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1. Introduction. Let X(M) denote the space of smooth flows on a compact, con-

nected 2-manifold M with C∞ topology. The problems of (1) finding a suitable equiva-

lence relation R in X(M), and (2) classifying the equivalence classes of X(M) mod R are

among the most important in the generic theory of flows. Topological conjugacy can be

regarded as a suitable equivalence relation in X(M). There is a well known approach to

studying the dynamical systems when the problem of topological classification of smooth

flows is reduced to that of classification of the corresponding combinatorial schemes up to

isomorphism. To put it in another way, one tries to assign a combinatorial scheme to each

smooth flow on M in such a way that two flows will be topologically equivalent if and only

if the corresponding schemes are isomorphic in natural sense. In particular, if the class

of smooth flows under consideration consists of those which don’t contain the nonclosed

Poisson stable trajectories both in positive and negative directions, the combinatorial

schemes give us a complete topological invariant of them [1]. For the Morse–Smale flows

on closed oriented 2-manifolds their distinguished graph is an invariant of such kind [8].

The above mentioned approach to the problem has been developed in [5]. In particular,

the problem of topological classification of minimal Morse–Smale flows without closed

orbits on closed oriented 2-manifolds has been reduced to the identification of words up

to some equivalence relation. In Section 1 of our paper we shall use a similar construction

to find a complete topological invariant of Morse–Smale flows without closed orbits on

closed 2-manifolds. This invariant is defined in terms of so-called chord diagrams. The

chord diagrams appear to encode closed generic plane curves [9] or patterns of generic

singular knots and links in sphere S3 [3], but their real meaning differs from ours. The

main result of the first Section is Theorem 1.2.
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In Section 2 we consider the isotopy equivalence relation in X(M). This is a more

subtle equivalence than the topological one. A necessary and sufficient condition for two

minimal Morse–Smale flows without closed orbits on a closed 2-manifold to be isotopi-

cally equivalent is given in terms of generators of the fundamental group π1(M) (The-

orem 2.4). One example of two topologically equivalent but isotopically nonequivalent

minimal Morse–Smale flows without closed orbits on a torus is given.

To prove Theorem 2.4 we shall use some results of Epstein concerning the isotopies

of closed curves on a 2-manifold [4]. The results obtained here seem to us to be new.

For the convenience of the reader we shall repeat the relevant material from [1, 6,

7] without proofs, thus making our exposition self-contained. We assume throughout

that M is a smooth (C∞), connected, closed 2-manifold (so that M is a PL-manifold)

unless otherwise stated. Since M is compact we won’t distinguish between the smooth

vector field X (dynamical system) on M and the smooth flow ϕX generated by X . In

the majority we follow the notation used in [6,7].

1. Encoding of Morse–Smale systems on two-manifolds by chord diagrams.

We introduce the notion of Morse–Smale system following J. Palis and W. de Melo. For

more detailed relevant information about Morse–Smale systems see also [7].

Let N be a smooth compact manifold.

Definition 1.1. A smooth vector field X on N will be called a Morse–Smale system

provided

1) X has a finite number of singular elements (singular points and closed orbits), each

of hyperbolic type;

2) If σ1 and σ2 are singular elements of X , then the stable manifold W s(σ1) associated

with σ1 and unstable manifold Wu(σ2) associated with σ2 have transverse intersection;

3) The set Ω(X) consisting of non-wandering points of X coincides with the union of

singular elements of X .

Let p ∈ N . Denote by ω(p) the set {q ∈ N |Xtn(p)→ q for some sequence tn → ∞},

and by α(p) the set {q ∈ N |Xtn(p) → q for some sequence tn → −∞}. It is known

[7] that for Morse–Smale systems on a compact smooth 2-dimensional manifold N the

following properties are valid:

a) There exists no trajectory joining any two saddle points of X ;

b) For each p ∈ N there are singular elements αi and αj such that ω(p) = αi and

α(p) = αj .

For abbreviation, we write M-S system instead of Morse–Smale system. Analogously,

we write M-S flow instead of Morse–Smale flow.

Let bi(X) (bi(X)) denote the number of singular points (closed orbits) of index i of

an M-S system X on an n-dimensional smooth manifold N . The following notion was

introduced by Sharko [11].

Definition 1.2. Let X be an M-S system on a compact smooth n-dimensional

manifold N . Then X is called minimal provided there is no M-S system Y on N with the

following property:



MORSE–SMALE FLOWS 257

for each i, 1 ≤ i ≤ n, bi(Y ) ≤ bi(X), bi(Y ) ≤ bi(X) and

there exists j, 1 ≤ j ≤ n, such that bj(Y ) < bj(X), or bj(Y ) < bj(X).

Note that every M-S system on a compact manifold contains at least one source and

one sink [7]. In the sequel an M-S system will always be assumed to be an M-S system

without closed orbits.

Let E be a smooth function from the compact manifold N into R and let △ denote

the set of critical points of E. Denote by XE(p) the derivation of the function E along

the vector X(p), where p ∈ N . It is well known that for every nondegenerate point ci of

E there exists a coordinate system (Ni, xi) such that

E ◦ x−1
i = E(ci) +Q(x),

where Q is a nonsingular quadratic form in x whose index is the same as the index of the

Hessian of E at ci.

Definition 1.3. Let X be a smooth vector field (flow) on N without closed orbits.

Then a function E from N into R will be called an energy function for X provided

1) XE(p) < 0 for all p ∈ M −△, i.e. E is decreasing along the trajectories of X or

the trajectories of X are transversal to the level lines of E;

2) △ consists of nondegerate critical points, i.e. △ consists of critical points where

the Hessian of E has nullity 0 (so △ is a finite set {c1, . . . , cn}).

3) there exists a constant k ≥ 0 such that on each Ni

−XE(p) ≥ k · d(p, ci)
2 for p ∈ Ni, i = 1, n.

For the definition of energy function in a general case see [6].

Meyer shows (Theorem 1, [6]) that if X is a M-S system then there exists an energy

function E for the system.

Definition 1.4. Let X be an M-S system on a smooth compact manifold M . An

energy function E for X will be called a nice energy function for X provided all the

sources of X lie in E−1(1), all the saddle points of X lie in E−1(0), and all the sinks of

X lie in E−1(−1).

The construction of Theorem 2 [6] could be made to yield a nice energy function for

every M-S system on N .

Definition 1.5. LetX and Y be two flows on a compact smooth manifoldN . Then X

and Y will be called topologically equivalent if there exists a homeomorphism h : N → N

which sends the trajectories of X into the trajectories of Y . Then we shall say that X

and Y are topologically equivalent under the homeomorphism h.

