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Abstract.We study numerical and polynomial invariants of piecewise-linear knots, with the

goal of better understanding the space of all knots and links. For knots with small numbers of

edges we are able to find limits on polynomial or Vassiliev invariants sufficient to determine an

exact list of realizable knots. We thus obtain the minimal edge number for all knots with six or

fewer crossings. For example, the only knot requiring exactly seven edges is the figure-8 knot.

1. Introduction. In the theory of knots and links, piecewise-linearity is usually re-

garded as a useful tool, a means to understanding knots which are most likely preferen-

tially regarded as smooth. Here we shall take a different viewpoint, that piecewise-linear

knots have interest in their own right and that piecewise-linear (or PL) invariants are

of interest. The most elementary such invariant is simply the minimal number of edges

required to form the given knot or link, and we will study this invariant (called the “edge

number”) in this paper.

Primary motivations for such a viewpoint are applications of knot theory in molecular

biology and stereochemistry, in which the knot or link is used to model the physical

structure of circular DNA or other large molecules [14], or of small molecules with carbon

rings, such as cyclohexane [10]. It is often useful to regard the molecule as a graph made

up of atoms as vertices and bonds as edges. Thus we regard the PL structure as a matter

of primary interest, and one is concerned with such questions as how many edges are

required to accomplish some knot type.

Because of this motivation, there is a variety of modifications one might make to a

simple model of vertices and edges, such as labelling (or “coloring”) edges or vertices,

requiring fixed length or ratios of lengths along edges, or requiring adjacent edges to

meet with certain fixed angles. In this paper we will generally ignore such interesting

refinements in order to develop general tools.

After presenting some preliminaries and notation we consider the crossing number
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and (super)bridge number in Section 2. A very useful notion in this regard is the idea

of a convenient projection or special position for a PL knot. In Section 3 we consider

classical and neoclassical polynomial invariants of PL knots and show how to obtain

limitations on these invariants given a fixed number of edges. In Section 4 we consider

Vassiliev invariants (also called invariants of finite type). In the PL case we outline a

recursive scheme for determining what the Vassiliev invariants of a given knot or link of

n edges might be. As a consequence of the calculations and techniques of this section we

show that the only knot with edge number equal to seven is the figure-8 knot (see also

[8], [4]). We observe that these results (Theorem 5, Corollaries 8 and 9) complete the

determination of the edge numbers e(K) of all prime knots with crossing number six or

smaller.

Theorem 1. Edge numbers of prime knots of six or fewer crossings are given as

follows :

e(unknot) = 3,

e(trefoil) = 6,

e(figure-8) = 7,

e(K) = 8, for K any prime five- or six-crossing knot , and

e(K) ≥ 8 for any other knot.

M. Meissen has constructed all prime seven-crossing knots with 9 edges, so that their

edge numbers must be eight or nine, and she has constructed the knots 819 and 820 with

eight edges, showing that their edge number is eight. See [6] for explicit coordinates and

illustrations of these examples. Also, in a recent paper studying torus knots and links,

G. T. Jin [3] has constructed the square and granny knots with eight edges.

In Section 5 we consider the space Mn of all knots with n edges. If we do not take

into account sometimes appropriate equivalence relations, Mn is simply an open subset of

R
3n. It is a natural object to study [9]; path components are simply PL knot types and in

some sense Mn → K, where K is the space of all knots, as n → ∞. Many of the techniques

of the preceding sections can be reinterpreted in this context. We will not pursue this

in this article; in a forthcoming paper we will consider in detail the computation of the

cohomology of Mn. We conclude with a bit of conjecture and speculation.

2. Projections; crossing and bridge numbers. We consider a knot in R
3 con-

sisting of n straight line segments, called edges and denoted e1, e2, . . . , en. The vertices

will be numbered v1, v2, . . . , vn, so that the edge ei is vivi+1 in an oriented sense. The

polyhedral knot K (or Kn) is simply the union of the edges. We consider the space of all

such knots as an open subspace Mn of (R3)n. We also consider the discriminant Σn of

singular PL knots, so that

Mn = (R3)n \ Σn

We follow the convention of deleting the number of segments n whenever possible.

