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Abstract. A necessary and sufficient condition for an immersed surface in 3-space to be
lifted to an embedding in 4-space is given in terms of colorings of the preimage of the double
point set.

Giller’s example and two new examples of non-liftable generic surfaces in 3-space are presen-

ted. One of these examples has branch points. The other is based on a construction similar to

the construction of Giller’s example in which the orientation double cover of a surface with odd

Euler characteristic is immersed in general position. A similar example is shown to be liftable

with an explicit lifting given.

The problem of lifting is discussed in relation to the theory of surface braids. Finally, the

orientations of the double point sets are studied in relation to the lifting problem.

1. Introduction. Consider a closed surface M that is generically immersed in 3-

dimensional Euclidean space. Each point x ∈ M has a neighborhood N(x) such that

the derivative of the immersion f : M → R3, when restricted to N(x) is injective; thus

Df |N(x) is of maximal rank and f is one-to-one on N(x). On the other hand, such a map

may have multiple points that form the set {y ∈ R3 : #f−1(y) > 1} which is the image

of an immersed 1-dimensional manifold.

The multiple point set is stratified into two sets: the double point set is the set

S2(f) = {y ∈ R3 : #f−1(y) = 2}; the triple point set is the set S3(f) = {y ∈ R3 :

#f−1(y) = 3}.

The immersion is called generic because the image of f intersected with a neighbor-

hood of a point in Sj(f) looks like the intersection of j coordinate planes in R3, and any
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smooth immersion may be perturbed into a generic immersion.

An immersed surface f : M → R3 lifts to an embedding in R4 if there is an embedding

F : M → R4 and a projection p : R4 → R3 such that p◦F = f . A well known consequence

of Whitney’s Theorem on normal Euler classes is the following [11]:

1.1. Theorem. If the Euler characteristic, χ(M) of the surface M is odd, then for

any immersion f : M → R3 there is no lift F : M → R4 of f .

P r o o f. If F : M → R4 is an embedding, then the normal Euler class, e(F ) satisfies

the congruence e(F )/2 ≡ χ(M) (mod 2). In particular, if χ(M) is odd, then the normal

Euler class is non-trivial. This means that the normal bundle of F does not have a section.

But if f(M) is a projection of F (M), then the projection direction provides a section of

the normal bundle of F . 2

An alternative proof of non-liftability of odd Euler characteristic surfaces for generic

immersions will be given in Section 3. This proof is combinatorial and uses the Banchoff

formula χ(F ) ≡ T (f) (mod 2) where T (f) = #S3(f) — the number of triple points

of f (cf. Francis [9]). In fact, the relationships among characteristic classes, multiple

points, and singularities are rich and provide good geometric understanding of algebraic

topological invariants.

It is natural to ask if there are orientable surfaces immersed in R3 that do not lift

to embeddings. An example was provided by Giller [11]: The orientation double cover of

Boy’s immersion of the projective plane, when pushed into general position, does not lift

to an embedding in 4-space. The idea in Giller’s example is that the double arcs that

return to certain triple points several times cannot maintain a global notion of over and

under along them. Giller’s proof is cumbersome since it depends on examining all possible

choices of lifts at each of the eight triple points.

Giller’s example had been puzzling us for many years. Why does the double cover

of Boy’s surface happen to be unliftable? Is it always the case that the double cover of

non-orientable surfaces of odd Euler characteristic unliftable? Does a generic surface with

branch points always lift if it has no closed loops in its double point set?

In this paper, we give answers to these questions, as well as new constructions of

unliftable surfaces. The paper is organized as follows. In Section 2.3 we review Giller’s

construction, and give an example of an immersed non-orientable surface of genus 3 whose

double cover lifts. Thus the answer to the second question above is negative. In Section 3,

we give a necessary and sufficient criterion for immersed surfaces to be lifted. The condi-

tion is given in terms of colorings of the pre-images of the double point set, significantly

simplifying Giller’s proof. This answers the first question above in a combinatorial way.

Using this condition we present a new example of an unliftable immersion constructed

from a higher genus non-orientable surface.

In Section 4 we discuss orientations of the double point sets in relation to the lifting

problem. Combining this and the methods used in the braid theory in dimension 4, we

give a generic surface with branch points that also does not lift in Section 5. Thus the

answer to the third question is negative.
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2. Giller’s construction and some examples. In this section we review some

examples of immersed surfaces. We start with a fundamental definition.