Definition 1.6. Two functions E and E′ from N to R are said to be topologically

equivalent if there exist homeomorphisms f and g, f : N → N and g : R→ R such that

the following diagram commutes:

N
E
−→ R

f





y

x




f−1 g−1

x









y

g

N
E′

−→ R
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By Meyer’s Proposition (see [6], p. 1039) the topological equivalence of flows X and

Y on a compact 2-dimensional smooth manifold follows from the topological equivalence

of corresponding nice energy functions E and E′ for X and Y respectively.

Let X be an M-S flow on M . (Recall that M is assumed to be a smooth closed

2-manifold and X is assumed to be an M-S flow without closed orbits).

Definition 1.7. A trajectory L of X will be called singular provided a) L is a singular

element of X (singular point) or b) L is a trajectory joining the singular point to a saddle

point.

Denote by C the union all of singular trajectories of X .

R e m a r k 1.1. Every connected component of M \C is a simply connected domain,

which is homeomorphic to a simply connected domain of R2 (actually an open 2-cell), and

is filled with nonclosed trajectories which are Poisson unstable both in the positive and

negative directions. Each such component looks as in Fig. 1. We shall call the components

of M \ C, which look as in Fig. 1, the cells of type A.

Fig. 1

For more detailed relevant information and definitions concerning the structure of

connected components of M \C in the general case of flows on a closed, smooth 2-manifold

see [1,2].

The set consisting of all singular trajectories and cells of type A determines the cellular

decomposition of M .

Let us be an arbitrary sink of X . Let As be the family consisting of all cells B of type

A such that us ∈ B, and let Cs be the family of trajectories of X which join the sink us
to the saddle points of X . Put Bs = (

⋃

As) ∪ (
⋃

Cs) ∪ {us}. In view of Remark 1.1 the

following assertion holds.

Proposition 1.1. Bs is an open 2-cell. Moreover , if us and ut are two distinct sinks

then Bs ∩Bt = ∅.



MORSE–SMALE FLOWS 259

Definition 1.8. By an n-component chord diagram G we mean n distinct planar

circles S1, . . . , Sn with several chords having distinct end points. The number of chords

in the chord diagram will be called the order of the diagram. If the chords of G are

additionally equipped with sign “+” or “−”, such a chord diagram will be called signed.

If all the circles of the chord diagram are oriented we will call it oriented. The ends of

chords will be called the distinguished points. The chord which joins u to v is denoted by

{u, v}.

R e m a r k 1.2. Chords can join points of distinct circles as depicted in Fig. 2. The

geometry of the chords is irrelevant.

Fig. 2

Let G and G′ be two n-component, oriented, signed chord diagrams consisting of

circles S1, . . . , Sn and S′

1, . . . , S
′

n respectively.

Definition 1.9. Two chord diagrams G and G′ will be called isomorphic if there

exist homeomorphisms hi, hi : Si → S′

ji
, i = 1, n, where ji 6= jk if i 6= k, which preserve

the orientations of all the circles and preserve all the chords as well as their signs. The

isomorphism class of the chord diagram G is denoted by (G).

We can think of two isomorphic chord diagrams as being the same.

Now we shall describe the correspondence between M-S flows on closed connected

2-manifolds and oriented signed chord diagrams.

Let X be an M-S flow on M with sources v1, . . . , vn, sinks u1, . . . , ul and saddle points

w1, . . . wm. If m = 0, then M is the sphere S2. It is well known that the set of topological

equivalence classes of M-S flows under consideration on S2 consists of only one element

[7]. We shall assign to every such M-S flow on S2 the chord diagram consisting of one

circle (with arbitrary orientation) and having no chord. So we assume that m > 0.

It follows from [6] that there exists a nice energy function E for X . By definition of

a nice energy function we have E(v1) = . . . = E(vn) = 1, E(w1) = . . . = E(wm) = 0

and E(u1) = . . . = E(vl) = −1. The trajectories of X are transverse to the level lines of

E. For small enough ε > 0, the level line E−1(1− ε) consists of m disjoint simple closed

curves Š1, . . . , Šn on M . Each Ši bounds a disk Di in M . Fix an orientation on each

Di. Denote by ei1, . . . , e
i
pi

all the points of the set C ∩ Ši (recall that C is the union of

singular trajectories of X). For every point eij , 1 ≤ j ≤ pi, there exists only one trajectory

which joins vi to some saddle point us. The choice of orientation on Di determines the

cyclic sequence of points ei1, . . . , e
i
pi
, which corresponds to the circuit of Si in accordance

with the induced orientation on it. We assign a circle Si to every connected component

Ši of the level line E−1(1 − ε), by choosing a homeomorphism gi : Si → Ši, i = 1, n.
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It will cause no confusion if we use the same letter eij to designate the point eij and its

preimage g−1
i (eij). For every i choose the orientation of Si which is carried from Ši by the

homeomorphism g−1
i , i = 1, n. Then the points ei1, . . . , e

i
pi

will be taken as distinguished

on Si, i = 1, n. Two distinguished points eit ∈ Si, e
j
s ∈ Sj , will be joined in a chord

diagram GX consisting of the circles S1, . . . , Sn, if and only if there exist trajectories Li,

Lj and a saddle point v such that α(Li) = vi, α(Lj) = vj , Li ∩ Ši = eit, Lj ∩ Šj = ejs,

and ω(Li) = ω(Lj) = v.

Next, the preimage E−1(1 − ε, 1] consists of n open disks each of which contains

the corresponding source. Let {e1, e2} be an arbitrary chord in GX , ei ∈ Si, ej ∈ Sj .

By definition of the chord in GX there exist trajectories L1 and L2 of X such that

α(L1) = e1, α(L2) = e2, and ω(L1) = ω(L2). Denote by L(ei, ej) the submanifold

E−1[−1, 1 − ε] ∩ (L1 ∪ L2 ∪ ω(L1)) of the manifold E−1[−1, 1 − ε]. Let U(ei, ej) be

a tubular neighborhood of L(ei, ej) in E−1[−1, 1 − ε]. U(ei, ej) can be regarded as a

ribbon homeomorphic to the rectangle [−1//2, 1//2]× [−1, 1], which is glued along the

sides a and b to the disks Di and Dj respectively, where a = {−1//2} × [−1, 1] and

b = {1//2}× [−1, 1]. The choice of orientation on Di induces an orientation on the side

a and hence an orientation on the ribbon U(ei, ej). Similarly the choice of orientation

on Dj induces an orientation on U(ei, ej). Then we shall equip the chord {ei, ej} of GX

with the sign “+” if the two orientations of U(ei, ej) coincide and with the sign “−” in

the opposite case. Thus we have assigned a chord diagram GX to every M-S flow on M .

