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Abstract. The notion of an (n, r)-coloring for a link diagram generalizes the idea of an

n-coloring introduced by R. H. Fox. For any positive integer n the various (n, r)-colorings

of a diagram for an oriented link l correspond in a natural way to the periodic points of the

representation shift ΦZ/n(l) of the link. The number of (n, r)-colorings of a diagram for a satellite

knot is determined by the colorings of its pattern and companion knots together with the winding

number.

1. Introduction. Tricoloring, introduced by R. H. Fox around 1960, is an elementary

technique that distinguishes a trefoil knot from a trivial knot [CrFo], [Fo1], [Fo2]. A

tricoloring of a link diagram is an assignment of colors to the arcs of the diagram using

three colors such that at any crossing either all three colors appear or only one color ap-

pears. Any diagram has a trivial, monochromatic tricoloring — in fact, three of them. It

is easily checked that the number of tricolorings of a diagram is unaffected by Reidemeister

moves and hence is a numerical invariant of the link. We can deduce that a trefoil knot

is different from a trivial knot simply by observing that the former has a nontrivial

tricoloring. Complete details of the argument can be found in [Pr].

By broadening our palette, using n colors identified with the elements of the cyclic

group Z/n, we arrive at the more general notion of n-coloring. An n-coloring of a link

diagram is an assignment of colors to the arcs such that at any crossing the sum of the

colors of the undercrossings is equal to twice the color of the overcrossing modulo n.

The idea but not the terminology can be found in Chapter 10 of [Fo1]. (The necessary

mathematics was known to Reidemeister [Re].) Again one can check that the number of

n-colorings of a diagram is unchanged by Reidemeister moves. Figure 1 shows a nontrivial

5-coloring of the figure eight knot 41. It is known that the knot has a nontrivial n-coloring

if and only if n is a multiple of 5.
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Fig. 1. 5-coloring of figure eight knot diagram

In this paper we introduce a further generalization of tricoloring called (n, r)-coloring,

where n and r are positive integers and r ≥ 2. Any n-coloring is an (n, 2)-coloring and

conversely. For any link and positive integer n, the (n, r)-colorings for all r can be

determined from a single finite graph Γ. The graph Γ describes a representation shift

introduced in [SiWi1] using techniques of symbolic dynamical systems (see also [SiWi2]).

We use the techniques to compute the number of (n, r)-colorings of a satellite knot in

terms of the colorings of its pattern and companion knots.

We are grateful to Pat Gilmer and Józef Przytycki for helpful comments.

2. (n, r)-colorings and representations

Definition 2.1. Assume that D is a diagram of an oriented link. An (n, r)-coloring,

for positive integers n and r with r ≥ 2, is an assignment of (r− 1)-tuples (color vectors)

C ∈ (Z/n)r−1 to the arcs of D such that at any crossing

(2.1) (Ci − Ck) · S
ǫ
r = Cj − Ck.

Here Ck corresponds to the overcrossing, Ci, Cj correspond to the undercrossings, ǫ = ±1

is the algebraic sign of the crossing (see Figure 2), and Sr is the companion matrix of the

cyclotomic polynomial of degree r − 1; i.e.,

Sr =













0 0 . . . 0 −1
1 0 . . . 0 −1
0 1 . . . 0 −1
...

...
. . .

...
...

0 0 . . . 1 −1













.

When r = 2 condition (2.1) reduces to the familiar n-coloring condition that the sum of

the colors of the undercrossings is equal to twice the color of the overcrossing modulo n.

Fig. 2

Given any diagram D of an oriented link we will denote the number of its (n, r)-

colorings by coln,r(D). The following result can be proved by elementary techniques.

However, it will also follow from results in Section 4 (see Theorem 4.3).
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Proposition 2.2. If D and D′ are any two diagrams of an oriented link l, then

coln,r(D) = coln,r(D
′). Consequently, coln,r(D) is an invariant coln,r(l) of the link.

P r o o f. The diagramD can be converted into D′ by a finite sequence of Reidemeister

moves. It suffices to check that the number of (n, r)-colorings of any diagram is unaffected

by each of the three Reidemeister moves and their inverses. We leave the details to the

reader.

