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Classical knot theory studies the position of a circle (knot) or of several circles (link) in

R3 or S3 = R3∪∞. The fundamental problem of classical knot theory is the classification

of links (including knots) up to the natural movement in space which is called an ambient

isotopy. To distinguish knots or links we look for invariants of links, that is, properties of

links which are unchanged under ambient isotopy. When we look for invariants of links

we have to take into account the following three criteria:

1. Is our invariant easy to compute?

2. Is it easy to distinguish elements in the value set of the invariant?

3. Is our invariant good at distinguishing links?

The number of components of a link, com(L), is the simplest invariant. A more in-

teresting link invariant is given by the linking number, defined in 1833 by C. F. Gauss

using a certain double integral [Ga]. H. Brunn noted in 1892 that the linking number has

a simple combinatorial definition [Br].

Definition 0.1. Let D be an oriented link diagram. Each crossing has an associated

sign: +1 for and −1 for . The global linking number of D, lk(D), is defined to be

half of the sum of the signs of crossings between different components of the link diagram.

If the diagram has no crossings, we put lk(D) = 0.

To show that a function defined on diagrams of links is an invariant of (global isotopy)

of links, we have to interpret global isotopy in terms of diagrams. This was done by

Reidemeister [Re, 1927] and Alexander and Briggs [A-B, 1927].
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Theorem 0.2 (Reidemeister theorem). Two link diagrams are ambient isotopic if

and only if they are connected by a finite sequence of Reidemeister moves R±1
i , i = 1, 2, 3

(see Fig. 0.1 ) and isotopy (deformation) of the plane of the diagram. The theorem holds

also for oriented links and diagrams. One then has to take into account all possible co-

herent orientations of diagrams involved in the moves.

R 3

R 3

R 2

R 1
or

Fig. 0.1

Exercise 0.3. Show that lk(D) is preserved by Reidemeister moves on oriented link

diagrams. Thus lk is an invariant of oriented links.

Example 0.4. lk( ) = 0, lk( )= 1, lk( )= −1. Therefore the global

linking number allows us to distinguish the trivial link of two components, T2, the right-

handed Hopf link, 21, and the left-handed Hopf link, 2̄1.

1. The tricoloring. The tricoloring invariant (or 3-coloring) is the simplest invariant

which distinguishes between the trefoil knot and the trivial knot. The idea of tricoloring

was introduced by R.Fox around 1960, [C-F, Chapter VI, Exercises 6-7], [F-2], and has

been extensively used and popularized by J. Montesinos [Mon] and L. Kauffman [K].



3-COLORING 277

Definition 1.1 ([P-1]). We say that a link diagram D is tricolored if every arc is

colored r (red), b (blue) or y (yellow) (we consider arcs of the diagram literally, so that

in the undercrossing one arc ends and the second starts; compare Fig. 1.1), and at any

given crossing either all three colors appear or only one color appears. The number of

different tricolorings is denoted by tri(D). If a tricoloring uses only one color we say that

it is a trivial tricoloring.

Fig. 1.1. Different colors are marked by lines of different thickness.

Lemma 1.2. The tricoloring is an (ambient isotopy) link invariant.

P r o o f. We have to check that tri(D) is preserved under the Reidemeister moves.

The invariance under R1 and R2 is illustrated in Fig. 1.2 and the invariance under R3 is

illustrated in Fig. 1.3.

Fig. 1.2

Fig. 1.3

Because the trivial knot has only trivial tricolorings, tri(T1) = 3, and the trefoil knot

allows a nontrivial tricoloring (Fig. 1.1), it follows that the trefoil knot is a nontrivial

knot.

Exercise 1.3. Find the number of tricolorings for the trefoil knot (31), the figure

eight knot (41) and the square knot (31#3̄1, see Fig. 1.4). Then deduce that these knots

are pairwise different.
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Lemma 1.4. tri(L) is always a power of 3.

P r o o f. Denote the colors by 0, 1 and 2 and treat them modulo 3, that is, as elements

of the group (field) Z3. All colorings of the arcs of a diagram using colors 0, 1, 2 (not

necessarily allowed 3-colorings) can be identified with the group Zr
3 where r is the number

of arcs of the diagram. The (allowed) 3-colorings can be characterized by the property

that at each crossing the sum of the colors is equal to zero modulo 3. Thus (allowed)

3-colorings form a subgroup of Zr
3 .

The elementary properties of tricolorings, which we give in Lemma 1.5, follow imme-

diately from the connections between tricolorings and the Jones and Kauffman polyno-

mials of links. We will give here an elementary proof of (a)-(c) of Lemma 1.5. There is

also an elementary proof of (d) (based on the flow-potential idea of Jaeger, see [Ja-P]),

but it is more involved; compare Lemma 2.2.

Lemma 1.5. (a) tri(L1)tri(L2) = 3tri(L1#L2), where # denotes the connected sum

of links (see Fig. 1.4 ).

(b) Let L+, L−, L0 and L∞ denote four unoriented link diagrams as in Fig. 1.5. Then,

among four numbers tri(L+), tri(L−), tri(L0) and tri(L∞), three are equal one to another

and the fourth is equal to them or is 3 times bigger.

In particular :

(c) tri(L+)/tri(L−) = 1 or 3, or 1/3.

Part (b) can be strengthened to show that :

(d) Not all the numbers tri(L+), tri(L−), tri(L0) and tri(L∞) are equal.