It is clear that the definition of chord diagram GX doesn’t depend on the choice of ε > 0

or on the choice of homeomorphisms gi. However such correspondence isn’t determined

uniquely and depends on the choice of orientation on each disk Di.

To get around this difficulty in the case of an oriented 2-manifold M , we can choose,

on each disk Di, the orientation which is induced by a fixed orientation on M .

To get around this difficulty in the general case we must introduce a new equivalence

relation on the set of chord diagrams.

Let G be a n-component, oriented, signed chord diagram of order m. Consider an

arbitrary circle Si of G. Change simultaneously the orientation of the circle Si and the

sign of each chord which has exactly one end on Si. Denote by G′ the new chord diagram.

We shall call the chord diagrams G and G′ elementarily equivalent.

Definition 1.10. Two n-component chord diagrams G and H of order m will be

called equivalent if and only if there exists a sequence of elementarily equivalent chord

diagrams G1, . . . , Gl such that G1 = G and Gl = H . Denote by [G] the class of equivalent

diagrams which contains the chord diagram G.

R e m a r k 1.3. The relation “to be isomorphic” is more subtle than the relation “to

be equivalent” on diagrams.

R e m a r k 1.4. If M is an oriented 2-manifold we may choose in every class [GX ] a

chord diagram with all chords having the sign “+”. Thus in such a case we can restrict

ourselves to the class of ordinary, non-signed, oriented chord diagrams.

It is easy to see that the correspondence X → [GX ], which assigns an equivalence

class of chord diagrams to each Morse–Smale flow X without closed orbits on the closed
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2-manifold doesn’t depend on the choice of the orientation of disks Di, and hence is well

defined.

Theorem 1.2. Let X and Y be M-S flows without closed orbits on a connected , closed

2-manifold M . Then X and Y are topologically equivalent if and only if [GX ] = [GY ].

P r o o f. Suppose that X and Y are topologically equivalent. In accordance with [6]

there exist nice energy functions EX and EY for X and Y respectively. Let f : M →M

be the corresponding homeomorphism which sends the trajectories of X into the trajec-

tories of Y , the sinks of X into the sinks of Y , the sources of X into the sources of Y and

the saddle points of X into the saddle points of Y . Then f sends the trajectories joining

the sources to the saddle points of X into similar ones of Y . By Theorem 2 [6], EX and

EX are topologically equivalent under the homeomorphism f . The preimage E−1
X [1−ε, 1]

is the union of disjoint disks D1, . . . , Dn with boundaries Š1, . . . , Šn, respectively. Then

E−1
X (1) is the union of all the sources v1, . . . , vn of X and E−1

X (1−ε) =
⋃n

i=1 Ši. Similarly

E−1
Y [1−ε, 1] is the union of disjoint disks D′

1, . . . , D
′

n with boundaries Š′

1, . . . , Š
′

n, respec-

tively. Moreover, E−1
Y (1) is the union of all sources v′1, . . . , v

′

n of Y and E−1
Y (1 − ε) =

⋃n
i=1 Š

′

i. Since EX and EY are topologically equivalent under the homeomorphism f , we

have f(Di) = D′

ji
, f(Ši) = Š′

ji
. Without loss of generality we may assume that ji = i for

every i, 1 ≤ i ≤ n. Fix for every i, where 1 ≤ i ≤ n, some orientation on Di and choose

the orientation of D′

i which comes from Di by the homeomorphism f |Di
: Di → D′

i.

Then for each i the map f |Ši
: Ši → Š′

i preserves the orientations of the circles under the

fixed orientation of Di, D
′

i, 1 ≤ i ≤ n. Thus (g′i)
−1(f |Ši

)gi : Si → S′

i also preserves the

orientations, 1 ≤ i ≤ n.

Next, each distinguished point eir on Si can be regarded as the intersection of the

circle Ši and some trajectory L of X , such that α(L) = vi and ω(L) is a saddle point of

X . Similarly each distinguished point eiq on S′

i can be regarded as the intersection of the

circle Š′

i and some trajectory L′ of Y , such that α(L′) = v′i and ω(L′) is the saddle point

of Y . For this reason f sends the distinguished points of Si to those of S′

i, for each i,

1 ≤ i ≤ n. Suppose that the points ei ∈ Si, e
j ∈ Sj are joined by chord {ei, ej} in GX . It

follows from the definition of GX that there exist trajectories L1, L2 and a saddle point

w of X such that α(L1) = vi, α(L2) = vj , ω(L1) = ω(L2) = w. Then the trajectory

f(L1) joins the source u′i = f(ui) to the saddle point w′ = f(w). Similarly the trajectory

f(L2) joins the source u′j = f(uj) to the saddle point w′. For this reason e′i and e′j are

joined by the chord {e′i, e
′

j} in GY .

Next, let ei and ej be two arbitrary distinguished points in GX joined by the chord

{ei, ej}. Suppose that the sign of {ei, ej} is “+”. Let us consider the ribbon U(ei, ej)

which is glued to the disks Di and Dj along the sides a and b respectively. Then U(ei, ej)

is a tubular neighbourhood of (L1 ∪L2 ∪ {w})∩E
−1
X [−1, 1− ε] in the manifold E−1

X [−1,

1 − ε]). Since the sign of {ei, ej} is “+”, the orientation of U(ei, ej) which is induced

by the orientation of Di is the same as the one induced by the orientation of Dj . Now

let us consider the manifolds T = Di ∪ U(ei, ej) ∪ Dj and T ′ = D′

i ∪ U(e′i, e
′

j) ∪ D
′

j ,

where U(e′i, e
′

j) = f(U(ei, ej)). Then U(e′i, e
′

j) is a tubular neighbourhood of (f(L1) ∪

f(L2) ∪ {w′}) ∩ E−1
Y [−1, 1 − ε] in the manifold E−1

Y [−1, 1 − ε], where E−1
Y [−1, 1 − ε]

= f(E−1
X [−1, 1− ε]) and f |T is the homeomorphism between T and T ′.
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Then the orientation of U(e′i, e
′

j) induced by the one on D′

i is the same as that induced

by the one on D′

j , so the sign of the chord {e′i, e
′

j} is also “+”. Reasoning similarly, we

can show that the condition “the sign of {ei, ej} is “−”” implies the condition “the sign of

{e′i, e
′

j} is “−””. Thus the signed oriented chord diagrams of GX and GY are isomorphic

and so [GX ] = [GY ].