2.1. Definition. Let f : M → R3 denote an immersion of a closed surface into

3-space. The preimage of the double point set,

{x ∈ M : f(x) ∈ S(f)},

is called the double decker set. The double decker set consists of generically immersed

closed curves in M on which there is a fixed point free involution. The double points in

the double decker set are the pre-images of the triple points of f . These pre-images form

the triple decker set. Thus the double decker set is the image of circles having double

crossing points in the image. The image of each connected component of these circles is

called a transverse component (or simply component for short).

2.2. Boy’s surface. An illustration of Boy’s surface (with a disk cut away so that

singularities can be easily seen) is given in Figure 1. This is a classical immersion of a

projective plane in 3-space. Apery’s book [1] contains a plethora of alternative illustrations

of this surface. The double decker set as it sits in a Möbius band is illustrated in Figure 2.

Fig. 1: Boy’s surface

Fig. 2. The double decker set of Boy’s

surface

2.3. Giller’s example. In Figure 3, an illustration of an immersed sphere is given.

This is the result of perturbing the double cover of Boy’s surface into general position.
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Fig. 3: The double cover of Boy’s surface: Giller’s example

Fig. 4: The double decker set of Giller’s surface

(To facilitate visualization, we have turned one of the disks that cover the missing disk in

Figure 1 inside-out.) The resulting surface has eight triple points and a single double point

curve that wraps through the triple points. This immersed sphere is Giller’s Example.
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The double decker set for Giller’s example is depicted in Figure 4. We have colored

one component of the double decker set by using a dotted arc. A method for obtaining

this double decker set is obtained as follows. Consider the double cover of the Möbius

band embedded in 3-space by an annulus. Figure 2.7 of [3] contains an illustration. To

construct a physical model of this surface, take the usual paper strip model of a Möbius

band, but replace the single strip of paper with two strips. After the half twist is inserted,

the two strips are taped end to end to each other. If the double decker set of Boy’s surface

is indicated on the Möbius band, then the double decker set of the un-perturbed double

cover is that closed curve that maps to the double decker set of Boy’s surface under the

covering projection. The double decker set for Giller’s example is obtained from this curve

by pushing off a copy of it in the normal direction of the curve on the surface.

It is interesting to note that the two components (as manifolds) of the double decker

set of Giller’s example are interchangeable. That is, there is a homeomorphism of the

2-sphere that takes one component to the other. Giller’s example is sometimes used as

an intermediate step to a sphere eversion which exploits this symmetry and the existence

of Boy’s surface.

2.4. Koschorke’s example. In [16] Koschorke constructed an immersion of the con-

nected sum of 3-copies of the projective plane with one triple point. The double point

manifold has two components; one is immersed as a figure 8, and the other has a quarter

twist along the framing induced by the immersion. The construction is given by taking

a figure 8 times an interval, putting in a quarter twist, and capping off the boundary

with a disk that intersects the 8× [0, 1] in a figure 8. Figure 5 illustrates this. The double

decker set as it sits on a rank 3 non-orientable surface with one boundary component is

illustrated in Figure 6.

Fig. 5: Koschorke’s surface

Fig. 6. The double decker set of Ko-

schorke’s surface
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To contrast with Giller’s example, we show how to lift the double cover of Koschorke’s

example into 4-space. In Figure 7 an illustration of the critical portion of the double cover

of Koschorke’s surface is illustrated as a broken surface diagram. The crossing information

in this figure is adequate to find a lift of the double cover of Koschorke’s surface into 4-

space. The double decker set as it is immersed in the double cover (a surface of genus 2)

of the double cover is indicated in Figure 8. Theorem 3.2 shows that there is a lift, and

the choice of above and below sheets can be easily made to coincide with this illustration.

Fig. 7. The double cover of Koschorke’s sur-

face lifted

Fig. 8. The double decker set of the cover of

Koschorke’s surface

In the next section we will prove that Giller’s example does not lift to an embedding.

3. Colorings of decker curves and liftability. We give a necessary and sufficient

condition for immersed surfaces to be liftable.

Let f : M → R3 be an immersion, B be the double point curve, D be the double

decker curves.