Assume that D is a diagram for an oriented link l. The same diagram with reversed

orientation, denoted by r(D), is a diagram for a link r(l). The set of (n, r)-colorings of

D is in one-to-one correspondence with the set of (n, r)-colorings of r(D). In fact, given

an (n, r)-coloring of D we obtain an (n, r)-coloring of r(D) by reversing the order of the

components of each color vector. Consequently, the number coln,r(k) is an unoriented

knot invariant. However, changing the orientation of only some of the components of a

link l can change coln,r(l) when r > 2 (see Example 4.4).

Proposition 2.3. Assume that D is a diagram for an oriented link l. If D can be

(n, r)-colored for some n and r, then D can be (an, br)-colored for any positive integers

a and b.

P r o o f. Since Z/n can be embedded as a subgroup in Z/an, it is immediate that

D can be (an, r)-colored. Assume that we have an (an, r)-coloring of D. Replacing each

color vector (c1, . . . , cr−1) by (c1, . . . , cr, c1, . . . , cr−1), where cr = −c1− . . .−cr−1, results

in an (an, 2r)-coloring of D. By induction D can be (an, br)-colored.

Definition 2.4. Assume thatD is a diagram for an oriented link with a distinguished

arc δ. A based (n, r)-coloring of D is an (n, r)-coloring in which δ receives the trivial color

vector.

Since the set of all (n, r)-colorings of D obviously forms a module over Z/n, the

number of based (n, r)-colorings of D is independent of the distinguished arc δ. We

will denote the number of based (n, r)-colorings of D by col0n,r(D). Clearly coln,r(D) =

nr−1 · col0n,r(D). It follows immediately from Proposition 2.2 that col0n,r(D) is also an

invariant col0n,r(l) of the link.

Example 2.5. No diagram for the figure eight knot can be tricolored (i.e., (3, 2)-

colored) in a nontrivial manner. Figure 3 shows that a diagram can be nontrivially

(3, 4)-colored.

Fig. 3. Based (3, 4)-coloring of figure eight knot diagram

3. Representation shifts associated to links. Let l = l1∪ . . .∪ lµ be any oriented

link with tubular neighborhood N = N1 ∪ . . .∪Nµ. Let G denote the group π1(S
3 − l, ∗)
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of the link, where the basepoint ∗ is chosen on the boundary ∂N1, and let x be the

class of a meridian m of l1 (with orientation induced by l1.) The total linking number

homomorphism χ : G→ Z is the homormorphism that maps each meridian of l to 1 ∈ Z.

We will denote the kernel of χ by K. If µ = 1 then l is a knot, χ is the abelianization

homomorphism and K is the commutator subgroup [G,G].

Definition 3.1. Let Σ be a finite group. The representation shift ΦΣ(l) (or simply

ΦΣ) of the link l is the set Hom(K,Σ) of representations ρ : K → Σ together with the

shift map σx : ΦΣ → ΦΣ defined by σxρ(a) = ρ(x−1ax) for all x ∈ K. The set ΦΣ

has a natural topology determined by the basis sets Na1,...,as
(ρ) = {ρ′ : ρ′(ai) = ρ(ai),

i = 1, . . . , s} for all ρ ∈ ΦΣ, a1, . . . , as ∈ K.

For brevity we sometimes refer to the representation shift ΦΣ without explicit mention

of the shift map σx. It is a straightforward matter to check that σx is a homeomorphism

of ΦΣ. The pair (ΦΣ, σx) is an example of a dynamical system, by which we mean a

compact topological space together with a homeomorphism. Dynamical systems (Φ1, σ1)

and (Φ2, σ2) are said to be topologically conjugate if h ◦ σ1 = σ2 ◦ h for some homeomor-

phism h : Φ1 → Φ2. One easily checks using the uniqueness up to isotopy of tubular

neighborhoods that the link type of l determines the representation shift (ΦΣ, σx) up to

topological conjugacy. This implies, in particular, that the set Fix σr
x = {ρ : σr

xρ = ρ} of

period r representations is an invariant of l for each r ≥ 0.