L L
1 2

L1 #L 2 31 # 13
-

Fig. 1.4

Fig. 1.5

P r o o f. (a) An n-tangle is a part of a link diagram placed in a 2-disk, with 2n points

on the disk boundary (n inputs and n outputs); Fig. 1.6. We show first that for any

3-coloring of a 1-tangle (i.e. a tangle with one input and one output; see Fig. 1.6(a)), the

input arc have the same color as the output arc. Namely, let T be our 3-colored tangle

and let the 1-tangle T ′ be obtained from T by adding a trivial component, C, below T ,



3-COLORING 279

close to the boundary of the tangle, so that it cuts T only near the input and the output;

Fig. 1.6(b). Of course the 3-coloring of T can be extended to a 3-coloring of T ′ (in three

different ways), because the tangle T ′ is ambient isotopic to a tangle obtained from T by

adding a small trivial component disjoint from T . If we, however, try to color C, we see

immediately that it is possible iff the input and the output arcs of T have the same color.

T T’

x
x

x
x

1
4 3

2

(a) (b) (c)
TD

Fig. 1.6

Thus if we consider a connected sum L1#L2, we see from the above that the

arcs joining L1 and L2 have the same color. Therefore the formula, tri(L1)tri(L2) =

3tri(L1#L2), follows.

(b) Consider a crossing p of the diagram D. If we cut out of D a neighborhood

of p, we are left with the 2-tangle, TD (see Fig. 1.6(c)). The set of 3-colorings of TD,

Tri(TD), forms a Z3 linear space. Each of the sets of 3-colorings of D+, D−, D0 and D∞,

Tri(D+), T ri(D−), T ri(D0) and Tri(D∞), respectively form a subspace of Tri(TD). Let

x1, x2, x3, x4 be generators of Tri(TD) corresponding to arcs cutting the boundary of the

tangle; see Fig. 1.6(c). Then any element of Tri(TD) satisfies the equality x1 − x2 +

x3 − x4 = 0. To show this, we proceed as in part (a). Any element of Tri(D+) (resp.

Tri(D−), Tri(D0) and Tri(D∞)) satisfies additionally the equation x2 = x4 (resp.

x1 = x3, x1 = x2 and x1 = x4). Thus Tri(D+) (resp. Tri(D−), Tri(D0) and Tri(D∞))

is a subspace of Tri(TD) of codimension at most one. Let F be the subspace of Tri(TD)

given by the equations x1 = x2 = x3 = x4, that is the space of 3-colorings monochromatic

on the boundary of the tangle. F is a subspace of codimension at most one in any of the

spaces Tri(D+), Tri(D−), Tri(D0), Tri(D∞). Furthermore the common part of any two

of Tri(D+), Tri(D−), T ri(D0), T ri(D∞) is equal to F . To see this we just compare the

defining relations for these spaces. Finally notice that Tri(D+) ∪ Tri(D−) ∪ Tri(D0) ∪
Tri(D∞) = Tri(TD).

We have the following possibilities:

(1) F has codimension 1 in Tri(TD) Then by the above considerations one of Tri(D+),

Tri(D−), Tri(D0), Tri(D∞) is equal to Tri(TD). The remaining three spaces are equal

to F and (d) (thus also (b)) of Lemma 1.5 holds.

(2) F = Tri(D+) = Tri(D−) = Tri(D0) = Tri(D∞) = Tri(TD).

(3) F has codimension 2 in Tri(TD). Then 3|F | = tri(D+) = tri(D−) = tri(D0) =

tri(D∞) = 1
3 tri(TD)

This completes the proof of (b) and (c) of Lemma 1.5. To complete (d) of Lemma 1.5

one must exclude cases (2) and (3). This can be done by showing that tricolorings can

be interpreted via the so called Goeritz matrix of the link diagram; compare Lemma 2.2

and see [J-P].
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Part (c) of Lemma 1.5 can be used to approximate the unknotting (Gordian) number

of a knot, u(K); compare [Mur].

Corollary 1.6. u(K) ≥ log3(tri(K))−1. In particular for the square knot : u(31#3̄1)

= 2.

Corollary 1.7. If L is a link with k-bridge presentation1 then tri(L) ≤ 3k.

I noticed the connection between tricolorings and the Jones polynomial when I ana-

lyzed the influence of 3-moves on the 3-coloring and the Jones polynomial [P-1].

Definition 1.8. The local change in a link diagram which replaces parallel lines by

n positive half-twists is called an n-move; see Fig. 1.7.

Lemma 1.9. Let the diagram D+++ be obtained from D by a 3-move (Fig. 1.7(a)).

Then:

(a) tri(D+++) = tri(D),

(b) VD+++(e
2πi/6) = ±i(com(D+++)−com(D))VD(e2πi/6), where V is the Jones polyno-

mial ,

(c) FD+++(1,−1) = FD(1,−1), where F is the Kauffman polynomial.

3-move n-move
n half twistsD D

+++
(a) (b)

Fig. 1.7

P r o o f. We prove (a) and (c) leaving (b) as an exercise.

(a) The bijection between 3-colorings of D and D+++ is illustrated in Fig. 1.8.

3-move 3-move
D

(a) (b)
D

+++
D

+++
D

Fig. 1.8

(c) FD+++(1,−1) = −FD+(1,−1) − FD++(1,−1) − FD∞
(1,−1) = −FD+(1,−1) +

FD(1,−1) + FD+(1,−1) + FD∞
(1,−1)− FD∞

(1,−1) = FD(1,−1).
One can easily check that for a trivial n-component link, Tn, tri(Tn) =

3n = 3V 2
Tn

(e2πi/6) = 3(−1)n−1FTn
(1,−1). Furthermore it follows from Lemma 1.9 that

as long as a link L can be obtained from a trivial link by 3-moves we have: tri(L) =

3|V 2
L (e

2πi/6)| = 3|FL(1,−1)|.