Conversely, let X and Y be two M-S flows such that [GX ] = [GY ]. Let GX be an

n-component chord diagram of order m. The number of sources of X is equal to n and

coincides with the number of sources of Y . Denote the sources of X by v1, . . . , vn and the

sources of Y by v′1, . . . , v
′

n. It follows from the description of the correspondenceX → [GX ]

that the number of saddle points of X is equal to the number m of chords in GX , so it

coincides with the number of saddle points of Y . Denote by w1, . . . , wm the saddle points

of X and by w′

1, . . . , w
′

m the saddle points of Y . Next, let EX and EY be nice energy

functions for X and Y , respectively. Consider the level lines E−1
X (1− ε) and E−1

Y (1− ε).

As has been stated above, E−1
X (1−ε) consists of n disjoint circles Š1, . . . , Šn which bound

disjoint disks D1, . . . , Dn, respectively, and E−1
X [1−ε, 1] =

⋃n
i=1Di. Similarly E−1

Y (1−ε)

consists of n disjoint circles Š′

1, . . . , Š
′

n which bound disks D′

1, . . . , D
′

n respectively and
⋃n

i=1D
′

i = E−1
Y [1 − ε, 1]. It follows from the definition of correspondences X → [GX ]

and Y → [GY ] that for suitable choices of orientations on S1, . . . , Sn, S′

1, . . . , S
′

n the

chord diagrams GX and GY will be isomorphic. Let ϕ : GX → GY be the corresponding

isomorphism between signed oriented diagrams GX and GY .

Fix in each Ši (Š′

i respectively) the orientation which is carried by the homeomor-

phism gi (g′i respectively) from Si (S′

i respectively), i = 1, n. Choose in each disk Di (D′

i

respectively) the orientation which agrees with the orientation of the circle Ši (Š′

i respec-

tively). Put fi = g′i ·ϕ ·(gi)
−1 for each i, 1 ≤ i ≤ n. Define the map f :

⋃n
i=1 Ši →

⋃n
i=1 Š

′

i

by the formula:

f |Ši
= fi for each Ši, 1 ≤ i ≤ n.

Let us consider an arbitrary chord {ei, ej} of GX , where ei is a distinguished point

on the circle Si and ej is a distinguished point on the circle Sj. It follows from the

definition of GX that there exist trajectories L(vi, w), L(vj , w), and a saddle point w of

X , such that α(L(vi, w)) = vi, α(L(vj , w)) = vj , ω(L(vi, w)) = ω(L(vj , w)) = w, and

ei ∈ L(vi, w), ej ∈ L(vj , w). Denote by L(vi, w, vj) the set L(vi, w)∪L(vj , w)∪{vi, w, vj}.

Set L(ei, w, ej) = L(vi, w, vj)∩E−1[−1, 1−ε]. Since ϕ is an isomorphism of chord diagrams

GX and GY , there exists a chord {e′i, e
′

j} of the chord diagram GY such that f(ei) = e′i,

f(ej) = e′j , where e′i and e′j are some distinguished points on S′

i and S′

j respectively. This

means that there are trajectories L(v′i, w
′), L(v′j , w

′), and a saddle point w′ of Y , such

that α(L(v′i, w
′)) = v′i, α(L(v′j , w

′)) = v′j , ω(L(v′i, w
′)) = ω(L(v′j , w

′)), and e′i ∈ L(v′i, w
′),

e′j ∈ L(v′j , w
′). Put f̃(w) = w′. Repeat this procedure with all the chords of GX . Thus

we have determined a map f̃ : {Saddle points of X} → {Saddle points of Y }. Since the

order of GX equals the order of GY , f̃ is a one-to-one correspondence between the set

W of saddle points of X and the set W ′ of saddle points of Y .

Denote by L(v′i, w
′, v′j) the set L(v′i, w

′) ∪ L(v′j , w
′) ∪ {v′i, v

′

j , w
′}. Let further BX =

⋃

w∈W L(vi, w, vj), BY =
⋃

w′∈W ′ L(v′i, w
′, v′j), S =

⋃n
i=1 Si, S

′ =
⋃n

i=1 S
′

i. It is obvious

that the map f̃ : W →W ′ can be extended to the homeomorphism f̃1 : BX → BY , such
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that f̃1(vi) = v′i for each i, 1 ≤ i ≤ n, and f̃1(ej) = e′j for each distinguished point ej ,

ej ∈ Šj . It follows from what has been said that the map f̃1 can be extended to the map

f̃2 : (S ∪BX)→ (S′ ∪BY ) in such a way that f̃2|S = f and f̃2|BX
= f̃1. The next step of

our construction consists in an extension of the map f̃2 to a map f̃3 : D∪BX → D′∪BY

satisfying the conditions

f̃3(vi) = v′i, i = 1, n,

where D =
⋃n

i=1Di, D
′ =

⋃n
i=1D

′

i.

Recall that the trajectories of X with α(L) = vi intersect Si transversally for each i,

i = 1, n. Using a suitable isotopy F : D′ × I → D′ which keeps the set S fixed, we can

deform the homeomorphism f̃3 to, say f̃4, such that the following property is satisfied:

f̃4 sends the pieces of trajectories Di∩L with α(L) = vi into the pieces of trajectories

D′

i ∩ L
′ with α(L′) = v′i and f̃4(vi) = v′i, i = 1, n.

It may be noted that the homeomorphism f̃4 sends each trajectory L of X , which

joins a source to a saddle point, into a similar trajetory of Y . Now let us consider, for

each saddle point wl of X , a tubular neighbourhood T (wl) of the submanifold L(ei, wl, ej)

in E−1
X [−1, 1 − ε]. Recall that T (wl) is homeomorphic to a rectangle (ribbon) and the

trajectories of X in the rectangle (ribbon) look as in Fig. 3, because wl is an isolated

singular point of hyperbolic type.

Fig. 3

It may be noted that each trajectory which crosses the sides a, b, c, d of the rectangle

does so transversally. Let al and bl be the sides of the ribbon T (wl) which are glued in M

to the disks Di and Dj respectively. Put T =
⋃

wl∈W T (wl), a
′

l = f(al), b
′

l = f(bl), where

l = 1,m. Then for each l, 1 ≤ l ≤ m, there exists a tubular neighbourhood T (w′

l) of the

submanifold L(e′i, w
′

l, e
′

j) in E−1
Y [−1, 1−ε] such that T (w′

l)∩D
′

i = a′l and T (w′

l)∩D
′

j = b′l.