Theorem 3.1 of [SiWi1] states that the representation shift ΦΣ is a special sort of

dynamical system known as a shift of finite type. Such a system can be completely de-

scribed by finite directed graph Γ. The elements of ΦΣ correspond to the bi-infinite paths

in Γ in such a way that the representations with period r correspond to the closed paths

of length r. We will construct Γ for a specific example and then describe the general

construction.

Example 3.2. We consider the knot k = 52 oriented as in Figure 4a with Wirtinger

generators indicated. The group G = π1(S
3 − k, ∗) has presentation

〈x1, x2, x3, x4, x5 | x3x2 = x2x1, x2x3 = x3x4, x5x1 = x1x2, x4x5 = x5x3〉.

We use the first three relators to eliminate x3, x4 and x5 from the presentation, obtaining

〈x1, x2 | x2x
−1
1 x2x1x

−1
2 x1x2x

−1
1 x2x

−1
1 x−1

2 x1x
−1
2 x−1

1 〉.

The Reidemeister–Schreier Theorem [LySc] enables us to find a presentation for the kernel

K, which is the commutator subgroup of G. First we replace x2 by x1a (i.e., we introduce

a new generator a and eliminate x2 by Tietze moves). For notational convenience we will

write x instead of x1. The following presentation for G results.

〈x, a | a2 · xa−1x−1 · x2a2x−2 · xa−2x−1〉

The kernel K is generated by the elements ai, i∈Z, where ai=x
−iaxi. Defining relations

are obtained by conjugating the relation in the last presentation by powers of x and then

rewriting those words in terms of the ai:

K = 〈ai | a
2
i+2a

−1

i+1
a2i a

−2

i+1
, i ∈ Z〉
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Fig. 4a. The knot k = 52

Fig. 4b. Graph Γ for k = 52

We regard the relation a2i+2a
−1
i+1a

2
i a

−2
i+1 as a word r = r(ai, ai+1, ai+2). A representation

ρ : K → Σ is a function ρ from the set of generators ai into Σ such that for every i ∈ Z

the element r(ρ(ai), ρ(ai+1), ρ(ai+2)) is trivial in Σ. Any such function can be constructed

as follows, beginning with Step 0 and proceeding to Steps ±1,±2, etc.:

...

(Step −2) Choose ρ(a−2) if possible such that r(ρ(a−2), ρ(a−1), ρ(a0)) = e.

(Step −1) Choose ρ(a−1) if possible such that r(ρ(a−1), ρ(a0), ρ(a1)) = e.

(Step 0) Choose values ρ(a0) and ρ(a1).

(Step +1) Choose ρ(a2) if possible such that r(ρ(a0), ρ(a1), ρ(a2)) = e.

(Step +2) Choose ρ(a3) if possible such that r(ρ(a1), ρ(a2), ρ(a3)) = e.
...

The process of selecting values ρ(ai) is accomplished by following any bi-infinite path

on a directed graph Γ. The vertices of Γ are maps ρ0 : {a0, a1} → Σ, each of which

can be regarded as an ordered pair (ρ0(a0), ρ0(a1)). There is a directed edge from ρ0 to

ρ′0 if and only if (1) ρ0(a1) = ρ′0(a0) and (2) r(ρ0(a0), ρ0(a1), ρ
′

0(a1)) = e. Conditions
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(1) and (2) enable us to extend the function ρ0 : {a0, a1} → Σ by defining ρ0(a2) to be

equal to ρ′0(a1). Now if there is an edge from ρ′0 to ρ′′0 we can likewise extend ρ0 by

defining ρ0(a3) to be ρ′′0 (a1). In fact, a bi-infinite path in the graph corresponds to a

map from the generating set of K to Σ which sends all relators to the identity element,

and hence corresponds to a representation of K. When Σ = Z/7, condition (2) becomes

ρ′0(a1) ≡ 5ρ0(a1)−ρ0(a0) (mod 7). The graph Γ (see Figure 4b) consists of seven disjoint

cycles: a single cycle of length 1; three cycles of length 2; three cycles of length 14. Later

we will show how the graph can be used to construct the 6 nontrivial (7, 2)-colorings of

a diagram for the knot 52.