1Let L be a link in R3 which meets a plane E ⊂ R3 in 2k points such that the arcs of L

contained in each halfspace relative to E possess orthogonal projections onto E which are simple

and disjoint. (L,E) is called a k-bridge presentation of L; [B-Z].
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It may look strange that such a natural problem, whether any link can be reduced to

an unlink by 3-moves is an open problem.

Conjecture 1.10 (Montesinos-Nakanishi). Any link can be reduced to a trivial link

by a sequence of 3-moves.

Rema r k 1.11. Nakanishi first considered the conjecture in 1981. Montesinos ana-

lyzed 3-moves before, in connection with 3-fold dihedral branch coverings, and asked a

related but different question. Conjecture 1.10 holds for algebraic links (in the Conway

sense). It would be a “finite” check whether conjecture holds for links with braid index

at most 5 (and bridge index at most 3) as Coxeter (1957) showed that the quotient of

the braid group Bn/ < σ3
1 > is finite for n ≤ 5.

According to Nakanishi (1994) the smallest known obstruction to the conjecture is

the 2-parallel of the Borromean rings (notice that it is a 6-string braid), Fig. 1.9.

Fig. 1.9

Lemma 1.5 suggests the following stronger conjecture.

Conjecture 1.12. Any 2-tangle can be reduced , using 3-moves , to one of the four

2-tangles of Figure 1.10. We allow additionally trivial components in the tangles of

Fig. 1.10.

Fig. 1.10

Conjecture 1.10 suggests that the formula linking tricoloring with the Jones and Kauff-

man polynomials holds for any link. This is, in fact, the case.

Theorem 1.13. (a) tri(L) = 3|V 2
L (e

2πi/6)|.
(b) tri(L) = 3|FL(1,−1)|.
The proof of (a) in [P-1] uses Fox’s interpretation of 3-coloring and the connection

with the first homology group of the branched 2-fold cover of S3 branched over the link.

Now however we can give totally elementary proof based on Lemma 1.5(d).
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P r o o f. Because tri(L) is a power of 3, we can consider the signed version of the

tricoloring defined by: tri′(L) = (−1)log3(tri(L))tri(L). It follows from Lemma 1.5 (d)

that

tri′(L+) + tri′(L−) = −tri′(L0)− tri′(L∞).

This is however exactly the recursive formula for the Kauffman polynomial FL(a, x) at

(a, x) = (1,−1). Comparing the initial data (for the unknot) of tri′ and F (1,−1) we

get generally that: −3FL(1,−1) = tri′(L) = (−1)log3(tri(L))tri(L), which proves part

(b) of Theorem 1.13. Part (a) follows from Lickorish’s observation [Li], that FL(1,−1) =
(−1)com(L)V 2(e2πi/6).

The value of the Jones polynomial VL(e
2πi/6) is a slightly more delicate invariant

than the tricoloring, tri(L), or FL(1,−1) (essentially it is just a “sign”). P. Traczyk has

given, however, an idea which allows us to utilize this sign to approximate the unknotting

number in a better way than in Corollary 1.6.

Theorem 1.14. Let r(L) = log3|V 2
L (e

2πi/6)| (= log3(tri(L))− 1). If a knot K can be

trivialized by changing r(K) crossings and VK(e2πi/6) = ǫK(i
√
3)r(K), where ǫK = ±1,

then the number of negative crossings , which are changed , is congruent to l(ǫK) modulo

2, where (−1)l(ǫK) = ǫK .

P r o o f. Let t1/2 = −e2πi/12, then for any link L: VL(e
2πi/6) = ǫLi

com(L)−1(i
√
3)r(L).

Consider a pair of oriented links L+ and L−. From the skein relation of the Jones poly-

nomial, one gets:

1

2
((1 − i

√
3)ǫL+i

com(L+)−1(i
√
3)r(L+) − (1 + i

√
3)ǫL−

icom(L−)−1(i
√
3)r(L−))

= −iǫL0i
com(L0)−1(i

√
3)r(L0).

One can see immediately that the above equation cannot hold for |r(L+) − r(L−)| ≥ 2.

For r(L+)− r(L−) = 1 it simplifies to

1

2
((3 + i

√
3)ǫL+ − (1 + i

√
3)ǫL−

) = (−1)(
com(L0)−com(L+)−1

2 )ǫL0(i
√
3)(r(L0)−r(L−)).

This equation holds iff ǫL+ = ǫL−
. Similarly, for r(L+) − r(L−) = −1 one gets ǫL+ =

−ǫL−
. This completes the proof of Theorem 1.14, because for the trivial knot, T1,

ǫT1 = 1.

7
7

the trivial knot

Fig. 1.11
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Examples 1.15. (a) Let K = 31#3̄1, then u(K) = 2. Furthermore if K is trivialized

using two crossing changes, then one positive and one negative crossing, have to be

changed. Namely VK(e2πi/6) = 3 = −(i
√
3)2 and Theorem 1.14 can be used.

(b) The unknotting number of the knot 77 is 1; see Fig. 1.11. However this knot cannot

be trivialized by changing a positive crossing. Namely V77(e
2πi/6) = −i

√
3. Notice that

the signature of 77 is equal to 0 and the Tait number of the minimal diagram is equal

to +1.

