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1. Introduction. It was proved in [S1] and [S2] that each Turaev–Viro invari-

ant TV (M)q for a 3-manifold M is a sum of three invariants TV0(M)q, TV1(M)q, and

TV2(M)q (for definition of the Turaev–Viro invariants, see [TV]). It follows from the

Turaev–Walker theorem (see [T1], [W]) that if q2 is a primitive root of unity of an

odd degree then, up to normalization, TV0(M)q coincides with the square of the mod-

ulus of the so-called SO(3)-invariant τe(M) defined in [T2]. For a connection between

SO(3)-invariants and the Reshetikhin–Turaev invariants, see [KM] and [BHMV].

With a help of suitable normalizations we make the numbers (TV0(M)q +TV2(M)q),

TV0(M)q, and TV1(M)q to be invariant under removing of 3-balls. That allows us to

define these three invariants on a triangulation of a closed 3-manifold M .

It is natural to relate the invariants TVN (M), N = 0, 1, 2, to the Turaev–Viro invari-

ants. Here we show that for every 3-manifold M the following holds:

TV0(M)q + TV2(M)q =
1

2
(TV (M)q + TV (M)−q),

TV1(M)q =
1

2
(TV (M)q − TV (M)−q).

At the end of the paper we present a few tables. There are a lot of numerical tables

of the Turaev–Viro and Reshetikhin–Turaev invariants (see, for instance, [KL1], [KL2],

[N], [S2]). An advantage of our tables is that the values of the invariants are presented

as polynomials in q with integer coefficients.
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2. Simple polyhedra and their local moves. A 2-dimensional polyhedron X

is called simple if the link of any point of X is homeomorphic to one of the following

polyhedra: (1) a circle, (2) a circle with two radii, (3) a circle with three radii, (4) the

segment [0, 1], (5) a wedge of three segments with a common endpoint.

The set of points of a simple polyhedron X having links of types (4) or (5) is called a

boundary of X and denoted by ∂X. The points with links of type (3) are called vertices

of X. By an edge of X we mean a connected component of the set of points having the

links of type (2).

Simple polyhedra are also called fake surfaces. This class of polyhedra generates the

class of special polyhedra. Recall that a simple polyhedron X is called special if ∂X = ∅
and each 2-component of X is a 2-cell.

A simple polyhedron X with ∂X = ∅ is called a simple spine of a compact 3-manifold

M with ∂M 6= ∅ if there exists an embedding i:X → M such that M ↘ i(X), i.e. M

collapses onto i(X). In the case of a closed M , a polyhedron X is called a simple spine

of M if it is a simple spine of M with an open 3-ball removed. A simple spine is called

special if it is a special polyhedron. It is known that every compact connected 3-manifold

has a special spine (see [Ca], [M]).

Let us describe now special polyhedra-with-boundary P1, . . . , P4. Let P1 be the poly-

hedron obtained from a disk D2 by attaching two semidisks along two parallel chords,

h1 and h2 of D2. The polyhedron P2 is obtained from D2 by attaching a semidisk along

h2 and the second one along a simple curve l in D2 that has the same endpoints as

h1 and intersects h2 transversally in exactly two points. Let R = R1 ∪ R2 ∪ R3 be

a triod consisting of three radii of the disk D2. The polyhedron P3 is obtained from

the polyhedron (D2 × {0}) ∪ (R × I) by attaching a semidisk along a chord h1 ⊂ D2

that intersects the radius R1 in just one interior point. The polyhedron P4 is obtained

from (D2 × {0}) ∪ (R × I) by attaching a semidisk along a simple curve that has

the same endpoints as h1 and intersects the triod R in exactly two points, on R2

and R3.

By L-move on simple polyhedra we mean a replacement of a fragment homeomorphic

to P1 by P2. By M-move on simple polyhedra we mean a replacement of a fragment

homeomorphic to P3 by P4 (for details, see [M],[P]).

Let a circle c bound a 2-disk in a 2-component of a special polyhedron X. By B–move

we mean an attaching of additional 2-disk to X along c (for details, see [TV]).

It is proved in [M] that any two special spines of a 3-manifold can be transformed one

to another by a sequence of the movesM±1 and L±1. Note, that applying L several times,
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one can transform any simple spine into a special one. So the theorem of S. V. Matveev

is true for simple spines too.

The B–move on a simple spine of a 3-manifold M corresponds to removing of one

3-ball from M .

3. The Turaev–Viro invariants. Throughout the paper, let us fix r≥3 and a root

of unity q of degree 2r such that q2 is a primitive root of degree r.