We now describe the graph Γ corresponding to an arbitrary link. The associated group

K has a presentation of the form

K = 〈ai,j | rk,j〉,

where 1 ≤ i ≤ n, 1 ≤ k ≤ m, j ∈ Z. Each relator rk,j is a word in the generators ai,j
such that rk,q+t is obtained from rk,q by adding t to the second subscript of every symbol

in rk,q . (Presentations of this type were studied in [HaKe].) Without loss of generality

we can assume that if any word r1,0, . . . , rn,0 contains ai,j then it contains ai,0 but does

not contain any ai,j with j < 0. Let Mi be the largest positive value of j such that ai,j
occurs in r1,0, . . . , rn,0, or 1 if there is no such j. Let A0 be the set of generators obtained

from A = {a1,0, . . . , a1,M1
, a2,0, . . . , an,Mn

} by deleting a1,M1
, . . . , an,Mn

. The vertex set

of Γ consists of all functions ρ0 : A0 → Σ; that is, all M -tuples (M = M1 + . . . +Mn)

of elements in Σ. As in the previous example we regard ρ0 as a partial assignment of

elements of Σ to the generators ai,j . There is an edge from ρ0 to ρ′0 if and only if (1)

ρ0(ai,j+1) = ρ′0(ai,j) whenever ai,j , ai,j+1 ∈ A0 and (2) the images of r1,0, . . . , rn,Mn

under the partial assignment are trivial.

Example 3.3. Consider the trivial link l of two components. The group G=π1(S
3−

l, ∗) is a free group on meridian generators x and y corresponding to the two components

l1 and l2, respectively. We replace y by xa and apply the Reidemeister–Schreier Theorem

as we did in Example 3.2 in order to see that the kernel K is the free group generated by

ai, i ∈ Z. Since there are no nontrivial relations, the directed graph Γ describing ΦΣ(l)

is the complete graph on Σ. The resulting representation shift consists of all bi-infinite

paths in Γ, and it is also known as the full shift on Σ.

Example 3.4. Consider the Borromean rings l = 632 oriented as in Figure 5a with

Wirtinger generators indicated. The group G = π1(S
3 − l, ∗) has presentation

〈x, x1, y, y1, z, z1 | zx = x1z, xy = y1x, yz = z1y, z1y1 = y1z, z1x = x1z1〉.

We use the first three relators to eliminate x1, y1 and z1 from the presentation, obtaining

〈x, y, z | yzy−1xyx−1 = xyx−1z, zxz−1yzy−1 = yzy−1x〉.

We replace y by xa and z by xb, and apply the Reidemeister–Schreier method to produce

the following presentation for the kernel K:

K = 〈ai, bi | ai+2bi+1a
−1

i+1aib
−1

i+1a
−1

i+1, bi+2b
−1

i+1ai+1bia
−1

i ai+1b
−1

i+1a
−1

i+2, i ∈ Z〉

When Σ is abelian, any representation ρ : K → Σ factors through the quotient map
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K → K/[K,K]. It is clear from the presentation for K that the quotient K/[K,K]

decomposes as

〈ai | ai+2 − 2ai+1 + ai, i ∈ Z〉 ⊕ 〈bi | bi+2 − 2bi+1 + bi, i ∈ Z〉.

Hence when Σ is abelian the representation shift ΦΣ(l) is a Cartesian product Ψ×Ψ. For

example, when Σ = Z/4 the graph for Ψ computed from its presentation has eight disjoint

cycles: 4 cycles of length 1; 2 cycles of length 2; 2 cycles of length 4. (See Figure 5b.)

Fig. 5a. The link l = 623

Fig. 5b. Graph of Ψ

In Example 3.2 the only fixed point is the trivial representation, and the representation

shift is finite. In general, if k is any knot and Σ is arbitrary, then the the only fixed point

of ΦΣ(k) will be the trivial representation; if Σ is abelian, then the shift will also be

finite (see [SiWi2]). These statements need not be true for links, as Examples 3.3 and 3.4

reveal.