3.1. Definition. The double decker curve D is colorable if the components of D can

be divided into two families {Da
1 , · · ·D

a
n} and {Db

1, · · ·D
b
n}, (called a-curves and b-curves

respectively), such that

(1) Da
i and Db

i are identified by f , and

(2) for every triple point T , the preimage of T in M consists of three crossing points

between an a-curve and a-curve, an a-curve and b-curve, and a b-curve and b-curve.

These crossing points are called type a/a, a/b, and b/b respectively.

3.2. Theorem. An immersion f is liftable if and only if the decker set is colorable.

P r o o f. If f is liftable, then the decker curves are colorable by declaring that the

upper decker curves are a-curves and the lower curves are b-curves. Conversely, if D is

colorable, let N be a thin tubular neighborhood of b-curves, and let M ′ = M\ Int(N).

Then f |M ′ gives a broken surface diagram representing a projection of an embedded

surface. We give a review of the broken surface diagram in the following. 2
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First, recall that a classical knot diagram is obtained by removing the under path from

the projection, and the knot can be recovered from the diagram by adding the under-arc

in the lower half-space. In a broken surface diagram of a knotted surface, the portion of

the surface that is further from the hyperplane of projection is broken. (Figure 7 contains

a portion of a broken surface diagram and Figure 13 contains a broken surface diagram

near a triple point.) We remove a small open tubular neighborhood of the b-curve and

embed the resulting surface with boundary into 3-space using the restriction of p ◦ K,

where K : M → R4 is an embedding. Conversely, for a given broken surface, we can

reconstruct an embedding in 4-space that is isotopic to the given knot K(F ), by gluing

the neighborhood of the lower-deck to the embedded surface in 3-space: The boundary

of this neighborhood lies in 3-space, and the interior protrudes “below” this hyperplane

— in other words, the neighborhood lies in the same component of R4 \R3 that K(F )

does.

We remark here that the idea of coloring surfaces was also used in videos [10, 19]. In

these videos, actual colors were used to indicate over- and under-crossings.

3.3. Proposition [11]. The double cover of Boy’s surface is unliftable.

P r o o f. In Figure 4 the double decker set of the immersion f which is the double

cover of the Boy’s surface is illustrated. There are parallel immersed curves, A and B

say, in S2 such that there are 6 intersection points between A and A, 6 between B and

B, 12 between A and B, respectively.

Suppose it lifted. Then A is colored by a and B is colored by b, say. Then there are

6 crossings of type a/a, 6 of type b/b, and 12 of type a/b, a contradiction. 2

This simple proof can be used to generalize this phenomenon to other immersed

surfaces.

3.4. Theorem. Suppose an immersion has a transverse component of the double

decker curves which is homotopic to the center line of a Möbius band neighborhood and

which has a self intersection (necessarily at a triple point). Then the double cover of it is

unliftable.

P r o o f. (The illustrations in Figures 10 and 11 should help the reader follow the

proof.) Let K be the double point curve in the assumption. Let H be a neighborhood

of K which is an immersed Möbius band. Then the double cover f : M → R3 has a

neighborhood N which double covers H . Here N is a subset of M which is an immersed

annulus in M . The decker curves in N consists of immersed parallel curves A and B that

are parallel to the core of the annulus, and segments {p}× I ⊂ S1 × I. Suppose f lifted.

Then one of the parallel curves must be colored by a, the other by b.

By assumption the annulus N has a self intersection. Let S be a square subset of N

where N has the intersection. The double decker set looks like # in this square. These

arcs are parallel pairs of a- and b-curves.

Let p1, p2, p3, and p4 be the crossing points of the double decker set in S. Two of

these are of type a/b and one for each of a/a and b/b.

Consider the four triple points Ti that are the image of these crossing points pi. Let

p′i and p′′i be the preimages of Ti different from pi. Then p′i, p
′′

i are crossing points of A,



36 J. S. CARTER AND M. SAITO

B and 4 segments I ′j , I
′′

j . Two of these segments are colored by a and the other two are

colored by b. Among the 12 crossings 3 are of type a/a, 3 are of type b/b and 6 are of

type a/b, a contradiction. 2

3.5. Example. The immersion that is depicted in Figure 9 is an immersion of a

non-orientable surface with boundary. The bounding circle is contained on a standardly

embedded genus-2 handle body; any embedded disk bounded by this curve outside of

the genus 2 surface will intersect the original immersion in a pair of figure 8 curves. This

example indicates a non-orientable surface that has 3 triple points. Figure 10 illustrates

Fig. 9: A non-orientable surface with a figure 8 Möbius band

Fig. 10. The double decker set of the new

surface

Fig. 11. The double decker set of the double

cover of the new surface
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the double decker set as it sits on the ambient surface. This double decker set satisfies

the hypothesis of Theorem 3.4. So the double cover of the example does not lift to

4-dimensions.