2. n-coloring. Tricoloring of links can be generalized, after Fox, [F-1; Chapter 6],

[C-F; Chapter VIII, Exercises 8-10], [F-2], to n-coloring of links as follows:

Definition 2.1. We say that a link diagram D is n-colored if every arc is colored by

one of the numbers 0, 1, . . . , n − 1 in such a way that at each crossing the sum of the

colors of the undercrossings is equal to twice the color of the overcrossing modulo n.

The following properties of n-colorings can be proved in a similar way as for the

tricoloring properties. However, an elementary proof of the part (g) is more involved and

requires an interpretation of n-colorings using the Goeritz matrix [Ja-P].

Lemma 2.2. (a) Reidemeister moves preserve the number of n-colorings , coln(D),

thus it is a link invariant ,

(b) if D and D′ are related by a finite sequence of n-moves , then coln(D) = coln(D
′),

(c) n-colorings form an abelian group, Coln(D),

(d) if n is a prime number , then coln(D) is a power of n and for a link with b bridges :

b ≥ logn(coln(L)),

(e) coln(L1)coln(L2) = n(coln(L1#L2)),

(f) if n is a prime odd number then among the four numbers coln(L+), coln(L−),

coln(L0) and coln(L∞), three are equal and the fourth is either equal to them or n times

greater ,

More generally: If L0, L1, . . . , Ln−1, L∞ are n+1 diagrams generalizing the four dia-

grams from (f ); see Fig. 2.1 then:

(g) if n is a prime number then among the n + 1 numbers coln(L0), coln(L1), . . . ,

coln(Ln−1) and coln(L∞), n are equal and the (n+ 1)th is n times greater ,

(h) if n is a prime number , then u(K) ≥ logn(coln(K))− 1.

Fig. 2.1

Corollary 2.3. (i) For the figure eight knot , 41, one has col5(41) = 25, so the figure

eight knot is a nontrivial knot ; compare Fig. 2.2.

(ii) u(41#41) = 2.
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0

0

0

0

1

4

4

4

1

1

3

3

3

Fig. 2.2

By Lemma 2.2(b), any 5-move preserves the number of 5-colorings. On the other

hand, Corollary 2.3 suggests that the move of Fig. 2.3 also preserves col5(L).

Lemma 2.4. If two links are related by a sequence of moves as in Fig. 2.3 (allowing

the mirror image of Fig. 2.3 ), then they have the same number of 5-colorings.

x y

x y

2x-y

3x-2y 2x-y

y
x+y 3y-x

2 2

Fig. 2.3

P r o o f. It suffices to notice that for x and y of Fig. 2.3:

3x− 2y ≡ x+ y

2
mod 5 and 2x− y ≡ 3y − x

2
mod 5.

It was noticed in [H-U] that the moves of Fig. 2.3 are more general than the 5-moves.

Lemma 2.5 ([H-U]). A 5-move is a combination of moves of Fig. 2.3 (and isotopy).

P r o o f. This is illustrated in Fig. 2.4.

It has been noticed in [P-2] that there are links which cannot be changed to trivial

links using 5-moves. In particular, the figure eight knot cannot be reduced to a trivial link

by 5-moves (this is an easy application of the Jones polynomial evaluated at t = eπi/5). It

is however an open problem whether any link can be changed to a trivial link by moves of

the type shown in Fig. 2.3 [Nak] (it holds for links up to 7 crossings, in particular for the

Borromean rings). More generally, it holds for algebraic knots (in the sense of Conway).



3-COLORING 285

Fig. 2.4

The immediate generalization of the move of Fig. 2.3 is a move which changes p

horizontal half twists into q vertical half twists. Let us call such a move (and its mirror

image) a [p, q]-move; see Fig. 2.5.

. . .

. .  .
(p,q)-move

p half-twists

q half-twists

Fig. 2.5

Exercise 2.6. (a) Show that a [p, q]-move preserves the number of (pq+1)-colorings.

(b) Show that a (2p+1)-move is a combination of a [p, 2]-move and a [2, p]-move. It is

not always true that a (pq+1)-move is a composition of [p, q]-moves (and their inverses).

(c) Use linking numbers to show that if p, q are odd numbers and p+q is not a divisor

of pq + 1 (e. g. p = q ≥ 3), then a (pq + 1)-move is not a composition of [p, q]-moves

(and their inverses). Show in particular that the torus link of type (10, 2) is not [3, 3]

equivalent to the trivial link of 2 components (that is, the torus link cannot be obtained

from the trivial link by the sequence of [3, 3]-moves).

(d) Use the Kauffman polynomial to show that the 17-move is not a composition of

[4, 4]-moves.

Hint to (d). Analyze how the Brandt–Lickorish–Millett polynomial, QL(x) = F (1, x)

changes under [p, q]-moves and (pq + 1)-moves; compare [P-2]. Figure 2.6 illustrates the

fact that a [4, 4] move preserves, up to the factor −1, the QL(x) polynomial modulo

x4 + x3 − 2x2 + 1. A 17-move can change the polynomial |QL(x)|.



286 J. H. PRZYTYCKI

Fig. 2.6

Consider the Brandt–Lickorish–Millett polynomial of L4(x) and L4(x). From the re-

lation QLn
= xQLn−1 −QLn−2 + xQL∞

one obtains

QL4 = (x3 − 2x)QL1 − (x2 − 1)QL0 + (x3 + x2)QL∞

2,

and

QL4 = (x4 − 3x2 + 1)QL0 − (x3 − 2x)QL−1 + (x4 + x3 − x2)QL∞

= (x4 − 3x2 + 1)QL∞
− (x3 − 2x)QL1 + (x4 + x3 − x2)QL0 .