4. Color representations. Assume that D is a diagram for a knot k. It is well

known that the n-colorings of D correspond to representations of G = π1(S
3 − k) onto

the dihedral group Dn = 〈α, τ | αn = τ2 = e, τατ−1 = α−1〉. More precisely, given

any n-coloring of D, we obtain a representation ρ : G → Dn by mapping the Wirtinger

generator xi corresponding to the ith arc of D to the element ταci , where ci is the color

of the ith arc. Conversely, any representation ρ of G onto Dn must map each Wirtinger

generator xi to one of the elements τ, τα, . . . , ταn−1 and hence determines an n-coloring

of D. The restriction of such a representation ρ to the commutator subgroup K produces

an element ρ ∈ ΦZ/n(k) with the property that ρ+ σxρ is trivial.
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Definition 4.1. Let l be an oriented link and let n and r be positive integers with

r ≥ 2. An (n, r)-color representation of l is a representation ρ ∈ ΦZ/n(l) such that

ρ + σxρ + . . . + σr−1
x ρ is trivial. A color representation is an (n, r)-color representation

for some n and r.

Lemma 4.2. Every (n, r)-color representation is periodic with period r. If k is an

oriented knot then, conversely, every period r representation is an (n, r)-color represen-

tation.

P r o o f. If ρ + σxρ + . . . + σr−1
x ρ is trivial then so is σx(ρ + σxρ + . . . + σr−1

x ρ) =

σxρ+ . . .+ σr
xρ. Hence σ

r
xρ = ρ.

Conversely, suppose that ρ ∈ ΦZ/n(l) is a representation such that σr
xρ = ρ. Since the

representation ρ+ σxρ+ . . .+ σr−1
x ρ is fixed by σx, it must be trivial [SiWi2]. Hence ρ is

an (n, r)-color representation.

For a link l a period r representation need not be an (n, r)-color representation, as

Examples 3.3 and 3.4 show.

The significance of color representations is contained in the next result.

Theorem 4.3. Let D be a diagram for an oriented link l with a distinguished arc

δ. For each n, the based (n, r)-colorings of D are in one-to-one correspondence with the

(n, r)-color representations ρ ∈ ΦZ/n(l).

P r o o f. Suppose that ρ : K → Z/n is a color representation of l. Let r be the smallest

integer ≥ 2 such that ρ+σxρ+. . .+σ
r−1
x ρ is trivial. We obtain a based (n, r)-coloring ofD

as follows. Assign the trivial color vector (0, . . . , 0) ∈ (Z/n)r−1 to the arc δ corresponding

to the distinguished generator x. Any other arc determines a Wirtinger generator xi of

the group G of the link, and the product a = x−1xi is contained in K. Assign the color

vector (ρ(a), . . . , σr−1
x ρ(a)) to the arc. Using the Wirtinger relations, it is not difficult to

check that our assignment satisfies condition (2.1).

Conversely, suppose we have a based (n, r)-coloring of D that assigns the vector

(ci,0, . . . , ci,r−2) to the ith arc. By the Reidemeister–Schreier Theorem, K is generated by

the elements x−ν(x−1xj)x
ν subject to families of relations corresponding to each crossing

of the diagram: a positive crossing (see Figure 2) introduces the family of relations

x−ν(x−1

k xi)x
ν = x−ν(xjx

−1

k )xν ,

or equivalently,

x−ν−1(x−1xk)
−1xν+1 · x−ν−1(x−1xi)x

ν+1 = x−ν(x−1xj)x
ν · x−ν(x−1xk)

−1xν ,

while a negative crossing introduces

x−ν−1(x−1xk)
−1xν+1 · x−ν−1(x−1xj)x

ν+1 = x−ν(x−1xi)x
ν · x−ν(x−1xk)

−1xν .