Figure 11 indicates the double decker set of the double cover, and indicates that the

decker set is not colorable.

3.6. Examples.We observe that the coloring argument applies to any non-orientable

curve of odd Euler characteristic. For if the Euler number is odd, then there must be an

odd number of triple points by Banchoff’s Theorem [2]: The number of triple points of

an immersion is congruent to the Euler characteristic of the surface modulo 2. Banchoff’s

proof shows also that there must be an immersed Möbius band that contains an essential

closed loop of double decker points if the Euler characteristic is odd. This component of

the double decker manifold is a connected two-to-one cover of the corresponding double

point curve, which does not satisfy the condition (1) of the colorability.

4. Orientations of double point sets. In this section, we indicate that for orienta-

ble surfaces there is an alternative criterion that is necessary and sufficient for liftability.

The criterion for liftability that we establish in this section will also apply to generic

surfaces. A generic surface [4] has branch points in addition to double and triple points.

It is called generic because any map from a surface into 3-space can be perturbed into

one with such image. A branch point has a neighborhood in which the surface intersects

in a cone on a figure 8 (also known as a Whitney’s umbrella). The middle-top picture in

Figure 14 depicts a branch point.

Let M denote an oriented surface and f : M → R3 denote a generic map of M .

Except at branch points there is an orientation normal vector assigned to each point at

f(M).

4.1. Definition. A distinguished region of R3 \f(M) at a triple point is one of eight

regions near the triple point into which all the normal vectors point. Distinguished edges

of the double point curves near a triple point are the three (among six) edges sharing the

triple point that are contained in the closure of the distinguished region.

4.2. Definition. An orientation of the double point set is an orientation of (trans-

verse) components of it. An orientation of the double point set is compatible if the orien-

tation restricted to edges at every triple point satisfy the following property: the number

of the distinguished edges whose orientations point towards the triple point is exactly

one, or exactly two.

A few explanations are in order. Note that there are six edges near each triple point.

An orientation of them is given to transverse components, so that three of them go out

and the other three go into the triple point. The compatibility condition says that the

edges incident to the distinguished region can not be all going out nor all going in. Note

also that the orientation can be naturally defined for generic surfaces. Oriented double

point curves end at branch points in this case.

4.3. Theorem. A generic surface lifts to an embedding in 4-space if and only if the

double point curves admit a compatible orientation.
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P r o o f. Let x be a double point in f(M) and γ be a part (homeomorphic to an

interval) of the double point curve. Suppose f lifts to an embedding. Then at each double

point x, one of the sheets forming the double points is up above the other sheet with

respect to the projection direction. (In terms of the coloring of the preceding Section, the

sheet with a-curve is the upper sheet and one with b-curve is the lower sheet.)

Give an orientation to γ so that (the orientation of γ, v0, v1) matches the orientation

of the 3-space by the right hand convention, where v0 (resp. v1) is the normal to the

upper (resp. lower) sheet.

One checks that this orientation satisfies the compatibility condition.

Conversely, a broken surface diagram can be constructed given a compatible orienta-

tion. Specifically, a local orientation of a double curve together with the orientations of

two sheets involved, determines which sheet is above the other sheet. Then one checks

that such over/under relations are well defined at a triple point if the orientations are

compatible. Figure 13 depicts one of the cases. 2

4.4. Example. In Giller’s example, there is only one transverse component of the

double point curve. Therefore there are only two choices to orient this curve. For either

choice, the triple points labeled 0 and 7 do not have a compatible orientation.

4.5. Rema r k (Signs of triple points). The compatibility condition for triple points

discussed above says that there are exactly one or exactly two incoming distinguished

edges. Thus we have two types of such triple points. If it has exactly one (resp. two)

incoming distinguished edge(s) then call it a triple point of type I (resp. II). We observe

that the types of triple points are related to the orientations of the double decker set

defined by Mikhalkin and Polyak [17].