We are interested in studying the space M and in particular its path components,

the set of (n-segment) knot types. This is somewhat similar to the approach of Vassiliev

in [15]. While Vassiliev’s interest is in the “stable” case we are interested in both the
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unstable and stable case. In particular, we want to exhibit an explicit description of M

and Σ for small values of n, such as 4, 5, 6, 7. This would include precise information

about which knots can occur. It is hoped that this particular approximation of the space

of all knots will prove useful in settling a number of the problems mentioned by Vassiliev

and attacked by others.

In this paper we will use several slightly different approaches to the cases with n small.

That is, we first examine how simple a projection one can find for a PL knot with few

edges. It turns out the problem is manageable for these values of n, and we get detailed

information about the relevant space. The second method applies some standard tools of

knot theory to the problem. In particular, here we use Jones, and Conway polynomials as

well as low order Vassiliev invariants, together with the classification of knots (and links)

of low crossing number. This method implicitly begins to study the boundaries between

knots, or in other words, various “pieces” of Σ.

2.1. Projections. There are advantages to the PL case when one considers knot pro-

jections. Naturally enough, one is interested in projections of the knot which enable one

to simplify calculations. As a first step in understanding projections, we examine Σ in a

somewhat cursory way.

In particular, how can n numbered vertices be arranged in space so that connecting

the dots in cyclic order does not yield a simple closed curve? There are the following

possibilities:

(i) two vertices coincide,

(ii) a vertex lies on an edge,

(iii) two edges partially coincide,

(iv) two or more edges intersect transversely at a point.

Notice that these conditions all define closed semialgebraic subsets of R3n, of various

codimensions. The discriminant Σ is simply the union of those n-tuples of vertices sat-

isfying one or more of the above four conditions. We will use the term knot to refer to a

point K ∈ M = R
3n \ Σ, while referring to a point S ∈ Σ as a singular knot .

Definition 2. A convenient projection of a knot K is obtained by projecting per-

pendicular to the first edge e1, then tilting slightly so that the edge e1 (in projection) is

not involved in any crossings, and in addition, so that e2 and en do not cross.

It is an easy exercise to show that convenient projections exist. Note that in order to

obtain such a projection one may have to move K slightly in the open set M in order to

insure that the diagram of the knot has n edges with only over- and under-crossings. We

will henceforth use such general position considerations without further comment.

The notion of convenient projection is a good example of a useful property of PL

knotting. Using a convenient projection of the knot, one can essentially make an edge

disappear or ensure that that edge is not involved in any crossings.

We first make some straightforward observations about crossing and (super)bridge

numbers of PL knots. Recall that the crossing number c(K) is the minimum number of

crossings, taken over all projections and all knots within the given isotopy class. The

bridge number b(K) is the minimum number of relative maxima (in the y-direction of
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the projection plane), taken over all projections and all knots within the given isotopy

class. To define the superbridge number sb(K) [5] we first take the maximum number of

relative maxima over all directions for a particular embedding, then minimize over the

isotopy class. In [5] it was shown that for true knots 2 ≤ b(k) < sb(K).

Proposition 3. Suppose K is a PL knot with n edges. Then

(i) if n is even,

c(K) ≤ (n− 1)(n− 4)/2

and if n is odd (n > 3),

c(K) ≤ (n− 1)(n− 4)/2− (n− 3)/3

(ii) For n > 3,

b(K) ≤ (n− 2)/2 and sb(K) ≤ n/2.

Corollary 4. A PL knot with five edges is unknotted.

P r o o f (of proposition). Observe that in a projection of K with only transverse

crossings, no edge can cross an adjacent edge. Thus there can be at most n(n − 3)/2

crossings. Now consider a convenient projection of K: The edge e1 does not intersect any

other edges, and the edges e2 and en do not cross. Thus there are at most n(n− 3)/2−
(n− 3)− 1 = (n− 1)(n− 4)/2 crossings as claimed.

Now suppose n is odd. Consider any one of the edges except en, e1, or e2. Such an

edge, say ek, could possibly cross any of the n− 4 edges ek+2, ek+3, . . . , en,
∧

e1, . . . , ek−2.