Condition (2.1) ensures that the mapping

ρ(x−ν(x−1xi)x
ν) = ci,ν if ν ≡ 0, 1, . . . , r − 2mod r,

ρ(x−ν(x−1xi)x
ν) = −ci,0 − . . .− ci,r−2 if ν ≡ r − 1mod r

determines a color representation ρ ∈ ΦZ/n(l). If we assume that the (n, r)-coloring with

which we began is not an extension in the sense of Proposition 2.3 of any (n, r′)-coloring
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with r′ a proper factor of r, then by applying the procedure in the first half of the proof

we recover that coloring. Hence the theorem is proved.

Just as n-colorings of a diagram for a knot correspond to dihedral representations

of the group G of the knot, the more general (n, r)-colorings correspond to certain

metabelian representations of G. We have chosen the symbolic dynamical approach

in favor of the more algebraic one for two reasons. First, as R. Hartley has noted in [Ha],

the complicated structure of the Alexander module forbids a complete algebraic analysis.

Second, the dynamical approach is constructive and often comparatively simple.

Example 4.4. Consider the 3-component link l = 631 oriented as in Figure 6a with

Wirtinger generators indicated. The group G of the link has presentation

〈x, x1 , y , y1, z, z1 | y1z = zy, z1x = xz, x1y = yx, x1y1 = yx1, zy1 = y1z1〉.

Using the first three relators we can eliminate the generators x1, y1 and z1 from the

presentation, obtaining

〈x, a, b | xy−1zyz−1yx−1y−1, zyz−1xz−1x−1zy−1〉.

We apply the same steps as in Example 3.2 in order to present the kernel K of the total

linking homomorphism.

K = 〈ai, bi |aia
−2

i+1bi+1aib
−1

i , b−2

i bi+1a
−1

i+1bi+1ai, i ∈ Z〉.

If we are interested in the (3, 3)-colorings of a diagram for l, then we can allow the

generators ai, bi to commute and reduce all coefficients modulo 3 (i.e., replace K by its

abelianization tensored with Z/3). When we do this the two families of relations become

−ai + ai+1 − bi + bi+1, ai − ai+1 + bi − bi+1.

Clearly the second family is a consequence of the first. Moreover, the first relations can

be rewritten as bi+1 = ai − ai+1 + bi. We can construct all homomorphisms ρ from K to

Z/3 by mapping the generators ai, b0 arbitrarily; the images of the remaining generators

bi, i 6= 0, are then determined by the relations. (The graph Γ that describes ΦZ/3 consists

of three disjoint complete directed graphs – each component corresponding to a choice for

the image of b0. See [SiWi2]). In order to determine the based (3, 3)-coloring corresponding

to any (3, 3)-color representation, we must first express x−1y, x−1z, x−1x1, x
−1y1, and

x−1z1 in terms of the generators ai, bi. An easy computation reveals

x−1y = a0, x−1z = b0, x−1x1 = a0 − a−1,

x−1y1 = a−1 − b−1 + b0, x−1z1 = b−1.

If α and β are elements of Z/3, then the mapping ρ : K → Z/3 that sends each generator

ai to α and each bi to β is a (3, 3)-color representation, a fixed point in the shift ΦZ/3(l).

From our computation we see that ρ corresponds to a based (3, 3)-coloring of our diagram

in which the y-arc is colored by (ρ(a0), ρ(a1)) = (α, α) while the z-arc is colored by

(ρ(b−1), ρ(b0)) = (β, β), etc. Figure 6b contains the based coloring.

The shift ΦZ/3(l) also contains (3, 3)-color representations that are not fixed points.

One such representation is determined by

a3i 7→ 1, a3i+1 7→ 0, a3i+2 7→ 2,
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b3i 7→ 2, b3i+1 7→ 0, b3i+2 7→ 1.

The corresponding based (3, 3)-coloring is shown in Figure 6c.

Fig. 6a. The link l = 631

Fig. 6b. Based (3, 3)-coloring of 631 diagram determined by a fixed point

Fig. 6c. Based (3, 3)-coloring of 631 diagram determined by a nonfixed point

Now consider the oriented link l′ obtained from l by reversing the orientation of the

component containing the arc δ. Repeating the steps above we discover that the kernel

K abelianized has a new presentation

〈ai, bi | − ai + 2ai+1 − ai+2 − bi+1 + bi+2, −ai + ai+1 + bi − 2bi+1 + bi+2〉,

where i ranges over the integers. Reducing the coefficients modulo 3 produces the relations

(R1) ai + ai+1 + ai+2 + bi+1 − bi+2,

(R2) − ai + ai+1 + bi + bi+1 + bi+2.