Therefore for x such that x4 + x3 − 2x2 + 1 = 0, QL4 = −QL4 . On the other hand

consider the torus link L17,2, which can be reduced to the trivial link of 2 components by

a 17-move. If a 17-move was the combination of [4, 4]-moves then QL17,2(x) = ± 2−x
x for

x4 + x3 − 2x2 + 1 = 0. One can check however that x
2 (QL17,2(x) +

2−x
x ) is an irreducible

polynomial of degree equal to 17 and

QL17,2(x) −
2− x

x
= 2

x− 1

x
(1− 4x− 10x2 + 10x3 + 15x4 − 6x5 − 7x6 + x7 + x8)2,

which for x = q + q−1 gives

2
q − 1 + q−1

q + q−1
q−16(

q17 − 1

q − 1
)2.

Thus L17,2 is not [4, 4] equivalent to the trivial link of 2 components.

It is a nice exercise in linear algebra to show that the number of n-colorings is preserved

by certain generalizations of n-moves.

Let t∆,k denote the righthanded half-twist performed on k strings; see Fig. 2.7.

. . . . . .
. . .

D t ,k

Fig. 2.7

2It can be easily checked by induction, see [P-2], that generally QLn = Un−1QL1−Un−2QL0+
x

x−2
(Un−1−Un−2−1)QL∞

where Ui(x) is the Chebyshev polynomial of the second type defined

by: U0(x) = 1, U1(x) = x, Ui(x) = xUi−1(x)− Ui−2(x).
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Lemma 2.7. (a) t4∆,k preserves coln(D), for odd k and any n.

(b) t2n∆,k preserves col2n(D), for an even k.

(c) Lemma 2.2(b) is stronger than (b) for k = 2, and can be written as : tn∆,2 preserves

coln(D).

3. Coloring and algebraic topology. It is useful to look at Lemma 2.2 from the

point of view of algebraic topology.

Definition 3.1. Consider the abelian group of all colorings of arcs of a diagram using

integers as colors. In other words consider the free abelian group spanned by all arcs of the

diagram. Let each crossing give the relation: the sum of the colors of the undercrossings

is equal to twice the color of the overcrossing. Let HD denote the group described.

Lemma 3.2. (a) HD is preserved by Reidemeister moves , therefore it is a link invari-

ant , HL.

(b) HD reduced modulo n (i.e. HD ⊗ Zn) is the group of n-colorings of D.

Theorem 3.3. HL is the direct sum of the first homology group of the cyclic branched

double cover of S3 with branching set L and the infinite cyclic group. That is : HL =

H1((ML)
(2), Z)⊕ Z.

Before we offer two proofs of the theorem we can carry our combinatorial construction

one step further.

Definition 3.4 ([F-R]). GD is the group associated to the diagram D as follows:

generators of GD correspond to arcs of the diagram. Any crossing vs yields the relation

rs = yiy
−1
j yiy

−1
k where yi corresponds to the overcrossing and yj , yk correspond to the

undercrossings at vs.

The group GD was introduced by R. Fenn and C. Rourke [F-R] as an example of a

rack’s functor. They call it the associated core group of a link; compare with the core

group of Joyce [Joy], an example of an involutory quandle. Joyce refers to the 1958 book

of Bruck [Bruc] as the source of the idea; compare paragraphs 1, 2 and 19 of [Joy]. The

topological interpretation of GD was given by M. Wada [Wa]; see Theorem 3.6.

Lemma 3.5. (a) GD is preserved by Reidemeister moves , so it is a link invariant , GL.

(b) The abelianization of GD yields HD.

Lemma 3.5(b) and Theorem 3.3 suggest that GD may be related to the fundamental

group of the branched 2-fold cover over D. This is in fact the case.

Theorem 3.6 ([Wa]). GL is the free product of the fundamental group of the cyclic

branched double cover of S3 with branching set L and the infinite cyclic group. That is :

GL = π1((ML)
(2)) ∗ Z.

We will give later an elementary proof of the Wada theorem.

To prove Theorems 3.3 and 3.6, we need a combinatorial definition of another, well

known, group.

Definition 3.7. ΠD is the group associated to an oriented link diagramD as follows:

generators of the group, x1, . . . , xn, correspond to arcs of the diagram; any crossing vs
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yields the relation rs = x−1
i x−1

j xixk or rs = xixjx
−1
i x−1

k , where xi corresponds to the

overcrossing and xj , xk correspond to the undercrossings at vs and the first relation comes

from a positive crossing, Fig. 3.1(a), and the second comes from a negative crossing,

Fig. 3.1(b).

x
i

x

x
j

x
i

x
k

j
x
k

(a) (b)

Fig. 3.1

Lemma 3.8. (a) ΠD is preserved by Reidemeister moves , so it is a link invariant.

(b) The abelianization of the group ΠD is a free group of com(D) generators.

(c) ΠD does not depend on the orientation of the link. In particular if we change the

orientation of a component , say D1, of D to get the diagram D′, then the isomorphism of

the group ΠD generated by (x1, . . . , xn) onto the group ΠD′ generated by (x′
1, . . . , x

′
n) is

given by sending xi to x′
i or x

′−1
i depending on whether the arc of xi preserves or changes

orientation when going from D to D′.

The group ΠD and its presentation, which we described, was introduced by W. Wir-

tinger at his lecture delivered at a meeting of the German Mathematical Society in 1905

[Wi].

Theorem 3.9 (Wirtinger). ΠD is the fundamental group of the complement of the

link ; i.e. ΠD = π1(S
3 −D).