The trajectories of Y in T (w′

l) also look as in Fig. 3. Taking into account that the sign

of the chord {ei, ej} in GX coincides with the sign of the chord {e′i, e
′

j} in GY , it may be

proven that for each l, 1 ≤ l ≤ m, there exists a suitable tubular neighbourhood T (w′

l)

of L(e′i, w
′

l, e
′

j) in E−1
Y [−1, 1 − ε], and a homeomorphism ψl : T (wl) → T (w′

l) such that

ψl|al
= f̃4|al

, ψl|bl = f̃4|bl and ψl|T (wl)∩L(ei,wl,ej) = f̃4|T (wl)∩L(ei,wl,ej). Moreover the

homeomorphism ψl, l = 1,m, could be chosen in such a way that it sends the pieces of

trajectories of X into those of Y . Put T ′=
⋃m

l=1 T (w′

l). Define the map ψ : T∪D→T ′∪D′

by the formula

ψ|D = f̃4|D, ψ|T (wl) = ψl|T (wl), where 1 ≤ l ≤ m.
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It should be noted that each trajectory of X which crosses the boundary, ∂(T ∪D),

of the manifold T ∪D does so transversally. Similarly each trajectory of Y which crosses

the boundary, ∂(T ′ ∪D′), of the manifold T ′ ∪D′ does so transversally.

It remains to prove that the homeomorphism ψ can be extended to the whole manifold

M . Let R1, . . . , Rs be the connected components of ∂(T ∪D). Then R′

1, . . . , R
′

s will be

all the connected components of ∂(T ′ ∪D′), where R′

i = ψ(Ri), i = 1, s. Each circle Rj ,

j = 1, s, is contained in some 2-cell Bj and bounds a disk Cj , so that a sink uj is contained

in each one. It follows from Remark 1.1 and Proposition 1.1 that the correspondence

Rj → uj between the connected components of ∂(T ∪D) and the sinks of X is one-to-one.

Therefore the number of the sinks of X is equal to the number of the sinks of Y . (The

last assertion follows also from the Poincaré–Hopf theorem, if we take into account that

the number of saddle points of X is the same as that of Y , and the number of sources

of X is the same as that of Y ). Without loss of generality we can assume that if a sink

uj of X corresponds to a connected component Rj , then the sink u′j of Y corresponds to

the connected component R′

j .

Put ψ′

j = ψ|Rj
, j = 1, s. Then ψ′

j is a homeomorphism of Rj onto R′

j . Extend ψ′

j

to the whole disk Cj , j = 1, s. We may choose the extension hj of ψ′

j in such a way that

hj(uj)=u′j for each j, j=1, s. Next we apply to each disk C′

j an isotopy, which keeps ∂C′

j

fixed, to obtain a homeomorphism h′j : Cj → C′

j which sends the pieces of trajectories of

X into the pieces of trajectories of Y . Finally we define the homeomorphism h : M →M

by the formula

h|Ci
= h′i|Ci

, i = 1, s,

h|T∪D = ψ|T∪D.

The homeomorphism h is well defined because h|∂Ci
= ψ|∂Ci

by the construction of h.

R e m a r k 1.5. In view of Theorem 1.2 and Remark 1.4, two M-S flows X and Y on

an oriented closed 2-manifold M are topologically equivalent if and only if the oriented

(nonsigned) chord diagrams GX and GY corresponding to them are isomorphic.

Now we define the family F of contours of a chord diagram GX (which is regarded

as an oriented graph) in order to determine the corresponding circuits of the connected

components Rj of ∂(T ∪ D), j = 1, s. Those contours are determined uniquely up to

orientation by the following rules.

Rule 1. The preceding link to each chord in an arbitrary contour of F is an arc (of

the circle) and conversely, the preceding link to each arc is a chord.

Rule 2. Each chord is contained twice in one contour or once in some pair of contours

(possibly with different arrows).

Rule 3. Each arc is contained in a unique contour. Moreover the arc appears in such

a contour only once.

Let h = {u, v} be an arbitrary chord of the contour C, where u ∈ Si, v ∈ Sj . Next, let

a0, a1 be two arcs in Si containing u, and let b0, b1 be two arcs in Sj containing v, so that

the orientation of Si induces the cyclic sequence . . . , a0, u, a1, . . . , and the orientation
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of Sj induces the cyclic sequence . . . , b0, v, b1, . . . consisting of arcs and distinguished

points. Suppose ai is the arc preceding the chord h, where i = 0 or i = 1.

Rule 4. If the sign of h is “+”, then the contour C contains the triple (ai, h, bi).

Rule 5. If the sign of h is “−”, then the contour C contains the triple (ai, h, b1−i).

In other words, the contours of F correspond to circuits of the connected components

of the boundary of the “thickened” chord diagram G.

Proposition 1.3. There is a one-to-one correspondence between the family FG of

contours of the chord diagram GX and the family of circuits of connected components Ri,

i = 1, s.

P r o o f. The assertion follows directly from the definition of the correspondence X →

[GX ].

It is therefore reasonable to ask for which signed oriented chord diagrams G there

exists a suitable M-S flow X on a closed 2-manifold such that GX = G. The answer to

this question is always affirmative: using the arguments similar to ones as in the proof of

Theorem 1.2 one may construct, for a given signed oriented chord diagram G, an example

of an M-S flow X on a closed 2-manifold such that [GX ] = [G].

Denote by η(M) the number of topological equivalence classes of minimal M-S flows

on an oriented closed 2-manifold M .

Now we shall try to evaluate the upper and lower bounds for the number η(M). First

we need to establish some auxiliary assertions.

Let y be a singular point of an M-S field on M . Denote by ind(X, y) the index of the

vector field X at y.

Proposition 1.4. Let X be an M-S flow on a smooth, oriented , closed 2-manifold

M of genus s, and let GX be an n-component chord diagram of order m corresponding

to X (up to equivalence). Let r be the number of contours of FG. Then

n−m+ r = 2− 2s.

P r o o f. By definition of the chord diagram GX the number of sources of X is equal

to n, and the number of saddle points is equal to m. It follows from Proposition 1.3 and

the proof of Theorem 1.2 that the number of sinks of X is equal to r. On the other hand

we have ind(X,u) = 1 if u is a sink or a source and ind(X,w) = −1 if w is a saddle point.

Now the assertion follows immediatly from the Poincaré–Hopf theorem.

Proposition 1.5. Let X be an M-S flow on a smooth, nonoriented , closed 2-manifold

M of genus s, and GX a n-component chord diagram of order m corresponding to X (up

to equivalence). Let r be the number of contours of FG. Then

n−m+ r = 2− s.

P r o o f. The proof of Proposition 1.5. is completely analogous to that of Proposition

1.4.
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Proposition 1.6. Let M be a closed oriented 2-manifold of genus s. Then

(

s−1
∏

k=0

C2
4(s−k)−2

)

//4s ≤ η(M) ≤ (4s− 3) · (4s− 3)!!