Any (3, 3)-color representation ρ must vanish on ai + ai+1 + ai+2 and bi + bi+1 + bi+2.

However, from relations (R1) and (R2) we see that ρ must also vanish on −ai+ ai+1 and

bi+1 − bi+2. Consequently, ρ must be a fixed point of the shift ΦZ/3(l
′). This means that

col3,3(l
′) 6= col3,3(l).
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Example 3.2 revisited. The diagram for the knot k = 52 has 6 nontrivial based

(7, 2)-colorings corresponding to the 6 nontrivial representations of period 2. It has 48

nontrivial based (7, 14)-colorings corresponding to the 48 nontrivial representations of

period 14. Figure 7 displays the based (7, 2)-coloring that corresponds to the representa-

Fig. 7. Based (7, 2)-coloring of 52

tion ρ such that ρ(a2i) ≡ 5 mod 7, ρ(a2i+1) ≡ 2 mod 7. We discover this coloring by the

same steps we used in Example 4.4. First we express x−1x2, · · · , x−1x5 in terms of the

generators ai. An easy calculation shows

x−1x2 = a0, x−1x3 = a0 − a−1,

x−1x4 = 2a0 − a−1, x−1x5 = a−1.

From this we see that if δ is colored 0, then the arc corresponding to x2 is colored

ρ(a0) = 5. Likewise, the arc corresponding to x3 is colored 3, etc.

Fig. 8. Based (4, 2)-colorings of 632
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Example 3.4 revisited. ΦZ/4(l) has 256 representations: 16 representations with

period 1 (fixed points); 48 representations of least period 2; 192 representations of least

period 4. For example, the representations with least period 2 have the form (ψ1, ψ2) ∈

Ψ × Ψ = ΦZ/4(l) where ψ1, ψ2 have periods 1 or 2, but they do not both have period

1. None of the representations of least period 2 is a (4, 2)-color representation. However,

fixed points also have period 2 (although not least period 2), and ΦZ/4(l) contains 4 fixed

points that are (4, 2)-color representations. These representations have the form (ψ1, ψ2)

where ψ1, ψ2 correspond to the 1-cycles (0, 0) → (0, 0) and (2, 2) → (2, 2) in Γ. The

resulting based (4, 2)-colorings are shown in Figure 8.

5. (n, r)-colorings of satellite knots. If k̃ is a knot that is contained in a solid

torus then knotting the solid torus will convert k̃ to a more complicated knot k called a

satellite knot. The idea was introduced by H. Schubert [Sc]. More precisely, assume that

k̃ is contained in a standard solid torus Ṽ in S3, but not contained in any 3-ball in Ṽ .

Assume that k̂ is a nontrivial second knot, and let f : Ṽ → V (k̂) be a diffeomorphism from

Ṽ onto a closed tubular neighborhood of k̂, mapping a longitude of Ṽ onto a longitude

of the knot k̂. (A longitude of k̂ is an essential simple closed curve in the boundary of

V (k̂) that is nullhomologous in the complement of k̂.) The image k = f(k̃) is a nontrivial

knot, a satellite knot with companion knot k̂ and pattern (Ṽ , k̃). The solid torus Ṽ has

infinite cyclic first homology, and the class of k̃ generates a subgroup d ·H1(Ṽ ) for some

nonnegative integer d. We call d the winding number of the satellite knot. (See [BuZi] or

[Ro].) In the special case that k̃ is a torus knot in the boundary of a smaller solid torus

Ṽ1 ⊂ Ṽ sharing a common core circle with Ṽ the satellite knot k is also called a cable of

k̂. If k̃ is the result of tying a knot in the core circle of Ṽ locally (i.e., in a small 3-ball

in Ṽ ), then the satellite knot k is just the connected sum of k̃ and k̂.