In this section we recall how V. G. Turaev and O. Y. Viro define their invariants on

a simple polyhedron X (cf. [TV]). Let v1, . . . , vd be the vertices of X, let e1, . . . , ef be

the edges of ∂X and let Γ1, . . . ,Γb be the 2-components of X.

By a coloring of X we mean an arbitrary mapping

ϕ: {Γ1, . . . ,Γb} → Zr−1 = {0, 1, . . . , r − 2}.

A triple (i, j, k) ∈ Z3
r−1 will be called admissible if

2r − 4 ≥ i+ j + k ≡ 0 (mod 2),

|i− j| ≤ k ≤ i+ j.

A coloring ϕ is called admissible if for any edge E ofX−∂X the colors of the 2-components

incident to E form an admissible triple. Let us denote the set of admissible triples by

adm and the set of admissible colorings of X by Adm(X).

By a coloring of a regular graph G we shall mean any mapping of the set of its edges

to Zr−1. Let us denote the set of colorings of X by Col(X). Any coloring ϕ of a simple

polyhedron X induces in a natural way a coloring ∂ϕ of its boundary ∂X: an edge of ∂X

takes the color of the 2-component of X in whose boundary this edge is contained.

Let Γi,Γj ,Γk be 2-components incident to an edge E of X and let ϕ ∈ Adm(X). We

shall say that an unordered triple {ϕ(Γi), ϕ(Γj), ϕ(Γk)} is a color of the edge E. There

are six wings incident to any vertex v of a simple polyhedron. Suppose they receive under

ϕ the values i, j, k, l,m, n ∈ Zr−1. A 6-tuple

(
i j k
l m n

)
is called a color of the vertex

v if {i, j, k} is a color of some edge incident to v and (i, l), (j,m), (k, n) are the colors of

opposite 2-components incident to v.

For an integer n > 0 set

[n]q =
qn − q−n

q − q−1
,

[n]q! = [n]q[n− 1]q . . . [2]q[1]q.

Set also [0]q = [0]q! = 1. For a color {i, j, k} of an edge set

∆q(i, j, k) =

(
[i+ j − k]q![i+ k − j]q![j + k − i]q!

[i+ j + k + 1]q!

)1/2

where i = i/2. Note that the expression in the round brackets presents a real number.

By the square root x1/2 of a real number x we mean the positive root of |x| multiplied

by
√
−1 if x < 0.



398 M. SOKOLOV

Let

(
i j k
l m n

)
be a color of some vertex v. A symbol of v is defined by the following

formula

|Tϕv |q =

∣∣∣∣ i j k
l m n

∣∣∣∣
q

= (
√
−1)−(i+j+k+l+m+n)∆q(i, j, k)∆q(i,m, n)×

×∆q(j, l, n)∆q(k, l,m)

[
i j k
l m n

]
q

,

where[
i j k
l m n

]
q

=
∑
z

(−1)z[z+1]q!{[z−i−j−k]q![z−i−m−n]q![z−j−l−n]q![z−k−l−m]q!×

× [i+ j + l +m− z]q![i+ k + l + n− z]q![j + k +m+ n− z]q!}−1.

Here z runs through the non-negative integers such that all expressions in the square

brackets are non-negative. For i ∈ Zr−1 put

wi,q = (
√
−1)i[i+ 1]1/2q .

For ϕ ∈ Adm(X) put

|X,ϕ|q =

b∏
i=1

w
2χ(Γi)
ϕ(Γi),q

f∏
s=1

w
χ(es)
∂ϕ(es),q

d∏
j=1

|Tϕvj |q,

where χ is the Euler characteristic (the 2-components of X and the edges of ∂X are

thought to be open, so if es is homeomorphic to R then χ(es) = −1 and if es is homeo-

morphic to S1 then χ(es) = 0).

The Turaev–Viro invariant for the simple polyhedron X is given by

TV (X)q =
∑

ϕ∈Adm(X)

|X,ϕ|q.

It is proved in [TV] that TV (X)q is invariant under moves L±1 andM±1. It follows from

Matveev’s theorem that if X is a simple spine of a 3-manifold M then TV (M)q = TV (X)q
is a topological invariant of M .

Note that in [TV] a different normalization is used. The original Turaev–Viro invariant

is given by the formula

TV ∗(X)q = ω−2χ(X)+χ(∂X)TV (X)q,

where ω =
√

2r/|q−q−1|. It is proved in [TV] that TV ∗(X)q is invariant under B±1 also.