P r o o f. Our proof starts with the observation that each minimal M-S flow on a closed,

oriented 2-manifold M of genus s has exactly one sink, one source and 2s saddle points.

In view of Theorem 1.2, Remark 1.4, and Proposition 1.4, η(M) is equal to the number

µ(2s) of the equivalence classes of 1-component oriented chord diagrams G having exactly

2s chords and generating exactly one contour, i.e., with |FG| = 1. Denote by P the set

{exp(2πik//4s), k = 1, 4s} and by E2s the set consisting of 1-component chord diagrams

on S of order 2s with distinguished points exp(2πik//4s), k = 1, 4s. The total number of

ways to draw 2s chords in a circle is equal to (4s− 1)!! = (4s− 1) · (4s− 3) · . . . · 3 · 1.

Thus the set E2s consists of 2(4s− 1)!! elements.

Set T2s = {G ∈ E2s|G consists of one contour}. It is easily verified that |T2s| ≤

2 · (4s − 3)(4s − 3)!!. Taking into account that the equivalence class [G] of G doesn’t

depend on the choice of orientation of S we obtain

µ(2s) ≤
|T2s|

2
≤ (4s− 3) · (4s− 3)!!.

It remains to establish the second inequality. Fix two distinct points v3, v4 in P −

{exp 0, exp(2πi//4s)}. Denote by V (v3, v4) the set {exp 0, exp(2πi//4s), v3, v4} and by

E′

2s−2 the set consisting of 1-component oriented chord diagrams of order 2s− 2 having

their distinguished points in P − V (v3, v4). Put

T ′

2s−2 = {G ∈ E′

2s−2|FG consists of one contour},

T ′

2s(v3, v4) = {G ∈ T2s|G has two chords having their ends in V (v3, v4)}.

It is easily seen that |T ′

2s−2| ≤ |T
′

2s(v3, v4)|. Next we note that if {v′3, v
′

4} is another

pair, {v′3, v
′

4} ⊂ P − {exp 0, exp(2πi//4s)}, then T ′

2s(v3, v4) ∩ T ′

2s(v
′

3, v
′

4) = ∅. Thus we

have |T2s| ≥ C2
4s−2 · |T

′

2s(v3, v4)| ≥ C2
4s−2 · |T

′

2s−2| ≥ . . . ≥ C
2
4s−2 · C

2
4s−6 · . . . · C

2
6 · 1.

In order to complete the proof of the second inequality we observe that there is a

natural action of the dihedral group D2s on T2s (and on E2s also). Each conjugacy class

of such an action consists of no more than 4s elements. On the other hand two chord

diagrams G1, G2 ∈ T2s are equivalent if and only if they lie in the same conjugacy class.

Thus we obtain

µ(2s) ≥
|T2s|

4s
≥

(

s−1
∏

k=0

C2
4(s−k)−2)//4s

)

,

whence the assertion follows.

The upper bound is more exact than the one given in [5] for large s.

2. Isotopical classification of flows on two-manifolds. In the remainder of this

paper we shall assume M to be a smooth, oriented, closed 2-manifold of nonpositive

Euler characteristic. The aim of this section is to find a simple criterion of isotopical

equivalence of minimal M-S systems (flows) on an oriented closed 2-manifold. We shall

state the main assertion concerning this point and shall give only a sketch of the proof of
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the main result of Section 2 (Theorem 2.4). In the second section we use the notations

of Section 1 and [4,10]. First we recall some needed notions.

Definition 2.1. Let g1, g2 : A→ B be two embeddings of a topological space A into

a topological space B. We call g1 and g2 ambient isotopic if there is a (not necessarily

smooth) isotopy G : A × I → A such that g2(x) = G(g1(x), 1) for each x ∈ A. We shall

say then that G is an ambient isotopy between g1 and g2. We shall say also that g is the

final homeomorphism of the isotopy G : A× I → A if g(x) = G(x, 1) for each x ∈ A.

Let f1, f2 : A→ B be two maps of a topological space A into a topological space B,

and A1 ⊆ A. The notation f1 ≃ f2 rel A1 means that there exists a homotopy F between

f1 and f2 which keeps A1 pointwise fixed.

Definition 2.2. Let X and Y be two dynamical systems (flows) on the smooth

compact manifold N . Then X and Y will be called isotopically equivalent if there is an

isotopy F : N × I → N such that X and Y are topologically equivalent under the final

homeomorphism f of F .

Denote by R the real numbers. Let X be a dynamical system on the compact smooth

manifold N . Denote by ϕX the flow which corresponds to X , ϕX : N ×R→ N .

Let ϕ : N × R → N be a flow on N and F : N × I → N be the isotopy of N with

final homeomorphism f . Then f ◦ ϕ will, generally, be a topological flow on N .

Throughout Section 2, M denotes a connected, closed, oriented, smooth, 2-manifold.

Let X be a minimal M-S system on M . It follows from the results of Section 1 that

X has one source, one sink and 2s saddle points, where s is the genus of M . Denote

by v the single source of X and by w1, . . . , w2s the saddle points of X . For each wi

there are exactly two trajectories Li and L′

i joining v to wi. It is obvious that the set

Ci = Li ∪ L′

i ∪ {wi} ∪ {v} is homeomorphic to the circle for each i, i = 1, 2s, and can be

regarded as a simple closed curve in M .

Set CX =
⋃2s

i=1 Ci. CX will be called the graph of the flowX . The choice of orientation

on each Ci determines an element of the fundamental group π1(M, v) of M .

Denote by ~Ci the curve Ci equipped with a fixed orientation. The corresponding

element of the fundamental group π1(M, v) will be denoted by [~Ci]. It follows from ar-

guments similar to those used in Section 1 that M − CX is an open 2-cell and that the

oriented curves ~Ci determine the generators [~C1], . . . , [~C2s] of π1(M, v). Then M − CX

contains the single sink u of X .

To establish the main result of Section 2 we need to prove several auxiliary assertions.

Theorem 2.1. Let X and Y be two minimal M-S dynamical systems on M with graphs

CX and CY respectively. Then X and Y are isotopically equivalent if and only if there

exists an ambient isotopy F of M with the final homeomorphism f sending CX into CY .

P r o o f. Denote by u (u′ respectively) the sink of X (of Y respectively), by v (v′

respectively) the source of X (of Y respectively), and by w1, . . . , w2s (w′

1, . . . , w
′

2s respec-

tively) the saddle points of X (of Y respectively).