We will not use this theorem, except for further algebraic-topological interpretations.

For the proof see [C-F], [Rol], or [B-Z].

With the group ΠD defined, we can give Fox’s interpretation of n-colorings.

Let Dn denote the dihedral group, i.e. the group of isometries of a regular n-gon. Dn

has a presentation: Dn = {α, s:αn = 1, s2 = 1, sαs = α−1}. The rotations, {αk}, form
a cyclic subgroup, a Zn. Reflections can be written as: sk = sαk.

Lemma 3.10. n-colorings of D are in bijection with homomorphisms from ΠD to Dn,

which send xi to reflections. Namely, for an n-coloring c, the homomorphism φc:ΠD →
Dn is given by: φc(xi) = sk, where k is the color of the arc which correspond to xi.

To prove Theorem 3.3 we need still more preparation.

Let ν:ΠD → Z2 be the modulo 2 evaluation map, that is, it sends words of even length

(in the generators x±1
i ) to 0, and words of odd length to one. ν is well defined because

the relations of the group ΠD have even length. Denote by Π
(2)
D the kernel, ker(ν), of

the epimorphism ν. This is a subgroup of index 2 in ΠD. From the point of view of
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algebraic topology it is the fundamental group of the 2-fold cyclic covering of S3 − D.

That is, Π
(2)
D = π1((S

3 −D)(2)). The abelianization of Π
(2)
D is the first homology group

of (S3 −D)(2).

Lemma 3.11. (a) For any n-coloring, c, one has φ−1
c (Zn) = Π

(2)
D .

(b) Any homomorphism φc:ΠD → Dn lifts uniquely to a homomorphism φ
(2)
c :Π

(2)
D →

Zn. In particular φ
(2)
c (x2

i ) = 0.

(c) For any n-coloring, c, the following diagram is commutative:

Π
(2)
D

φ(2)
c−→ Zn

↓ ↓
ΠD

φc−→ Dn

↓ ↓
Z2 = Z2

(d) Any homomorphism φ(2):Π
(2)
D → Zn such that φ(2)(x2

i ) = 0 is a lift of exactly n

homomorphisms φc:ΠD → Dn.

P r o o f. (a) This is the case because rotations in Dn (i.e. Zn) are compositions of an

even number of reflections.

(b) This follows from (a) and reflects the fact that φc sends words of even length to

words of even length.

(c) This summarizes (a) and (b).

(d) Fix xi. To show (d) it suffices to show that for any sj , there is exactly one c such

that φc:ΠD → Dn lifts to φ(2) and φc(xi) = sj . Namely we define φc(w) = φ(2)(w) if w has

an even length, and φc(w) = φ(2)(wx−1
i )sj if w has an odd length. In particular φc(xk) =

φ(2)(xkx
−1
i )sj . We have to check that φc is a homomorphism. Consider φc(w1)φc(w2). We

have to check four cases, however for w1 of even length the checking is immediate (e. g.

if w2 has odd length then φc(w1)φc(w2) = φ(2)(w1)φ
(2)(w2x

−1
i )sj = φ(2)(w1w2x

−1
i )sj =

φc(w1w2)). For the other cases we need to check first that φ(2)(ww) = 0 for any w of odd

length.

We will show the slightly stronger fact that ww lies in the commutator subgroup of

the quotient group Π̄
(2)
D = Π

(2)
D /(x2

i ). Namely, let w = xi1xi2 . . . xi2m+1 . Then

ww = xi1xi2 . . . xi2m+1xi1xi2 ...xi2m+1

= (xi1x1)(x1xi2) . . . (xi2m+1x1)(x1xi1) . . . (xi2mx1)(x1xi2m+1)

= (xi1x1)(xi2x1)
−1(xi3x1)(xi4x1)

−1 . . . (xi2m+1x1)(xi1x1)
−1 . . . (xi2m+1x1)

−1.

Now we can check that φc(w1)φc(w2) = φc(w1w2)) for w1 of odd length.

(i) If w2 is of odd length then

φc(w1)φc(w2) = φ(2)(w1x
−1
i )sjφ

(2)(w2x
−1
i )sj

= φ(2)(w1x
−1
i )(φ(2)(w2x

−1
i ))−1 = φ(2)(w1x

−1
i )φ(2)(xiw

−1
2 )

= φ(2)(w1w
−1
2 ) = φ(2)(w1w2)φ

(2)(w−2
2 ) = φc(w1w2)).
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(ii) If w2 is of even length, then using (i) we get

φc(w1)φc(w2) = φc(w1)φ
(2)(w2x

−1
i xi) = φc(w1)φc(w2x

−1
i )φc(xi)

= φ(2)(w1w2x
−1
1 )sj = φc(w1w2).

The quotient group Π̄
(2)
D = Π

(2)
D /(x2

i ) can be interpreted as the fundamental group of

the cyclic branched double cover of S3 with branching set D; that is, Π̄
(2)
D = π1((MD)(2)).

This interpretation follows from the fact that the elements x2
i correspond to meridians of

boundary components of the unbranched double cover of S3−D and that these meridians

are “killed” in the branched cover. The homomorphism φ(2), from Lemma 3.11(d), factors

through Π̄
(2)
D , and because Zn is abelian, it factors through the abelianization of Π̄

(2)
D .

This abelianization can be interpreted as the first homology group of the cyclic branched

double cover of S3 with branching set D. We denote this group by H1 = H1((MD)(2), Z).