R e m a r k 1. It is easily seen that if q is a primitive root of unity of degree 2r and

∂X = ∅ then the numbers |X,ϕ|q, and therefore the numbers TV (X)q and TV ∗(X)q, lie

in Q(q).

4. The summand-invariants. The set of 2-components of X that receive odd colors

under a coloring ϕ ∈ Adm(X) forms a surface embedded in X. We denote this surface

by S(ϕ). Note that ∂S(ϕ) ⊆ ∂X.

Present the set Adm(X) as a disjoint union of subsets Adm0(X), Adm1(X) and

Adm2(X), where
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0) ϕ ∈ Adm0(X)⇔ (ϕ ∈ Adm(X)) & (S(ϕ) = ∅);
1) ϕ ∈ Adm1(X)⇔ (ϕ ∈ Adm(X)) & (χ(S(ϕ)) ≡ 1 (mod 2));

2) ϕ ∈ Adm2(X)⇔ (ϕ ∈ Adm(X)) & (S(ϕ) 6= ∅) & (χ(S(ϕ)) ≡ 0 (mod 2)).

For any coloring α of ∂X and N ∈ {0, 1, 2} put

ΩN (X,α)q =
∑

ϕ∈AdmN (X)
∂ϕ=α

|X,ϕ|q.

If {ϕ ∈ AdmN (X): ∂ϕ = α} = ∅, then ΩN (X,α)q = 0. Put also

TVN (X)q =
∑

α∈Col(∂X)

ΩN (X,α)q,

where sum is taken over all colorings of ∂X.

R e m a r k 2. TV (X)q = TV0(X)q + TV1(X)q + TV2(X)q.

R e m a r k 3. If q is a primitive root of unity of degree 2r then for a simple polyhedron

X with ∂X = ∅ we have TVN (X)q ∈ Q(q), for any N ∈ {0, 1, 2} (see remark 1).

Lemma 1. Let a simple polyhedron X be the union of simple polyhedra Y and Z and

let each connected component of T = Y ∩ Z be a connected component of both ∂Y and

∂Z. Then for any coloring β of ∂X we have

Ω0(X,β)q =
∑

α∈Col(T )

Ω0(Y, α ∪ (β|Y ∩∂X))q Ω0(Z,α ∪ (β|Z∩∂X))q,

Ω1(X,β)q =
∑

α∈Col(T )
K+L≡1(2)

ΩK(Y, α ∪ (β|Y ∩∂X))q ΩL(Z,α ∪ (β|Z∩∂X))q,

Ω2(X,β)q =
∑

α∈Col(T )
K+L=2 or 4

ΩK(Y, α ∪ (β|Y ∩∂X))q ΩL(Z,α ∪ (β|Z∩∂X))q.

P r o o f. This follows from the equalities

|X,ϕ|q = |Y, (ϕ|Y )|q · |Z, (ϕ|Z)|q,

where ϕ ∈ Adm(X) (see Lemma 4.2.A in [TV]), and χ(X) = χ(Y ) + χ(Z).

Theorem 1. Let X be a simple 2-polyhedron and α be a coloring of ∂X. Then for

any N ∈ {0, 1, 2} the number ΩN (X,α)q is invariant under L±1 andM±1.

P r o o f. Let us show that the number ΩN (X,α)q is invariant under L. The case ofM-

move is similar. By lemma 1 it is sufficient to prove that ΩN (P1, γ)q = ΩN (P2, γ)q for any

N ∈ {0, 1, 2}, where P1 and P2 are the polyhedra from the definition of the L-move and

γ is a coloring of the graph ∂P1 = ∂P2. It is easy to check that for any γ there is a unique

K ∈ {0, 1, 2} such that {ϕ ∈ Adm(Pi): ∂ϕ = γ} ⊂ AdmK(Pi), for i = 1, 2. Therefore

ΩN (P1, γ)q =
∑

ϕ∈Adm(P1)
∂ϕ=γ

|P1, ϕ|q and ΩN (P2, γ)q =
∑

ψ∈Adm(P2)
∂ψ=γ

|P2, ψ|q

if N = K, and ΩN (P1, γ)q = ΩN (P2, γ)q = 0 if N 6= K. It is proved in Lemma 4.4.A of

[TV] that the sums are equal.
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Corollary 1. Let X be a simple spine of a 3-manifold M . Then TVN (M)q =

TVN (X)q is an invariant of M for any N ∈ {0, 1, 2}.

5. The summand-invariants and triangulation. The summand invariants are

not invariants under B-move. This prevents us from defining these invariants on a tri-

angulation of a 3-manifold. Here we modify the invariants TV0, TV1, and TV0 + TV2 to

make them invariant under removing of 3-balls.