Let F be the isotopy of M under the condition of the theorem. Then F may be

deformed to an isotopy F1 of M with final homeomorphism f1 which satisfies the above
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mentioned condition and sends the saddle points of X to the saddle points of Y . Take

an isotopy F2 of M with final homeomorphism f2 which keep CY fixed and sends f1(u)

to u′. Next we can construct an isotopy F3 of M with final homeomorphism f3 which

keeps CY ∪ {u′} fixed and sends the trajectories f2 · f1(L) of the flow f2 · f1 · ϕX with

α(L) = wi and ω(L) = u to the trajectories L′ of ϕY with α(L′) = w′

i and ω(L′) = u′,

i = 1, 2s. This is possible because the trajectories f2 ·f1(L) and L′ under consideration lie

in the open 2-cell U = M −CX and join the same points. Thus the final homeomorphism

f3 ·f2 ·f1 of the isotopy F3 ·F2 ·F1 sends all the singular trajectories of X into the singular

trajectories of Y . Set g = f3 ·f2 ·f1. To complete the proof it is sufficient to note that all

the trajectories of both ϕX and g ·ϕX in each connected component B of M \C look as

in Fig. 1, where C is the union of all singular trajectories.

By the standard arguments of general position the next assertion seems to be evident.

Proposition 2.2. Let X and Y be two minimal M-S systems (flows) on M with

the same source v, and let CX , CY be the graphs of X and Y respectively. Then there

is an isotopy F of M with final homeomorphism f which keeps v fixed and satisfies the

following condition: f1(CY )− {v} intersects CX − {v} in a finite number of points with

each intersection transverse.

From what has been outlined above the following conclusion may be drawn.

Proposition 2.3. The manifold M admits a PL-structure P such that the graph CX

is a subpolyhedron of M with respect to it.

Now we may state the main result of Section 2.

Theorem 2.4. Let X and Y be two minimal M-S systems on a closed , oriented 2-

manifold M of genus n with the same source v. Let CX =
⋃2n

i=1 Ci, CY =
⋃2n

i=1 C
′

i be

the graphs of X and Y respectively. Then X and Y are isotopically equivalent rel v if

and only if for each i the closed curves Ci and C′

i are homotopic rel v; i.e. Ci and C′

i

determine the same element of the fundamental group π1(M, v) under a suitable choice

of orientations , i = 1, 2n.

Fix a point z on the circle S.

In view of Propositions 2.2 and 2.3 and Theorem 2.1, to prove Theorem 2.4 it suffices

to establish the following proposition.

Proposition 2.5. Let M be a closed , oriented 2-manifold of genus n and let C =
⋃2n

i=1 Ci, C
′ =

⋃2n
i=1 C

′

i be two bouquets of simple closed curves Ci = fi(S), C′

i = f ′

i(S)

respectively, for the same point v, v = f1(z) = f ′

1(z), which satisfy the following condi-

tions :

a) Ci ∩ Cj = C′

i ∩C
′

j = {v} for all pairs (i, j) with i 6= j.

b) {fi}2ni=1 generates the fundamental group π1(M, v) and fi ≃ f ′

i rel z for each i,

1 ≤ i ≤ 2n.

c) C is a subpolyhedron of M .

d) The manifold C − {v} intersects C′ − {v} in a finite numbers of points with all

such intersections transverse.
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Then there is an isotopy G : M × I → M with final homeomorphism g, which keeps

v fixed , such that g(Si) = S′

i for every i, i = 1, 2n.

Let us consider the bouquets C and C′ on the manifold M .

R e m a r k 2.1. Following the method used by D. B. A. Epstein to prove Theorem

A1 [4] we can find an isotopy F1 of M with final homeomorphism f1 which keeps the

point v fixed such that the following conditions will be satisfied:

1) both f1(C′) and C are subpolyhedra of M ;

2) the manifold C − {v} intersects f1(C′)− {v} in a finite number of points with all

those intersections transverse.

Taking into account Remark 2.1 we may assume without loss of generality that con-

dition c) of Proposition 2.5 is replaced by the following one:

c′) Both C and C′ are subpolyhedra of M .

From this time on we shall work in PL-category.

R e m a r k 2.2. Let g, f : G → M be two embeddings of a finite graph G (a

one-dimensional connected polyhedron) into a closed, PL-2-manifold M . Then f and g

are isotopic if and only if they are ambient isotopic. This follows from the criterion of

ambient PL-isotopy (see Corollary 4.25 [10]).

To give a sketch of the proof of Proposition 2.5 we need to introduce several new

notions.

Let F : S × I → M be an isotopy of the circle S in a closed PL-2-manifold M with

initial imbedding f and final imbedding g i.e. f(x) = F (x, 0), g(x) = F (x, 1) for all x,

x ∈ S. Set
∑

0 = f(S),
∑

1 = g(S). Unless otherwise stated we assume that
∑

0 doesn’t

bound a disk in M (so
∑

0 isn’t homotopic to the trivial loop [4]). Let K and L be the

triangulations of S × I and M respectively such that F : K → L is a simplicial map.

Determine the equivalence RF on the set V of vertices of the complex K by the following

formula:

(uRF v)⇔ (u, v ∈ V ) ∧ (∃s ∈ K : (dim s = 1) ∧ (∂s = {u, v}) ∧ (F (u) = F (v))) .

Let p1 : V → V |RF be the canonical map and let K1 be the abstract simplicial

complex on V corresponding to the geometric complex K. Then p1 induces on the set

W = V |RF the structure of a simplicial complex which will be denoted by (E,W ). The

map p1 : (K,V ) → (E,W ) is simplicial by the construction of (E,W ). Let N be the

geometric realization of (E,W ). Then p1 can be extended uniquely to some simplicial

map q : N → L such that the following diagram commutes:

LF

ր ↑
K |q

ց
p1

|
N
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Note that q : N → L is a nondegenerate simplicial map. Suppose that there exist two

different simplexes s = (x1, y1, z1) and t = (x2, y1, z1) of N such that q(s) = q(t). Glue in

N the simplexes s and t with respect to q. Then we obtain a new simplicial complex N1

and a simplicial map r1 : N → N ′ such that r1(x1) = r1(x2). There is only one simplicial

map q′1 : N ′

1 → L for which the following diagram commutes:

Lq

ր ↑
N |q′1
ց
r1

|

N ′

1

Next we apply to the polyhedron |N ′

1| a simplicial collapsing ρ1 : N ′

1 ց N2 along the

simplex r1(s) from the edge r1(y1, z1). There exists only one simplicial map q2 : N2 → L

for which the following diagram commutes:

Lq′
1

ր ↑
N ′

1 |q2

ց
ρ1

|
N2

We continue the procedures of gluing and elementary collapsing as long as possible.