Note that n − 4 is odd. If ek crosses all of these edges, then vk+2 and vk−1 must be on

opposite sides of the line in the projection plane which contains ek. Hence ek−1 and ek+1

do not intersect. Thus any such edge ek either does not cross one of the above n − 4

edges, or ek−1 and ek+1 do not intersect. Notice that if we count the number of missing

crossings, we have one for each of the n− 3 edges, with each missing crossing counted at

most three times. Thus we can subtract (n− 3)/3 from the number of possible crossings.

The result for the (super)bridge number follows by noting that a knot with n vertices

can have at most n/2 relative maxima, no matter what the direction of projection. Thus

sb(K) ≤ n/2, so by the result of Kuiper[5] b(K) ≤ n/2− 1.

Notice that for n = 5 this theorem yields a crossing number at most one, while for

n = 6, c(K) ≤ 5 and b(K) ≤ 2, and for n = 7, c(K) ≤ 7 and b(K) ≤ 2. Since a knot with

crossing number one is unknotted, we find that all knots with five edges are unknotted.

We will use the fact that a 7-edge knot has a projection with seven or fewer crossings in

a later section.

It is quite possible that in certain situations the above estimates can be improved.

We include them here for their own interest, and because the form above provides the

tools we need for later. Clearly, one may carry out similar computations for some other

numerical invariants.

3. Polynomial invariants. In this and the next section we study finer invariants

of the knots. Since we are considering the space of PL knots, it is natural to consider

Vassiliev’s invariants of finite type [15], which are based on the degree zero cohomology of
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the smooth knot space. Of the various polynomial invariants available, we choose to study

the Conway and Jones polynomials. It is shown in [1] that the coefficients of the Conway

polynomial are Vassiliev invariants, and in fact in Vassiliev’s basis for his invariants,

exactly the first two non-zero Conway coefficients appear by order four. In [2] (see also

[1]) it is shown that the coefficients of the power series expansion of the Jones polynomial

evaluated at ex are also Vassiliev invariants.

In these sections we consider the problem of determining restrictions on these invari-

ants, given restrictions on the number of edges of the knot. Such results, combined with

the classification of knots of low crossing number and the Proposition above, allow us

to determine the edge number for all knots of six or few crossings, and to determine all

knots with seven or fewer edges.

3.1. The Conway and Jones polynomials. From our point of view the key property of

these invariants is the recursive scheme for their computation. That is, if we follow the

usual convention and consider the three links in Figure 1, the Conway polynomial C(z)

Fig. 1 (links are the same outside circles)

and the Jones polynomial V (q) satisfy the relations

C(K+)− C(K−) = zC(K0)(1)

and

q−1V (K+)− qV (K−) = α(q)V (K0)(2)

where

α(q) = q1/2 − q−1/2(3)

We will use these relations to study these polynomials for knots of six or seven edges.

As a starting point, note that both polynomials take the value 1 for any knot with five

edges, since such a knot is unknotted.

3.1.1. Knots with six edges

Theorem 5. Any knot with six edges has the Conway and Jones polynomial of the

unknot , the trefoil knot , or the mirror image of the trefoil knot. Hence, the only knots

which can be realized with six edges are these three knots.

It was observed in [10] that one can realize both trefoil knots with six edges.

P r o o f. Suppose we are given a knot K determined by the six vertices v1, v2, . . . , v6.

We note that v4, v5, v6 are the vertices of a triangle T . We attempt to isotope through

PL knots by moving the vertex v5 across T . If no other edges of K intersect T , then in

fact we do obtain an isotopy of K to a five edge knot, so that K is unknotted.

We note that only the edges e1 and e2 can possibly intersect T , and that either edge

can pass through in either the positive or negative direction. (We use the orientation on T
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given above and the usual right-hand rule to determine the direction of intersection.) Our

plan is to observe that we modify our given knot to the unknot with one or two crossing

changes. By observing what happens at the crossing changes we obtain our result. We

consider all cases in detail in view of the orientation subtleties.