Put ω0 =
√
r/|q − q−1| and ω =

√
2r/|q − q−1|. Let X be a simple polyhedron. Put

Ω∗0(X,α)q = ω
−2χ(X)+χ(∂X)
0 Ω0(X,α)q,

Ω∗1(X,α)q = ω−2χ(X)+χ(∂X)Ω1(X,α)q,

and

Ω∗e(X,α)q = ω−2χ(X)+χ(∂X)(Ω0(X,α)q + Ω2(X,α)q).

Lemma 2. Let X be a simple 2-polyhedron and α be a coloring of ∂X. Then the

numbers Ω∗0(X,α)q, Ω∗1(X,α)q, and Ω∗e(X,α)q are invariant under B.
P r o o f. It follows immediately from the definition of the number |X,ϕ|q that the

number Ω∗0(X,α)q is invariant under B if

ω2
0 = w−2

j

∑
k,l≡0(2)

k,l:{j,k,l}∈adm

w2
kw

2
l

for any even j ∈ Zr−1, and Ω∗1(X,α)q, Ω∗e(X,α)q are invariant under B if

ω2 = w−2
j

∑
k,l:{j,k,l}∈adm

w2
kw

2
l

for any j ∈ Zr−1.

The second equality is proved in [TV]. The proof of the first one is similar. First of

all, let us check that

(∗) w−2
j

∑
k,l≡0(2)

k,l:{j,k,l}∈adm

w2
kw

2
l = w−2

0

∑
s≡0(2)

0≤s≤r−2

w4
s

for any even number j ∈ Zr−1.

Let T be a polyhedron obtained from a disk D2 by attaching one semidisk along a

diameter of D2. The polyhedron T consists of three 2-cells Γ1,Γ2,Γ3. Let the polyhedron

Ti be obtained from T by attaching a 2-disk along a circle that belongs to the 2-cell Γi,

where i = 1 or 2.

For any j ∈ Zr−1 we define a coloring β of ∂T1 and ∂T2 as follows: β(Γ1) = β(Γ3) = j,

β(Γ2) = 0.

By definition, we have

Ω0(T1, β)q = w2
0w

2
j

∑
k,l≡0(2)

k,l:{j,k,l}∈adm

w2
kw

2
l ,

Ω0(T2, β)q = w4
j

∑
s≡0(2)

0≤s≤r−2

w4
s .
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Note that T1 and T2 are connected by L-move, therefore Ω0(T1, α)q = Ω0(T2, α)q. This

gives us the equality (∗).
Clearly, w0 = 1. Thus we have to prove that

[r/2]−1∑
t=0

w4
2t = −r/(q − q−1)2.

The proof of this equality is straightforward.

Corollary 2. Let X be a simple spine of a 3-manifold M . Then the numbers

TV ∗0 (M)q = Ω∗0(X)q, TV
∗
1 (M)q = Ω∗1(X)q, and TV ∗e (M) = Ω∗e(X)q are invariants of

M under removing of 3-balls.

We can define the invariants TV ∗0 , TV ∗1 , and TV ∗e on a triangulation of a 3-manifold

M like the Turaev–Viro invariants were defined in [TV]. For simplicity we will restrict

ourselves to the case of closed 3-manifolds only.

Let M be a closed triangulated 3-manifold. Let a be the number of vertices of M , let

E1, . . . , Eb be the edges of M , and let T1, . . . , Td be the 3-simplexes of M . By a coloring

of M we mean an arbitrary mapping ϕ: {E1, . . . , Eb} → Zr−1. A coloring ϕ of M is called

admissible if for any 2-simplex A of M the colors of the three edges of A form an admis-

sible triple. Denote the set of admissible colorings of M by Adm(M). We will denote by

Adm0(M) the set of admissible colorings of M by even numbers, and by Adme(M) the

set of admissible colorings of M such that

v − t+ f ≡ 0 (mod 2),

where v is the number of 3-simplexes containing an edge colored by an odd number,

t is the number of 2-simplexes containing an edge colored by an odd number, and f

is the number of edges colored by odd numbers. Note that Adm0(M) ⊂ Adme(M). Set

Adm1(M) = Adm(M)−Adme(M). A 6-tuple

(
i j k
l m n

)
is called a color of a 3-simplex

Ts if i, j, k are the colors of edges of some 2-face of Ts and (i, l), (j,m), (k, n) are the

pairs of colors of opposite edges of Ts. Let

|Tϕs |q =

∣∣∣∣ i j k
l m n

∣∣∣∣
q

.