Therefore we have the following commutative diagram:

Π̄
(2)
D ←− Π

(2)
D

↓ ↓ φ(2)

H1 −→ Zn

We have also a bijection between homomorphisms H1 → Zn, and homomorphisms

φ(2):Π
(2)
D → Zn which satisfy condition (d) of Lemma 3.11. Thus Lemma 3.11 (d) le-

ads to:

Corollary 3.12. To any homomorphism H1 → Zn, there are uniquely associated

n different n-colorings. In particular the trivial homomorphism corresponds to n trivial

n-colorings. Therefore H1 ⊗ Zn ⊕ Zn = Hom(H1 ⊕ Zn, Zn) has the same number of

elements as HD ⊗ Zn.

Because Corollary 3.12 holds for any n, we have HD = H1 ⊕ Z and the proof of

Theorem 3.3 is complete.

Lemma 3.13. Let F = {x1, . . . , xn:} be the free group on n generators. Let F (2) be

its subgroup generated by the words of even length and let F̄ (2) be the quotient group

F (2)/(x2
i ). Then:

(a) F (2) is a free group on 2n−1 generators x1xk, x2xk, . . . , xk−1xk, xk+1xk, . . . , xnxk,

x2
1, x

2
2, . . . , x

2
n, where xk is any fixed generator of F .

(b) F̄ (2) is a free group on n−1 generators x1xk, x2xk, . . . , xk−1xk, xk+1xk, . . . , xnxk.

The above lemma is the starting point of our proof, given below, of the Wada theorem

(3.6).

P r o o f o f T h e o r em 3.6. Let D′ denote the diagram obtained from the diagram

D by adding one trivial component.

Step 1. Π̄
(2)
D′ = Π̄

(2)
D ∗ Z.

P r o o f. Denote by x1, . . . , xn generators corresponding to arcs of the diagramD, and

by xn+1 the generator corresponding to the additional component of D′. Π̄
(2)
D′ is generated

by x2x1, x3x1, . . . , xnx1, xn+1x1. Relations of the group are associated to crossings of

the diagram D′ (so D). The general relation is of the form x−1
i xjxix

−1
k or xixjx

−1
i x−1

k
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(i, j, k ≤ n); Fig. 3.1. Both relations lie in F (2) and in F̄ (2) they are both conjugate

to (xix1)(xjx1)
−1(xix1)(xkx1)

−1. Π̄
(2)
D′ is a quotient of F̄ (2) by these relations (compare

Lemma 3.14). No relation uses the generator (xn+1x1). Therefore Π̄
(2)
D′ = Π̄

(2)
D ∗ Z.

Step 2. Consider the generators x1xn+1, x2xn+1, . . . xnxn+1 of Π̄
(2)
D′ . We can associate

them to arcs of D as follows: xixn+1 corresponds to the arc of D which before was associ-

ated to xi. No generator corresponds to the additional arc of D′. Relations associated to

crossings of D can be found as in Step 1 to be (xixn+1)(xjxn+1)
−1(xixn+1)(xkxn+1)

−1,

where i, j, k ≤ n. If we put ys = xsxn+1 for s ≤ n then the relations reduce to

yiy
−1
j yiy

−1
k . We get exactly the presentation of the group GD from Definition 3.4.There-

fore GD = Π̄
(2)
D′ = Π̄

(2)
D ∗ Z. The proof of the Wada theorem is complete.

One can describe the group Π
(2)
D similarly to the group Π̄

(2)
D . A more challenging

exercise is to find the Wirtinger type presentation of the fundamental group of the general

k-fold cyclic branched cover of S3 with branching setD, i.e. Π
(k)
D = π1(M

(k)). We describe

the result below (compare [B-Z; Ch. 4]).

Theorem 3.14. (a) Let F = Fn+1 = {x1, x2, . . . xn+1: } and let F (k) be the kernel

of the map F → Zk which sends xi to 1. Furthermore let F (∞) = ker(F → Z).

Define F̄ (k) = F (k)/(xk
i ) and yi = xix

−1
n+1. Let τ :F → F be an automorphism

given by τ(w) = xn+1wx
−1
n+1.

(i) F (k) is a free group generated freely by nk + 1 elements τ j(yi), for i ≤ n and

0 ≤ j ≤ k − 1, and xk
n+1.

(ii) F (∞) is freely generated by elements τ j(yi), for i ≤ n and any integer j.

(iii) F̄ (k) is freely generated by n(k−1) elements τ j(yi), for i ≤ n and 0 ≤ j < k−1.
Notice that one has relations yiτ(yi) . . . τ

k−1(yi) = 1, for any i.

(b) (i) Π
(k)
D ∗ Z ∗ Z ∗ . . . ∗ Z︸ ︷︷ ︸

k−1 times

= Π
(k)
D⊔O has the following Wirtinger type description:

There are k − 1 generators , τ j(yi), 0 ≤ j < k − 1, corresponding to the ith

arc of the diagram D, and there are k − 1 relations τ j(rs)), 0 ≤ j < k − 1,

corresponding to any crossing, vs, where rs depends on the sign of a crossing

as follows :

(+) In the case of the positive crossing (Fig. 3.1(a)): rs=yiτ(yk)(τ(yi))
−1y−1

j .

(−) In the case of the negative crossing (Fig. 3.1(b)): rs=yiτ(yj)(τ(yi))
−1y−1

k .

We have to remember that τk−1(yi) = (yiτ(yi) . . . τ
k−2(yi))

−1.

(ii) Π
(∞)
D ∗F∞ = {τ j(yi), i ≤ n: τ j(rs), j ∈ Z}, where F∞ is a countably generated

free group.

