. Then, the blocks only depend on the zj through x. The correlation function

at arbitrary values of z1, . . . , z4 can be related to correlations at these special values

through the invariances of the finite conformal group of (12), i.e. Lk|0 >= Lk|0 >= 0 for

k = −1, 0, 1. Applying (27) and (13) to the 4-point correlations, we find that:

Glk
mn (x, x) =

∑

p

CnkpClmpF
nk
lm (p|x)F

nk

lm (p|x)

=
∑

q

CklqCnmqF
kl
nm (q|1− x)F

kl

nm(q|1− x)

Glk
mn (x, x) =<< φn (0, 0)φk (x, x)φl (1, 1)φm (∞,∞) >>(29)

Here, the Fnk
lm ’s are the conformal blocks. In the first equality, we applied the operator

product expansion (28) to the products (φnφk) and (φlφm) and then calculated the

remaining 2-point correlation with (13). In the second equality, we applied (28) to the

products (φkφl) and (φnφm) and then used (13). The equality (29) is known as the duality

relation [8]. It is extremely powerful. It provides an inhomogeneous algebraic equation

for the structure constants Cijk that has enabled their explicit calculation [10].

Now, we can show that this equation is also related to braiding. Since the blocks

Fnk
lm (p|x) are independent for different values of p, the duality relationship leads to a

separate equation for each value of p. The conformal blocks as a function of x can be

rewritten in terms of the complete set of blocks as a function of 1 − x. This generates

matrix equations that also have a graphical interpretation, fig. 2.

Fnk
lm (p|x) =

∑

q

T
(

p, q,
[

kl
nm

])

F kl
nm (q|1− x)(30)

T(p,q, .
.

.

.
)

l

k l

n m

qp

k

mn

Fig. 2. Duality relation for a single conformal block. Here, p and q index primary fields.

By the commutativity of the primary fields, the correlation function is invariant under

the exchange of any two fields, i.e. invariant under any element of the braid group (5).

<< . . . φi . . . φj . . . >>=<< . . . φj . . . φi . . . >>(31)

Nevertheless, a glance at the example in (23) will show that the conformal blocks

form nontrivial representations of the braid group. Thus, invariance of correlations under

braid transformations is only possible if conformal blocks transform linearly under the

braid group. This leads to a second diagrammatic relationship, fig. 3, [13]:

Fnk
lm (p|x) =

∑

q

B
(

p, q,
[

nk
lm

])

Fnl
km (q| . . .)(32)
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T(p,q, .
.

.

.
)

l

l k

n m

p B
q

k

n m
q

Fig. 3. σkl-braid relation on conformal blocks

The braiding matrices B
(

p, q,
[

nk
lm

])

have interesting properties. For example, (32)

implies that they must satisfy nontrivial commutation relations with the structure con-

stants, see (29). Finally, through the series of braid transformations shown in fig. 4, one

can show that the duality matrix T
(

p, q,
[

kl
nm

])

, and the braiding matrix B
(

p, q,
[

nk
lm

])

are linearly related.

B
(

p, q,
[

nk
lm

])

= e−iπ[∆p+∆q−∆l−∆m]T (p, q, [nmlk ])(33)

k

l

j

i k

B

T

σ σ

l

j

i k

j

i l

k

i

j

l

Fig. 4. Proof of the relation between the braiding and duality matrices

Here, we have also used the braid transformations of the 3-point vertex (26). Thus, the

braid and duality properties of the conformal blocks are intimately related [8, 13, 14]. As

we have already stated, the duality properties have been the basis of extensive calculations

of the structure constants [10, 8] The relation between the braiding and duality matrices

says that solving the duality equation is equivalent to requiring that correlation functions

be braid invariants.

The braid transformations of the conformal blocks were extensively developed in [13].

It may not surprise the present audience that those authors have shown deep relationships

with quantum groups. Other authors have furthered the ideas of [13] and have used the

conformal blocks of rational conformal models to construct knot invariants [14]. That

application is well beyond the scope of this review and the present authors’ activities.

Nevertheless, the reviews on those applications [14] should be accessible to a reader who

has followed this presentation to the end.
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