For ϕ ∈ Adm(M) put

|M,ϕ|q =

b∏
i=1

w2
ϕ(Ei),q

d∏
s=1

|Tϕs |q.

Proposition 1. For any closed triangulated 3-manifold M we have

TV ∗0 (M)q = ω−2a
0

∑
ϕ∈Adm0(M)

|M,ϕ|q,

TV ∗1 (M)q = ω−2a
∑

ϕ∈Adm1(M)

|M,ϕ|q,

TV ∗e (M)q = ω−2a
∑

ϕ∈Adme(M)

|M,ϕ|q.
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P r o o f. Let X be the union of the closed barycentric stars of the edges of M . It is

obvious thatX is a special polyhedron. By a finite number ofM±1,L±1 and B−1 moves on

X we get a simple spine of M . Each coloring ϕ of M induces a dual coloring ϕ∗ of X, and

it is easy to check that |M,ϕ|q = |X,ϕ∗|q and χ(X) = a, which establishes the formulas.

6. The values of the summand-invariants. Here we express the numbers

TV0(M)q + TV2(M)q and TV1(M)q via the Turaev–Viro invariants.

Let X be a special polyhedron. Fix a number r ≥ 3 and a coloring ϕ ∈ Adm(X).

A vertex v of the colored polyhedron X is called a switch-vertex if the sum of all odd

numbers in the color of v is congruent to 2 modulo 4.

Lemma 3. Let X be a special polyhedron. Then for any ϕ ∈ Adm(X) we have

|X,ϕ|q = (−1)χ(S(ϕ))+x|X,ϕ|−q,

where x is the number of the switch-vertices of X.

P r o o f. It is easy to see that

[n]q = (−1)n−1[n]−q,

[n]q! = (−1)n(n−1)/2[n]−q!,

w2
i,q = (−1)iw2

i,−q,

∆2
q(i, j, k) =

{
∆2
−q(i, j, k), if i, j, k are even,
−∆2

−q(i, j, k), otherwise.

Let

(
i1 i2 i3
i4 i5 i6

)
be a color of a vertex v of X under ϕ. Then we have

(∗∗)
[
i1 i2 i3
i4 i5 i6

]
q

= (−1)

1
2

∑6
s,t=1
s≤t

isit
[
i1 i2 i3
i4 i5 i6

]
−q
.

There are three possibilities for the color of v.

1) Each number in the color of v is even (even vertex). Then the sign in (∗∗) is plus.

2) There are four odd numbers in the color of v (fourfold vertex). Let i1, i2, i4, i5 be

the odd numbers, then from (∗∗) we have[
i1 i2 i3
i4 i5 i6

]
q

= (−1)
i1+i2+i4+i5

2 +1

[
i1 i2 i3
i4 i5 i6

]
−q
.

Hence if v is a switch-vertex, then the sign in (∗∗) is plus, otherwise minus.

3) There are three odd and three even numbers in the color of v (threefold vertex).

Let i1, i2, i3 be the even numbers, then from (∗∗) we have[
i1 i2 i3
i4 i5 i6

]
q

= (−1)
i1+i2+i3

2 +1

[
i1 i2 i3
i4 i5 i6

]
−q
.

By a cost of an edge E we mean the half-sum of the numbers from the color of E.

Let E′ be a half-edge of an edge E. By a cost of the half-edge E′ we mean the cost of E.
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We call an edge or a half-edge bad if its color is even (that is all three numbers in the

color of the edge are even) and its cost is even. Let us show that the number of threefold

vertices with a bad half-edge is even. It is sufficient to prove that the number of the bad

half-edges incident to an even vertex is even, but this statement follows from the fact

that the sum of all 4 costs of the half-edges incident to an even vertex is even. Hence we

can think that for any threefold vertex the sign in (∗∗) is plus.

Let us denote the number of the odd-colored edges of X by e, the number of the

threefold vertices by n3, and the number of the fourfold vertices by n4. Denote the number

of the odd colored 2-components of X by c. Then we have c = χ(S(ϕ))−n3−n4+e. Hence

|X,ϕ|q = (−1)c+n4−x+e|X,ϕ|−q = (−1)χ(S(ϕ))−n3−x|X,ϕ|−q.

It is easy to see that for any admissible coloring ϕ of a special polyhedron X the number

n3 is even. This finishes the proof.