Let M denote an oriented surface and f : M → R3 denote an immersion of M .

Choose an orientation of the normal bundle of f such that T (M) ⊕ ν agrees with the

right handed orientation of R3. Consider a double point y ∈ S2(f). Suppose that the

points x1, x2 ∈ M are pre-images of y: Thus f(x1) = f(x2) = y. The double decker arcs

γ1 and γ2 in M that pass through x1 and x2 are embeddings γj : (−ǫ, ǫ) → M with

γj(0) = xj and f(γj(−ǫ, ǫ)) ⊂ S2(f). The normal direction to γj in M is chosen so that

its projection to R3 agrees with the direction that is normal to f(M) at xj+1 (subscripts

read modulo 2). We let v(xj) ∈ TMxj
denote this normal vector. Figure 12 indicates

this convention. The local parametrizations of the double decker curves can be chosen

so that the orientation [γ′

j(0), v(xj)] agrees with the given orientation of M at xj . This

orientation was defined by Mikhalkin and Polyak [17].

Fig. 12: Mikhalkin-Polyak orientation
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If f(M) lifts, the double point curves admits the orientation defined in the proof of

Theorem 4. The relation between this orientation and the above defined orientation is

as follows. Two orientations agree for lower decker curves and disagree for upper decker

curves.

For each preimage of three sheets at a triple point, define the signs as follows. First

note that the decker curves have the order on each sheet. On the top (resp. middle,

bottom) sheet, the decker curve which is the intersection with the middle (resp. top, top)

sheet is upper and that with the bottom (resp. bottom, middle) sheet is lower. If the

orientation in the sense of Mikhalkin-Polyak of (upper deck, lower deck) matches the

orientation of the surface, then call it positive (otherwise negative). Thus we get a triple

of signs (±,±,±) for each of crossings of decker curves on the top, middle, and bottom

sheets assigned to each triple point.

We use the following convention. Break the lower decker curve into two arcs. Then

the decker curves look like a classical knot crossings. Then the sign of each sheet is the

sign of the crossing viewed from the positive side of the surface. Figure 13 indicates this

situation.

Fig. 13: Types of triple points and orientations

4.5.1. Proposition. The signs of any triple point is either (+,−,+) or (−,+,−).

P r o o f. Figure 13 depicts a neighborhood of a triple point. The normal vectors of

each sheet is indicated by short arrows pointing out from each sheet. The broken surface
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diagram of this neighborhood is also depicted. Surrounding the picture of the triple point

are pre-images of the three sheets forming the triple point and the decker curves. The

lower decker curves are broken. The orientations of decker curves are those of Mikhalkin-

Polyak. In this Figure, the top sheet (the horizontal sheet) has the sign − between decker

curves. The middle (reps. bottom) sheet has sign + (resp. −). Thus in this case the

signs are (−,+,−). If one of the orientations, say that of the top sheet, of the surface

is changed, then the orientations of decker curves on the middle sheet and the bottom

sheet that are the intersections with the top sheet will change. Thus the new signs are

(+,−,+). All the cases are obtained by changing orientations and a change will cause

the change of all the signs. 2

4.5.2. Proposition. A triple point is of type I (resp. II) iff it has signs (+,−,+)

(resp. (−,+,−)). Moreover , for a type I (resp. II) triple point the orientation (normal to

top, normal to middle, normal to bottom) agrees (resp. disagrees) with the right handed

orientation of 3-space.

P r o o f. In Figure 13, the orientations of the double point curves are also depicted.

Thus in this case the triple point is of type II. If one of the orientations are changed the

type changes, so do the signs as observed above. Thus the Proposition follows. 2

5. Surface braids and the lifting problem. In this section we give a new con-

struction of unliftable generic surfaces.

Figure 14 shows how to express certain generic surfaces in 3-space by means of planar

graphs and by sequences of words in symmetric groups. These descriptions in fact came

from the theory of surface braids in 4-space, generalizations of the Artin’s braid groups

to 4-dimensions. We refer interested readers to [5, 6, 7, 14] for example. Let us explain

these descriptions.

We consider a surface F in a box B = I1 × I2 × I3 ⊂ R3 a schematic of which

is depicted on the right of Figure 14, where Ij denotes a copy of the unit interval, for

j = 1, 2, 3. We require that the surface F in B satisfies the following conditions.