Corollary 3.15. (i) H1(M
(∞))⊕ Z[t±1] = Z[t±1](y1, y2, . . . , yn)/(r̄s), where r̄s are

relations associated to crossings : (1 − tǫ)yi + tǫyk − yj = 0, where ǫ = ±1 is the sign of

the crossing vs; Fig. 3.1
3.

(ii) H1(M
(k), Z)⊕ (Z)k−1 = Z[t±1]/(1 + t+ . . . tk−1)(y1, y2, . . . , yn)/(r̄s).

3We can think of it as Wirtinger type description of the Burau representation. Compare also

[Re-1, Ch. II(14)].
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(iii) H1(M
(k), Zm) ⊕ (Zm)k−1 has the following “coloring” description: Every arc of

the diagram is colored by a sequence, (a0, a1, . . . , ak−2), of colors taken from the set of

m colors , (0, 1, 2, . . . ,m− 1). These colorings form a Zm-module Z
λ(k−1)
m , where λ is the

number of arcs in the diagram. Coloring of an arc can be coded by a polynomial of degree

k − 2 with coefficients in Zm, w = Σk−2
i=0 ait

i. Now we consider the space (submodule) of

allowed coloring, that is , colorings which at any crossing satisfy the equation: (1−tǫ)wi+

tǫwk−wj = 0, where 1+t+. . . tk−1 = 0 (in particular t−1 = −1−t−t2−. . .−tk−2), ǫ = ±1
as in (i), wl are polynomials of degree k− 2 with coefficients in Zm corresponding to arcs

at a crossing as in Fig. 3.1. Allowed colorings form a group H1(M
(k), Zm) ⊕ (Zm)k−1,

compare [S-W].

We can generalize the group HD in yet another direction. We can consider the |a|
by |v| matrix (bi,j) where |a| is the number of arcs of the diagram and |v| the number

of crossings of the diagram, and where bi,j = 0 if the ith arc is disjoint from the jth

crossing, bi,j = 2 if the ith arc is the overcrossing of the jth crossing and bi,j = −1 if

the ith arc is an undercrossing of the jth crossing. We consider the matrix up to changes

caused by Reidemeister moves. Virtually nothing is known about the invariant given by

this matrix (except the group HD). One should, at least, compare this matrix with the

Goeritz matrix and the Seifert matrix (see [Gor]).

4. Coloring and statistical mechanics. Further modification of our method leads

to state models of statistical mechanics and the Yang–Baxter equation. We will illustrate

it by two examples. In the first we consider the state sum corresponding to n-colorings

and in the second we give (after Jones) the state sum approach to the skein (generalized

Jones) polynomial.

Example 4.1. For n colors, 0, 1, . . . , n−1, every coloring of arcs of a diagram by these

colors, is called a state of the diagram. We associate to any state, s, and any crossing v, a

weight, w(v, s), depending on the colors of arcs at v. For Fox colorings it will be 1 if twice

the color of the overcrossing is congruent to the sum of the colors of the undercrossings

modulo n. It will be 0 otherwise. We associate to any state, s, the global weight equal

to Πvw(v, s). For a Fox coloring it is 1 if s is an n-coloring and 0 otherwise. Finally we

define the partition function, ZD(n), to be the sum over all states of their global weights,

i.e.

ZD(n) =
∑

s

∏

v

w(v, s).

In our example we get ZD(n) = coln(D). This state sum description of Fox n-colorings

was given in [H-J], and it is called, in statistical mechanics, a vertex type model .

In our example, colors were associated to arcs of the diagram; in the general case

of the vertex model weights are associated to edges of a graph. So we have to think

of the link diagram as a graph with additional structure (under-over crossing) at the

vertices.

Example 4.2. Let a link diagram be considered as a graph with vertices of valency 4

at crossings and vertices of valency 2 at maxima and minima. We assume that there are
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only a finite number of extrema and that crossings are positioned vertically, so that after

smoothing them, one do not introduce new extrema. A state is a function from edges of

the diagram to the set of k colors. We consider weights to be in Z[q±1]. With any vertex,

v, of degree 4, and inputs with colors i, j and output with colors k, l, we associate the

weight

w+(i, j; k, l) =







q − q−1 if i < j, i = k, j = l,

1 if i = l, j = k, i 6= j,

q if i = j = k = l,

0 otherwise,

in the case of a positive crossing, and

w−(i, j; k, l) =







q−1 − q if i > j, i = k, j = l,

1 if i = l, j = k, i 6= j,

q−1 if i = j = k = l,

0 otherwise,

in the case of a negative crossing; see Fig. 4.1.

For any vertex of degree 2, we associate the weight w(i) = q±1/2(2i−k−1), according

to the convention of Fig. 4.2.

i i i i i j i j

i i i i j i j i
i=j i=j

i j

i j i j i j i j

jijiji

i<j i<j i>j i>j

w (i,i;i,i)=q w_(i,i;i,i)=q
w (i,j;j,i)=w_(i,j;j,i)=1

w (i,j;ij)=q-q w_(i,j;i,j)=0 w (i,j;i,j)=0 w_(i,j;i,j)=q  -q
-1 -1

-1

+

+

++

Fig. 4.1

i i
i i

i i
i i

2i-k-1 -2i+k+1
2 2

q qw(i)= w(i)=

Fig. 4.2

As proven by Jones [Jo-1] the partition function given by this vertex model is equal

to the version of the skein (homflypt) polynomial for regular isotopy classes of links

(associated with the skein relation qkPL+ − q−kPL−
= (q − q−1)PL0).
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