Let SX be the set of singular points of X. Note that SX is a regular graph of de-

gree 4. Denote by V the set of vertices of X, by N(V, SX) a closed regular neighborhood

of V in SX, and by N(V,X) a closed regular neighborhood of V in X. The intersection

of the union of the open edges with each connected component of N(V, SX) consists of

4 half-open 1-cells, which are called thorns. The intersection of the union of the open

2-cells with each connected component of N(V,X) consists of six half-open 2-cells, which

are called wings.

Let v be a vertex of X, and let N(v,M) be a closed regular neighborhood of v. Choose

a thorn t in N(v,M) and a small normal disk D for it. Any orientation α of N(v,M)

induces an orientation α|D of D according to the following convention: α|D together with

the outward orientation of t should give the orientation α. Note that α|D induces a cyclic

order on the set of wings adjacent to t.

Regular neighborhood N(V,M) consists of 3-balls N(v,M), v ∈ V . Choose ori-

entations for the 3-balls. Let E be an edge of X. It contains two thorns t1, t2. Let

W
(i)
1 ,W

(i)
2 ,W

(i)
3 be the wings adjacent to ti, where i = 1, 2. As above, the orientation of

N(V,M) induces a cyclic order on the set

{W (i)
1 ,W

(i)
2 ,W

(i)
3 }, for i = 1, 2.

The 2-cells of X determine the natural bijection

f : {W (1)
1 ,W

(1)
2 ,W

(1)
3 } → {W

(2)
1 ,W

(2)
2 ,W

(2)
3 }.

We shall say that the edge E is odd if the bijection f preserves the cyclic order on the

wings, and even otherwise.

Theorem 2. Let X be a special spine of a 3-manifold M . Then for any ϕ ∈ Adm(X)

we have

|X,ϕ|q = (−1)χ(S(ϕ))|X,ϕ|−q.

P r o o f. Let x be the number of switch-vertices of the pair (X,ϕ). By lemma 3 it is

sufficient to prove that this number is even.
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Consider the coloring ϕ: {Γ1, . . . ,Γb} → Z4 such that

ϕ(Γi) =

 0, if ϕ(Γi) ≡ 0 (mod 2),
1, if ϕ(Γi) ≡ 1 (mod 4),
3, if ϕ(Γi) ≡ 3 (mod 4),

for any 1 ≤ i ≤ b.
Fix an orientation of N(V,M). Then each edge of SX becomes odd or even. Let G be

the union of the edges of X with the colors {0, 1, 3} under the coloring ϕ. Let Ω1, . . . ,Ωp
be the middle points of the odd edges of G. Consider a graph G′. The set of vertices

of G′ consists of the vertices of G and of the points Ω1, . . . ,Ωp. The set of edges of G′

consists of the even edges of G and of the halves of the odd edges of G. So each odd

edge of G gives 2 edges in G′. The orientation of N(V,M) and the coloring ϕ give the

orientation of the graph G′. Let v1, . . . , vt be the vertices of G′. We will denote by ai the

number of incoming and by bi the number of outgoing edges for the vertex vi. We have

(ai − bi) ≡ 2 (mod 4) iff vi is either the switch-vertex or the middle point of an odd

edge, and (ai − bi) ≡ 0 (mod 4) otherwise. The number of vertices with the condition

(ai − bi) ≡ 2 (mod 4) is even for any oriented graph, because
∑t
i=1(ai − bi) = 0.

It remains to prove that the number p is even. Let θ be the number of odd edges of X

with the color {0, 1, 1} under the coloring ϕ. Then 1-colored (by ϕ) 2-cells pass (2θ + p)

times along the odd edges of X. Note that each 2-component of X passes along the odd

edges of X even number of times (this is true for every special spine; see, for instance,

[F]). Therefore the number (2θ + p) is even and p is even.

R e m a r k 4. In the case of an orientable 3-manifold this theorem was proved in [S1].

Corollary 3. For any 3-manifold M and any q we have

TVN (M)q = (−1)NTVN (M)−q, where N ∈ {0, 1, 2},

TV0(M)q + TV2(M)q =
1

2
(TV (M)q + TV (M)−q),

TV1(M)q =
1

2
(TV (M)q − TV (M)−q).

R e m a r k 5. In the papers [S1] and [S2] we used the parameter −q instead of −q,
but it is easy to see that [n]q = [n]q.

7.The tables. Below we present the summand-invariants TVN (M)q and the Turaev–

Viro invariants TV ∗(M)q with r ≤ 7 for the manifolds S3,RP 3, L3,1, L4,1, L5,1, L5,2, L6,1,

L7,2, L8,3, L9,2, L10,3, L11,4, L12,5, L13,5, S
3/Q8, S

3/Q12, where S3/G denotes the quotient

space of the sphere S3 by a linear free action of a finite nonabelian group G. These are

all closed irreducible orientable 3-manifolds, having a special spine with ≤ 3 vertices.