• F is generic.

• The boundary ∂F of F is contained in ∂(I1 × I2)× I3.

• The projection p : I1 × I2× I3 → I1 × I2 restricted to F is a branched covering such

that each branch point is of degree 2.

Let D be the double point set of F . Then p(D) ⊂ I1×I2 is a planar graph. Let us call

this an un-oriented chart. An un-oriented chart has univalent vertices corresponding to

branch points, 4-valent vertices that correspond to the crossings of the projections of do-

uble arcs, and 6-valent vertices corresponding to triple points of F . A generic intersection

F ∩ I1 × {t} × I3, consists of intersecting strings in I1 × {t} × I3.

Such strings in a disk represent words in the symmetric group Sn where each crossing

represents a transposition si = (i, i + 1) (cf. [8]). Thus from t = 0 to t = 1, we get

a sequence of words S = (w1, w2, · · · , wk)) in Sn where w1 and wk are empty words.

Furthermore, one can take slices so that each change between wj and wj+1 is of one of

the following types.



SURFACES IN 3-SPACE 41

3

2

1

I

I

I

Fig. 14: Generic surfaces, charts, and symmetric groups

(1) Insertion/deletion of si,

(2) Insertion/deletion of s2i ,

(3) Replacement of sisj by sjsi where |i− j| > 1,

(4) Replacement of sisjsi by sjsisj where |i− j| = 1.

One can label each edge of the un-oriented chart by integers 1 through n−1 using the

convention that each edge corresponds to a generator of symmetric groups. The univalent

vertices of the chart correspond to the insertion or deletion of a transposition (item (1)

above). The 6-valent vertices correspond to the replacement (4). The 4-valent vertices

correspond to applying the replacement (3). And maximal/minimal points on the edges

correspond to the insertion or deletion of the square of a transposition (item (2)). In

summary, such surfaces in a box can either be represented by labeled un-oriented charts

or sequences of words in the symmetric groups.
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If F is a projection of a surface embedded in 4-space then the double point set has a

compatible orientation as defined in Section 4. We can use the compatible orientation to

obtain (oriented) charts as defined by Kamada [12, 14, 13].

Furthermore, the broken surface diagrams of F in this case give rise to sequences of

words in the braid group Bn of n-strings. Then the changes between words are described

by:

(1) Insertion/deletion of σǫ
i ,

(2) Insertion/deletion of a pair σǫ
iσ

−ǫ
i ,

(3) Replacement of σǫ1
i σǫ2

j by σǫ2
j σǫ1

i where |i− j| > 1,

(4) Replacement of σǫ
iσ

ǫ
jσ

ǫ
i by σǫ

jσ
ǫ
iσ

ǫ
j where |i− j| = 1,

where ǫ, ǫ1, ǫ2 = ±1. See [5] for more details.

5.1. Definition. A sequence of words on the generators of the braid group and their

inverses that satisfies the condition that successive words differ by at most one of the

changes (1)-(4) is called a braid movie.

1

2

1

1

1

2

2

1

2

1

2

1

1

2

1 2

2

Fig. 15: A chart which does not lift

An example of an unoriented chart is given in Figure 15. This figure defines a generic

orientable surface in 3-space. We prove

5.2. Proposition. The generic surface F in 3-space described by Figure 15 does not

lift to an embedded surface in 4-space.

P r o o f. Suppose F lifts. Then there exists an orientation on every edge which satisfies

the compatibility condition at every 6-valent vertex (the image of a triple point). Let us

define this condition.

Let C be a small circle around a 6-valent vertex. If we travel around C in whichever

direction, we have 6 intersection points between C and the graph. Each edge has an

orientation. We say that the orientation is compatible at the vertex if the orientations of
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the edges are in the order of (in, in, in, out, out, out) for a certain choice of starting point

on C. Here in (resp. out) means that the orientation of the edge points inward (resp.

outward) of C.

This compatibility condition follows from the compatibility condition defined in Sec-

tion 4. Alternatively, one could check that if F is a projection of an embedded surface

then the induced orientation defined above satisfies the compatibility condition at every

vertex by checking all the braid relations. The incompatible orientation does not realize

braid relations without making crossing changes.