Let K, K̃ and K̂ be the respective commutator subgroups of the groups of k, k̃ and k̂.

It can be seen from work of Seifert [Se] that the abelianization K/[K,K] is isomorphic

to the direct sum of K̃/[K̃, K̃] and d copies of K̂/[K̂, K̂]. Moreover, if x, x̃ and x̂ denote

respective classes of meridians of k, k̃ and k̂, then conjugation by x in the group of k

induces an automorphism of K/[K,K] that maps a ∈ K̃/[K̃, K̃] to x̃−1ax̃ and maps

(a0, . . . , ad−1) ∈ K/[K,K]⊕ . . .⊕K/[K,K] to (a1, . . . , ad−1, x̂
−1a0x̂). Explicit proofs of

these statements can be found in [LvMe].

We conclude with a theorem that demonstrates the power of symbolic dynamical

techniques.

Theorem 5.1. Assume that k is a satellite knot with companion knot k̂, pattern knot

k̃ and winding number d. Let n and r be positive integers with r ≥ 2.

If d = 0, then col0n,r(k) = col0n,r(k̃).

If d 6= 0, then col0n,r(k) = col0n,r(k̃) · [col
0
n,r/q(k̂)]

q, where q = gcd(d, r).

Theorem 5.1 follows from the above comments and a general result about dynamical

systems that we describe now. Assume that (Φ̃, σ̃) and (Φ̂, σ̂) are two dynamical systems.

Given any positive integer d we define a satellite dynamical system (Φ, σ) such that

Φ = Φ̃ × Φ̂ × . . . × Φ̂ (d copies of Φ̂), and σ(ρ, τ0, . . . , τd−1) = (σ̃ρ, τ1, . . . , τd−1, σ̂τ0).

Recall that Fix f denotes the set of fixed points of the automorphism f .
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Proposition 5.2. Assume that (Φ, σ) is the satellite dynamical system determined

by (Φ̃, σ̃), (Φ̂, σ̂) and positive integer d. Then for any positive integer r,

|Fix σr| = |Fix σ̃r| · |Fix σ̂r/q|q,

where q = gcd(d, r).

P r o o f. Let φ = (ρ, τ0, . . . , τd−1) ∈ Fix σr. Clearly ρ ∈ Fix σ̃r. Also,

φ = σrd/qφ = (σ̃rd/qρ, σ̂r/qτ0, . . . , σ̂
r/qτd−1),

so τi ∈ Fix σ̂r/q for all i. We can write mr = nd+ q for some positive integers m and n,

so φ = σmrφ = σnd+qφ. This gives

(5.1) τi = σ̂nτi+q , 0 ≤ i ≤ d− q − 1.

Thus τ0, . . . , τq−1 uniquely determine τq, . . . , τ2q−1, which in turn uniquely determine

τ2q,. . . , τ3q−1 and so on. Conversely, given ρ in Fix σ̃r and τ0, . . . , τq−1 in Fix σ̂r/q, we

can use (5.1) to define τq, . . . , τd−1, so that φ = (ρ, τ0, . . . , τd−1) is in Fix σr.

Let D be a diagram for an oriented knot k. We have remarked previously that for

any positive integers n, r with r ≥ 2 the based (n, r)-colorings of D form a module over

Z/n. In [SiWi2] we showed that Fix σr
x is isomorphic to H1(Mr(k);Z/n), whereMr(k) is

the r-fold branched cyclic cover of k (see [BuZi] or [Ro]). The following reformulation of

Theorem 5.1 is a consequence.

Theorem 5.3 [Li], [LvMe]. Assume that k is a satellite knot with companion knot k̂,

pattern knot k̃ and winding number d. Let n and r be positive integers with r ≥ 2, and

q = gcd(d, r).

If d = 0, then H1(Mr(k);Z/n) ∼= H1(Mr(k̃);Z/n).

If d 6= 0, H1(Mr(k);Z/n) ∼= H1(Mr(k̃);Z/n)⊕ [H1(Mr/q(k̂);Z/n)]
q.
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