Fig. 2

First, suppose e1 passes through T in the positive sense. In Figure 2 we show the

situation just before, as, and after the vertex v5 passes through the edge e1. Note that

we change from K+ to K−. Now suppose that the other edge e2 does not pass through

T . Then K− is the unknot (it has five edges), and from (1) we see that

C(K+)− 1 = zC(K0)

so that we need to understand C(K0). From Figure 2 it is easily seen that C(K0) is a

link with two components, consisting of the PL knots v1, v
′

5, v6 and v4, v
′′

5 , v2, v3. The first

of these components is an unknotted planar triangle and the second is unknotted and

has four edges. We prove that the associated link is either the unlink of two unknotted

circles, or is a (+)-Hopf link (see Figure 3). In fact, note that the edge v2, v3 misses the

Fig. 3. A (+)-Hopf link

triangle bounded by v1, v
′

5, v6. Thus, if the two components of the link are in fact to truly

link, the edge v3, v4 must intersect this triangle. With respect to the induced orientation

of this triangle, v4 is above its plane. Thus v3, v4 passes from below to above, and this

means that the linking is in the (+) sense as claimed.
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Thus C(K0) is either 0 or z respectively, so that C(K+) = 1 or 1 + z2.

Next we refer again to Figure 2, with e1 passing through negatively. Then we change

from K− to K+. Again supposing that e2 does not intersect T , we know that K+ is

the unknot (since it has five edges). Arguing as before, we see that K0 is a link with

two components, either the trivial unlinked pair, or a Hopf link. In the linked case, the

analogous argument shows that it is a (−)-Hopf link, so that C(K0) = −z, so that the

original knot K has C(K) = 1 + z2 as claimed.

Finally, we observe that if both e1 and e2 intersect T , then the triangle T1 with vertices

v1, v2, v3 intersects T in a line segment in the interior of T , and the triangle T1 intersects

no edges of K. For, note that only the edges e4 and e5 can possibly intersect int(T ), and

since T and T1 intersect as they do, this is impossible. Thus since T1 misses all edges of

K one can isotope across T1 to show that K is unknotted.

We turn next to the Jones polynomial, but first note that already we have shown that

only the unknot and trefoil can be realized in M6, since any knot with six edges has a

projection with five or fewer crossings, and among the knots of five or fewer crossings,

the Conway polynomial characterizes the unknot and trefoil knots.

The argument for the Jones polynomial is precisely the same, but using (2). Thus we

have

q−1V (K+)− q = α(q)V (K0)

where V (K+) is to be determined and K0 is the trivial link of two components, or a

(+)-Hopf link. These two links have Jones polynomials −q1/2 − q−1/2 and −q1/2 − q5/2

respectively, so that

V (K+) = 1 or V (K+) = q1 + q3 − q4

The latter is of course the Jones polynomial of the (+)-trefoil knot.

The other possible direction of intersection can give the Jones polynomial of the

(−)-trefoil.

We could use similar techniques as the number of edges increases. In the next section

we will do so, but using Vassiliev invariants in place of polynomial invariants.

4. Vassiliev invariants. In this section we will use techniques similar to the above

to determine Vassiliev invariants through order four for all knots with seven or fewer

crossings. We will use Vassiliev’s own basis (or “actuality table”) as is found in [15]. This

particular basis is handy for several reasons, not the least of which is the table of invariants

for all prime knots through seven crossings prepared by Vassiliev. In addition, with this

basis the order two invariant is just the coefficient of z2 in the Conway polynomial and

the third invariant of order four is the negative of the coefficient of z4. This provides a

check to our computations, and allows one to see the relationship of the invariants.

4.1. Brief description of Vassiliev’s invariants. The invariants described by Vassiliev

in [15] are numerical invariants of knots which extend to invariants of immersions of

the circle with transverse double points, or nodes. As pointed out in the introduction

of [1], given a numerical invariant for knots, one can define numerical invariants V for
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immersions K• with nodes by the formula

V (K•) = V (K+)− V (K−)

Here K+ and K− are formed from K• by changing one transversal crossing to a

positive or negative crossing in the projection.

Then an invariant is defined to be of “finite type” (order m) if V vanishes for all

immersions with more than m nodes. Vassiliev invariants turn out to be exactly those

of finite type with the above definition. The question, of course, is how does one find

and compute such invariants. Vassiliev solves this problem completely. The invariants

themselves are certain zero-th cohomology classes of the complement of the space of

all knots. By appropriate duality, such classes correspond to higher degree cohomology

classes of the discriminant in the knot space (the discriminant is the set of all smooth

maps of the circle into space which are not embeddings). Such a cohomology class can be

thought of as a linear combination of various “pieces” of the discriminant. These pieces

are made up of nodal immersions.