Finally we obtain the sequence r1, ρ1, r2, ρ2,. . . ,rk, ρk of gluing and collapsing and the

unique simplicial map qk+1 such the following diagram commutes:

L ← − − − − − − − − − − − − −

F ↑ qk+1 ↑

K −→
p1

N −→
r1

N ′

1 −→
ρ1

N2 −→
r2

N ′

2 −→ · · · −→ N ′

k −→ρk

Nk+1

Definition 2.3. The polyhedron qk+1(|Nk+1|) will be called the covering region of

the isotopy F and will be denoted by Q(F ).

Definition 2.4. Connected components of Q(F )− (
∑

0 ∪
∑

1) are called the compo-

nents of the covering region Q(F ). The set of components of the covering region Q(F )

is denoted by S(F ). If Q(F )− (
∑

0 ∪
∑

1) = ∅ we set S(F ) = ∅.

Note that qk+1 : Nk+1 → L is a nondegenerate simplicial map.

Let Di ∈ S(F ). Put Ui = q−1
k+1(Di). Let Ai be the set of connected components of Ui,

i = 1, r, Ai = {A1
i , . . . , A

ni

i }.

Definition 2.5. The number ni will be called the index of the component Di.

It follows from Definitions 2.3 and 2.4 that the map qk+1|Aj

i

: Aj
i → Di is a homeo-

morphism for each i and j, 1 ≤ i ≤ |S(F )|, 1 ≤ j ≤ ni. Then every nonempty component
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Di of Q(F ) is an open 2-cell or is homeomorphic to S × (−1, 1). Moreover if F keeps

some point in
∑

0 fixed, then S(F ) consists of 2-cells only.

Proposition 2.6. Let f0 and f1 be two embeddings of the circle S in M , z ∈ S,

f0(z) = v, f0 ≃ f1 rel z, and let F be the corresponding isotopy between f0 and f1.

If f0(S) bounds no disk in M, then there is an isotopy F ′ between f0 and f1 such that

F ′(S × I) ⊆ Q(F ). Moreover if L is a polyhedron in M such that L ∩Q(F ) ⊂ {v}, then

there is an ambient isotopy G between f0 and f1 which keeps L fixed.

We omit the proof of this assertion. Now we are able to prove Proposition 2.5.

P r o o f. The proof is by induction on the number of generators of π1(M, v).

By assumption, f1 ≃ f0 rel z. Then, by Theorem 4.1 [4], there exists an ambient

isotopy G between f1 and f0 which keeps v fixed. If g is the final homeomorphism of G

then we have g(C1) = C′

1.

Suppose that there exists an ambient isotopy G̃ : M × I →M with final homeomor-

phism g̃ which keeps v fixed and such that g̃(Ci) = C′

i for all i ≤ k. We wish to prove

that there exists an ambient isotopy G̃1 : M × I → M whose final homeomorphism g̃1
keeps v fixed and satisfies the condition

g̃1(Ci) = C′

i for each i, 1 ≤ i ≤ k + 1.

By assumption f ′

k+1 ≃ fk+1 rel z. It follows from this that g̃ ◦ fk+1 ≃ g̃f ′

k+1 ≃ f ′

k+1

rel z. By Theorem 4.1 [4], there is an ambient isotopy H between g̃ ◦ fk+1 and f ′

k+1

which keeps the point v fixed. Consider the set Q(H). From what has been said above

it follows that all the components of Q(H) are open 2-cells. Suppose that S(H) = ∅.

Then g̃fk+1(S) = f ′

k+1(S) = C′

k+1. By Proposition 2.6 there is an ambient isotopy

H̃ : M × I →M between g̃ ◦ fk+1 and f ′

k+1 which keeps the set
⋃k

i=1 C
′

i fixed.

It is easily seen that the isotopy H̃ ◦ G̃ satisfies the required property, i.e. H̃ ◦ G̃

keeps the point v fixed and the final homeomorphism h̃ ◦ g̃ sends Ci to C′

i for each i,

1 ≤ i ≤ k + 1.

Now suppose that S(H) 6= 0. Note that g̃Ck+1 ∩ C′

i = C′

k+1 ∩ C
′

i = {v} for each

i, where 1 ≤ i ≤ k. It follows from the definition of Q(H) that if Q(H) ∩ C′

i consists

of more than one point v for some i, where 1 ≤ i ≤ k, then S(H) consists of only one

component A (which is a 2-cell) and C′

i − {v} ⊂ A. Then we have g̃ ◦ fk+1 ≃ f ′

i rel z or

f ′

i ≃ f ′

k+1 rel z, contrary to the assumption. Thus C′

i ∩ Q(H) = v for each i such that

i ≤ k. So by Proposition 2.6 there is an ambient isotopy H̃ between g̃fk+1 and f ′

k+1 with

final homeomorphism h1 which keeps the polyhedron
⋃k

i=1 C
′

i fixed. Then the isotopy

H̃ ◦ G̃ satisfies the required property, i.e. H̃ ◦ G̃ keeps the point v fixed and the final

homeomorphism h̃1 ◦ g̃ sends Ci to C′

i for each i, 1 ≤ i ≤ k + 1.

Theorem 2.4 admits an obvious generalization to the case where the sources of X

and Y are different points of M . On the other hand, one can attempt to generalize this

theorem to the case of nonoriented 2-manifolds or to the case of arbitrary M-S flows on

oriented 2-manifolds, but we shall not develop this point here.

Finally, we give an example of two topologically equivalent but isotopically nonequiv-

alent minimal M-S flows on a torus. It is easily seen that each minimal M-S flow on a



272 L. PLACHTA

torus has one sink, one source and two saddle points. By Theorem 1.2 and Proposition 1.3

a M-S system of that kind corresponds to a 1-component (nonsigned) chord diagram of

order 2 with one contour. There are two non-isomorphic 1-component (non-signed) chord

diagrams of order 2 which are depicted in Fig. 4.

Fig. 4

It is easy to check that the first chord diagram generates 3 contours, so there is

only one minimal M-S flow on a torus (see also [5]). To give the example of isotopically

nonequivalent minimal M-S flows X and Y on the torus we shall use the representation

of one as the rectangle with opposite sides glued together. We depict in Fig. 5 only the

singular trajectories of flows X and Y , where the source of one flow is denoted by v, the

sink of one is denoted by u and the saddle points of one are denoted by w1, w2.

Fig. 5

In view of Theorem 2.4 the minimal M-S flows on a torus admit a simple isotopical

classification but we shall not develop this point here.

R e m a r k 2.3. The author has observed later on that there is another proof of

Theorem 2.4 based on Theorem 2.1 of this paper, the Dean–Nielsen Theorem (see [12])

and Theorem 6.3 of [4].
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