Each summand invariant is presented by a polynomial on q (here q is a primitive

root of unity of degree 2r) with integer coefficients, and by evaluation of the polynomial

at q = eiπ/r. Note that each coefficient in the polynomial is a separate invariant. The

invariants from the tables are related by the equality

TV ∗(M)q = − (q − q−1)2

2r
(TV0(M)q + TV1(M)q + TV2(M)q).
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Table 1: Invariants for S3

r TV0(M)q TV1(M)q TV2(M)q TV ∗(M)q

3 1 =1.000 0 =0.000 0 =0.000 0.500
4 1 =1.000 0 =0.000 0 =0.000 0.250
5 1 =1.000 0 =0.000 0 =0.000 0.138
6 1 =1.000 0 =0.000 0 =0.000 0.083
7 1 =1.000 0 =0.000 0 =0.000 0.054

Table 2: Invariants for RP 3

r TV0(M)q TV1(M)q TV2(M)q TV ∗(M)q

3 1 =1.000 −1 =−1.000 0=0.000 0.000
4 2 =2.000 q3 − q =−1.414 0=0.000 0.146
5 −q3 + q2 + 2 =2.618 q3 − q2 − 2 =−2.618 0=0.000 0.000
6 4 =4.000 2q3 − 4q =−3.464 0=0.000 0.045
7 −2q5 + q4 − q3 + 2q2 + 3=5.049 2q5 − q4 + q3 − 2q2 − 3=−5.049 0=0.000 0.000

Table 3: Invariants for L3,1

r TV0(M)q TV1(M)q TV2(M)q TV ∗(M)q

3 1 =1.000 0 =0.000 0 =0.000 0.500
4 1 =1.000 0 =0.000 0 =0.000 0.250
5 −q3 + q2 + 2 =2.618 0 =0.000 0 =0.000 0.362
6 3 =3.000 0 =0.000 0 =0.000 0.250
7 −q5 + q2 + 2 =3.247 0 =0.000 0 =0.000 0.175

Table 4: Invariants for L4,1

r TV0(M)q TV1(M)q TV2(M)q TV ∗(M)q

3 1 =1.000 0 =0.000 1 =1.000 1.000
4 2 =2.000 0 =0.000 0 =0.000 0.500
5 1 =1.000 0 =0.000 1 =1.000 0.276
6 4 =4.000 0 =0.000 0 =0.000 0.333
7 −q5 + q2 + 2 =3.247 0 =0.000 −q5 + q2 + 2 =3.247 0.349

Table 5: Invariants for L5,1

r TV0(M)q TV1(M)q TV2(M)q TV ∗(M)q

3 1 =1.000 0 =0.000 0 =0.000 0.500
4 1 =1.000 0 =0.000 0 =0.000 0.250
5 −q3 + q2 + 3 =3.618 0 =0.000 0 =0.000 0.500
6 1 =1.000 0 =0.000 0 =0.000 0.083
7 −2q5 + q4 − q3 + 2q2 + 3 =5.049 0 =0.000 0 =0.000 0.272
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Table 6: Invariants for L5,2

r TV0(M)q TV1(M)q TV2(M)q TV ∗(M)q

3 1 =1.000 0 =0.000 0 =0.000 0.500
4 1 =1.000 0 =0.000 0 =0.000 0.250
5 0 =0.000 0 =0.000 0 =0.000 0.000
6 1 =1.000 0 =0.000 0 =0.000 0.083
7 −2q5 + q4 − q3 + 2q2 + 3 =5.049 0 =0.000 0 =0.000 0.272

Table 7: Invariants for L6,1

r TV0(M)q TV1(M)q TV2(M)q TV ∗(M)q

3 1 =1.000 −1 =−1.000 0 =0.000 0.000
4 2 =2.000 −q3 + q=1.414 0 =0.000 0.853
5 1 =1.000 −1 =−1.000 0 =0.000 0.000
6 6 =6.000 0 =0.000 0 =0.000 0.500
7 1 =1.000 −1 =−1.000 0 =0.000 0.000

Table 8: Invariants for L7,2

r TV0(M)q TV1(M)q TV2(M)q TV ∗(M)q

3 1 =1.000 0 =0.000 0 =0.000 0.500
4 1 =1.000 0 =0.000 0 =0.000 0.250
5 −q3 + q2 + 2 =2.618 0 =0.000 0 =0.000 0.362
6 1 =1.000 0 =0.000 0 =0.000 0.083
7 0 =0.000 0 =0.000 0 =0.000 0.000