The actual computation of the invariants proceeds via an “actuality table” which

involves a number of choices. In this paper we will use Vassiliev’s original actuality table,

for the reasons mentioned above. The idea of the computation is to consider a generic path

in the space of knots, running from the given knot to the unknot. Such a path will several

times transversely cross the discriminant at one of its generic or nonsingular points, that

is, at an immersion with a single node. At each crossing the value of the invariant changes

(depending on orientation) by the value of the invariant on the particular piece of the

discriminant. In turn, the values on these nonsingular parts of the discriminant change

as one crosses through binodal immersions, and so forth.

Thus the actuality table is a list of values of the invariants for relevant nodal curves.

An invariant of order m vanishes on curves with more than m nodes, so that one need

only consider those curves with m or fewer nodes when computing such an invariant.

We will present determination of the five invariants of order four or less for PL knots

with seven or fewer edges. As a consequence we obtain the edge number for all knots

with six or fewer crossings. We will also present a recursive scheme for computation of

Vassiliev invariants of any PL knot.

We follow Vassiliev in writing these invariants as [a; b; c, d, e], where the values inside

the brackets are rational (actually, half-integer) numbers. The semicolons separate in-

variants of different orders. Thus, a is the order two invariant, while c, d, e are the three

invariants of order four. We note the following: a is the coefficient of the quadratic term

in the Conway polynomial, while −e is the coefficient of the degree four term. Vassiliev

has normalized the invariants so that the even order invariants are the same for mirror

image knots, while the odd order invariants change by a factor of −1. Thus if the knot

K is achiral (equivalent to its mirror image), all odd order invariants vanish. Tables such

as those of Vassiliev and T. Stanford [13] suggest that these invariants are very powerful

in detecting chirality.

4.2. The recursive scheme. We have seen this pattern in Section 3. Suppose we are

given a PL knot with n edges. We choose three consecutive vertices and attempt to isotope
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across the corresponding triangle to a PL knot with n− 1 edges. The ending knot, since

it has fewer edges, has invariants already computed. At the point of each self-intersection

we have an immersion K• with one node, and we look up its invariants in the table.

In fact, of course, the values for K• will not be in the table, but must be computed.

The crucial point is that K• will be fairly simple. For example, when n = 6 K• is a graph

with seven edges and a single four-valent vertex. One can think of K• as a PL embedding

of a figure-8 graph in which one of the loops is PL with three edges and the other PL

with four edges. Thus K• is quite restricted. Thus the key step in proceeding from n to

n+ 1 is the study of such restricted K•.

4.3. Calculations for n = 6. We have actually done the work for this calculation in

Section 3. Here we add one further piece of information and write down the answer.

Theorem 6. If K is a PL knot with six edges , its Vassiliev invariants are one of the

following:

(i) [0; 0; 0, 0, 0],

(ii) [1;−1; 0, 0, 0],

(iii) [1; 1; 0, 0, 0].

P r o o f. Suppose we are given a knot K determined by the six vertices v1, v2, . . . , v6.

We note that v4, v5, v6 are the vertices of a triangle T . As before, we attempt to isotope

through PL knots by moving the vertex v5 across T . If no other edges of K intersect T ,

then in fact we do obtain an isotopy of K to a five-edge knot, so that K is unknotted,

and (i) holds.

If e1 passes through T in the positive sense then in Figure 3 we show the situation

just before, as, and after the vertex v5 passes through the edge e1. Note that we change

from K+ to K−. Now suppose that the other edge e2 does not pass through T . Then K−

is a five-edge unknot, and

V (K+)− V (K−) = V (K•)

implies that

V (K) = V (K+) = V (K•)

so that we need to understand V (K•). From Figure 2 it is easily seen that K• is a figure-8

graph with two loops, the PL knots v1, v
′

5, v6 and v4, v
′

5, v2, v3. The first of these loops

is an unknotted planar triangle and the second is unknotted, since it has four edges. An

analysis as in Section 3 shows that K• must be one of the two embedded graphs shown

in Figure 4. Both crossings are positive in the second graph because in order for the edge

v3v4 to intersect the triangle which is the convex hull of v1, v
′

5, v6, the vertex v3 must lie

below the plane of this triangle. This holds, because we already know that v4 is above

the plane.