Thus it is necessary and sufficient for an un-oriented chart to represent a chart of

embedded surface is to have an orientation which satisfies the compatibility condition at

every vertex.

Notice that in the chart there is a transverse component of an arc, say Γ, which

goes through the middle vertex three times. There are only two possible ways of giving

orientations to each transverse components of arcs. In particular, Γ has only two possible

orientations. One easily checks that neither of them gives an orientation which satisfies

the compatibility condition at the middle vertex. 2

In fact, by using the new compatibility condition we defined in the above proof, we

have proved

5.3. Theorem. The generic surface represented by an unoriented chart lifts to an

embedding if and only if it admits a compatible orientation.

This example has the following consequence in terms of sequences of words in the

symmetric group S3 and the braid group B3 with 3-strings.

The chart in Figure 15 has the following sequence, S, of words in S3 associated with

it:

∅

s22 A square of s2 added

s1s
2
2 A generator s1 added

s1s2s1s2 A generator s1 added

s2s1s2s2 A relation performed

s1s2s2 The first letter deleted

s1s2 The second letter deleted

s1s2s
2
1 A square of s1 added

s2s1s2s1 A relation performed

s1s2s1 The first letter deleted

s2s1 The first letter deleted

s2s1s1 The second letter s1 added

s2s1s2s1 The third letter s2 added

s1s2s1s1 A relation performed

s2s1s1 The first letter deleted

s1s1 The first letter deleted

∅ The square of s1 deleted

5.4. Corollary. The above sequence S does not lift to a braid movie in B3.
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Recall that a braid movie is a sequence of words that satisfies the condition in Defi-

nition 5. A lift of such a sequence is a braid movie that projects to the given sequence

under the map σi, σ
−1
i 7→ si. The Corollary obviously follows from the Theorem.

5.5. An alternative proof of Theorem 5. The permutation movie (i.e., the sequence of

symmetric group words given above) illustrated in Figure 16 indicates the cross sections

of the generic surface. The double decker set for this surface is indicated in Figure 17.

First let us explain these figures. We capped off the properly embedded surface in

I1 × I2 × I3 with three nested disks to obtain a closed surface. Numbers are assigned to

crossings in Figure 16. These numbers have no relation to the labelings of edges of the

1

2

3 1

2

4

3

2

1

1

4

3

2

1 3

2

2

1

1

2
5

6

1
6

2

5

1
2

6

1
6

1

6

7

1

8
7

6

8

6

1
7

2
1

6

1

6

Fig. 16: A movie description of the unliftable surface
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1
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Fig. 17: The double decker curves of the unliftable surface

chart. The decker curves corresponding to the crossing point labeled j are labeled by ±j

in Figure 17. The long edge in the chart corresponds to the decker curve in Figure 17 in

a thick line.

The decker curve was constructed as follows. First we have three circles in a still of the

movie description that are represented by three maximal points in the left of Figure 17.

The introduction of s22 in a symmetric group word sequence are seen in the decker set

as a pair of maximal points of decker curves labeled ±1 and ±2. When a generator

is introduced, two components of curves are connected; when a generator is deleted,

two curves are connected. Thus at such a point we see a saddle point of the surface
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together with the decker curve passing through the saddle point. These correspond to

(a) univalent vertices in the unoriented chart, (b) insertions/deletions of transpositions

in the symmetric group movie. Two of these are indicated in the figure with small circles

at the top and bottom of the second hole from the top.

Now the coloring condition can be generalized to generic surfaces as follows: the double

decker curve D is colorable if the components of D\ (branch points) can be divided into

two families {Da
1 , · · ·D

a
n} and {Db

1, · · ·D
b
n}, (called a-curves and b-curves respectively),

such that

(1) Da
i and Db

i are identified by f , and

(2) for every triple point T , the preimage of T in M consists of three crossing points

between an a-curve and a-curve, an a-curve and b-curve, and a b-curve and b-curve.

(3) two edges whose closure shares a branch point receive the opposite color (i.e., one

is a and the other is b).

One easily sees that this colorability is a necessary and sufficient condition for a

generic surfaces to be lifted.

Going back to the example, there is a single loop represented by a thick line in the

decker set. This has two branch points dividing the loop into two arcs. One must be

colored a and the other by b by the condition (3), but the condition (2) is not satisfied

by either of two possible colorings. 2
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