Table 9: Invariants for L8,3

r TV0(M)q TV1(M)q TV2(M)q TV ∗(M)q

3 1 =1.000 0 =0.000 1 =1.000 1.000
4 2 =2.000 0 =0.000 2 =2.000 1.000
5 −q3 + q2 + 2 =2.618 0 =0.000 −q3 + q2 + 2=2.618 0.724
6 4 =4.000 0 =0.000 0 =0.000 0.333
7 1 =1.000 0 =0.000 1 =1.000 0.108

Table 10: Invariants for L9,2

r TV0(M)q TV1(M)q TV2(M)q TV ∗(M)q

3 1 =1.000 0 =0.000 0 =0.000 0.500
4 1 =1.000 0 =0.000 0 =0.000 0.250
5 1 =1.000 0 =0.000 0 =0.000 0.138
6 3 =3.000 0 =0.000 0 =0.000 0.250
7 −2q5 + q4 − q3 + 2q2 + 3 =5.049 0 =0.000 0 =0.000 0.272
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Table 11: Invariants for L10,3

r TV0(M)q TV1(M)q TV2(M)q TV ∗(M)q

3 1 =1.000 −1 =−1.000 0 =0.000 0.000
4 2 =2.000 −q3 + q =1.414 0 =0.000 0.853
5 0 =0.000 0 =0.000 0 =0.000 0.000
6 4 =4.000 −2q3 + 4q =3.464 0 =0.000 0.622
7 −q5 + q2 + 2 =3.247 q5 − q2 − 2 =−3.247 0 =0.000 0.000

Table 12: Invariants for L11,4

r TV0(M)q TV1(M)q TV2(M)q TV ∗(M)q

3 1 =1.000 0 = 0.000 0 =0.000 0.500
4 1 =1.000 0 =0.000 0 =0.000 0.250
5 1 =1.000 0 =0.000 0 =0.000 0.138
6 1 =1.000 0 =0.000 0 =0.000 0.083
7 −q5 + q2 + 2 =3.247 0 =0.000 0 =0.000 0.175

Table 13: Invariants for L12,5

r TV0(M)q TV1(M)q TV2(M)q TV ∗(M)q

3 1 =1.000 0=0.000 1 =1.000 1.000
4 2 =2.000 0=0.000 0 =0.000 0.500
5 −q3 + q2 + 2 =2.618 0=0.000 −q3 + q2 + 2 =2.618 0.724
6 6 =6.000 0=0.000 6 =6.000 1.000
7 −2q5 + q4 − q3 + 2q2 + 3=5.049 0=0.000 −2q5 + q4 − q3 + 2q2 + 3=5.049 0.543

Table 14: Invariants for L13,5

r TV0(M)q TV1(M)q TV2(M)q TV ∗(M)q

3 1 =1.000 0 =0.000 0 =0.000 0.500
4 1 =1.000 0 =0.000 0 =0.000 0.250
5 −q3 + q2 + 2=2.618 0 =0.000 0 =0.000 0.362
6 1 =1.000 0 =0.000 0 =0.000 0.083
7 1 =1.000 0 =0.000 0 =0.000 0.054

Table 15: Invariants for S3/Q8

r TV0(M)q TV1(M)q TV2(M)q TV ∗(M)q

3 1 =1.000 0 =0.000 3 =3.000 2.000
4 4 =4.000 0 =0.000 6 =6.000 2.500
5 −q3 + q2 + 4 =4.618 0 =0.000 −3q3 + 3q2 + 12=13.854 2.553
6 10 =10.000 0 =0.000 18 =18.000 2.333
7 −2q5 + 2q2 + 7 =9.494 0 =0.000 −6q5 + 6q2 + 21=28.482 2.043
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Table 16: Invariants for S3/Q12

r TV0(M)q TV1(M)q TV2(M)q TV ∗(M)q

3 1 =1.000 0=0.000 1 =1.000 1.000
4 2 =2.000 0=0.000 0 =0.000 0.500
5 −q3 + q2 + 4 =4.618 0=0.000 −q3 + q2 + 4 =4.618 1.276
6 10 =10.000 0=0.000 6 =6.000 1.333
7 −2q5 + q4 − q3 + 2q2 + 5=7.049 0=0.000 −2q5 + q4 − q3 + 2q2 + 5=7.049 0.758
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