If the first of the alternatives holds, then V (K•) = [0; 0; 0, 0, 0]. If the second holds,

then V (K•) = [1;−1; 0, 0, 0].

Next we refer again to Figure 2, with e1 passing through negatively. Then we change

from K− to K+. Again supposing that e2 does not intersect T , we know that K+ is the

unknot (since it has five edges). Arguing as before, we see that V (K•) = [1; 1; 0, 0, 0].
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Fig. 4

Finally, we observe that if both e1 and e2 intersect T , then the triangle T1 with vertices

v1, v2, v3 intersects T in a line segment in the interior of T , and the triangle T1 intersects

no edges of K. For, note that only the edges e4 and e5 can possibly intersect int(T ), and

since T and T1 intersect as they do, this is impossible. Thus since T1 misses all edges of

K one can isotope across T1 to show that K is unknotted.

4.4. Calculation for n = 7. The idea here is precisely the same as above. The two key

elements are the analysis of how the triangle intersects the rest of the knot, and of the

imbedded graphs resulting at these intersections. The graphs resulting are again figure-8

graphs. In one case, each loop has four edges, while in the other one loop has three and

the other has five edges. Notice that in both cases the individual loops are unknotted.

Theorem 7. Suppose K is a PL knot with seven edges. Then the Vassiliev invariants

of K through order four are [a; b; 0, d, 0].

Corollary 8. The only knots which can be formed with seven edges are the unknot ,

the two trefoil knots , and the figure-8 knot.

This result also appears in [8] and [4].

P r o o f (of corollary). A seven-edge knot has a projection with seven or fewer crossings

by Proposition 3. Thus, the result follows for prime knots by examining Vassiliev’s table

[15]. It follows for all knots with seven or fewer crossings by noting that the theorem

shows that the Conway polynomial (through degree four) is simply 1 + az2 + 0z4 + . . .

But the Conway polynomial multiplies for composition of knots, and one can check that

no possible true composite knots with seven or fewer crossings can have such a polynomial.

Corollary 9. The edge number for all five and six-crossing prime knots is eight.

The edge number for any knot requiring more than six crossings is at least eight.

P r o o f. The previous corollary shows that the edge number is at least eight. K. Millett

[7] has shown that all five and six-crossing prime knots can be realized with eight edges.
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P r o o f (of theorem). There are two key points in the proof. The first is the con-

sideration of exactly how various edges can intersect the triangles formed by successive

vertices. The second is the question of how the relevant graphs are embedded.

In order to consider the first question, we need some notation. Let Ti denote the

triangular (two-dimensional) region which is the convex hull of the vertices vi, vi+1, vi+2,

with this orientation.

Lemma 10. After possibly cyclically renumbering the vertices , one of the following

three cases holds :

(i) Int(T5) intersects none of the edges of K.

(ii) Int(T5) intersects exactly one of the edges of K, namely e1, e2, or e3; or

(iii) Int(T5) intersects e1 and e3 but does not intersect any other edges.

P r o o f. Consider T5. We note that Int(T5) cannot intersect any of the edges e4, e5,

e6, e7. Suppose both e1 and e2 intersect Int(T5) non-trivially. Then consider the triangle

T1. Since T1 ∩ T5 must be a line segment in Int(T5), the only edge which can possibly

intersect Int(T1) is e4. Thus, after renumbering we have either case (i) or case (ii).

A similar argument applies in the case that the two consecutive edges e2 and e3
intersect T5 non-trivially. Thus the only possibilities are those stated.

Let us now complete the proof of Theorem 7. The proof is by explicit computation;

we describe below a way to organize the cases involved. First, by Lemma 10 there are

three main cases.

Case (i): T5 intersects no edges of the knot. Then the knot is isotopic to a knot with

six edges, and Theorem 6 applies.

Case (ii): T5 intersects exactly one edge e1, e2, or e3 of the knot. First suppose that

edge is e1 or e3. Then, letting the intersection point be labelled ⋆, we have the associated

graph K•. We may think of the graph K• as consisting of two loops in space, sharing

the point ⋆ in common. One loop has three edges, with vertices we will call ⋆, a2, a3.

The other loop has five edges labelled ⋆, b2, . . . , b5. Orientation is given as inherited from

K, and following increasing subscripts. We consider the projection of K• into a plane

perpendicular to the line segment a2a3.One then easily sees that the algebraic intersection

number of the loop ⋆, b2, . . . , b5 with the triangle spanned by ⋆, a2, a3 is 0 or ±1. Explicit

computation of the possible cases show that in this case the order four Vassiliev invariants

of K• are all zero. Therefore we can isotope K to a PL knot with six edges through K•,

and thus the order four Vassiliev invariants of K are all zero.

Now suppose that T5 hits exactly the edge e2 and no other edges. Then K• consists

of two loops of four edges each, meeting at ⋆. We number the vertices ⋆, a2, a3, a4 and

⋆, b2, b3, b4 in a manner similar to case (i). Now project to a plane perpendicular to the

line segment a2a4. Again, the algebraic intersection number of the two loops is 0 or ±1.

Explicit computation of possible cases shows that the order four invariants are of the

form [0, d, 0]. Thus in this case K has Vassiliev invariants through order four of form

[a; b; 0, d, 0].
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Case (iii): In this case the edges e1 and e3 are hit in succession. Thus as in the first

part of the proof for case (ii) all order four Vassiliev invariants are zero.

Example 11. K. Smith [12] gave the following realization of the figure-8 knot with

seven edges:

v1 = (0,−1, 0) v5 = (1, 1, 9)

v2 = (0, 2, 0) v6 = (−1/2, 1,−4)

v3 = (−2, 0, 1) v7 = (1,−1, 7)

v4 = (1, 0, 1)

We leave it as an exercise to analyze this particular knot in view of the proof of

Theorem 7 above.

5. The space of all PL knots; a bit of speculation. We briefly consider the space

Mn of all knots with n edges. By identifying a knot K with its ordered n-tuple of vertices

in three space we see that actual (embedded) PL knots with n edges thus form this open

dense subset of R3n. A path component of Mn is thus simply a PL knot type and is

contained in a path component of the space of all knots. In some sense Mn → K, where

K is the space of all knots, as n → ∞. Many of the results of the preceding sections can be

reinterpreted in this context, and our techniques can be used to gather information about

the number of path components of Mn. There is one path component for n ≤ 5, and there

are at least three (the unknot and the two trefoils) for n = 6. For the next case n = 7 we

know that there are at least four path components, but there is no a priori reason that

there could not be, say, two path components of figure-8 knots. In a similar way, there

is no particular reason to expect that any two unknots with six edges are connected by

a path in M6. In a forthcoming paper we will consider in detail the determination of the

path components of Mn and its variants, using cohomological techniques.

The most obvious realm of speculation given these initial results is certainly the

relationship of the edge number of a knot to classical numerical invariants, such as the

crossing number or the bridge number. It is known [2] that the unknotting number is not

a Vassiliev invariant. We will observe below that the edge number also is not a Vassiliev

invariant. The crossing number gives the traditional partial ordering of knots, as in knot

tables. One could also use the edge number. It is natural to ask to what extent these two

orderings are compatible.

With respect to this question, let us observe that Proposition 3 may be interpreted as

a suggestion that asymptotically the crossing number is proportional to the square of the

edge number. In [8], S. Negami showed that e ≤ 2c. Thus by rearranging the inequality

of Proposition 3 one obtains the bounds

5 + (25 + 8(c− 2))1/2

2
≤ e ≤ 2c

Asymptotically this inequality becomes
√
2c ≤ e ≤ 2c

The following example arose from discussions with J. Simon and J. Przytycki:

Example 12. Consider the torus knots L(2, q). It is known [5] that sb(L(2, q)) = 4̇,

q ≥ 5. It is a classical fact [11] that b(L(2, q)) = 2 and c(L(2, q)) = q. Thus in this family,
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as q → ∞ we have constant bridge and superbridge number, while the crossing number,

and hence edge number, grows without bound. On the other hand, by the inequality

above the edge number grows no faster than 2q. This fact can be used, arguing as in [2],

to show that the edge number is not a Vassiliev invariant.
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