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The following is an expository article meant to give a simplified introduction to ap-

plications of topology to DNA.

0. Some preliminaries. Many biological processes affect topological properties of

DNA. Duplex DNA consists of two backbone strands wound about each other in a right-

handed helical fashion. Each strand consists of a sugar phosphate backbone with a ni-

trogenous base attached to each sugar. The four possible bases are adenine (A), guanine

(G), cytosine (C), and thymine (T). The two strands are held together by hydrogen

bonding between the bases with A always paired with T, and G always paired with C.

The DNA of most bacteria and viruses is circular. Although human DNA is linear, it is

extremely long and tacked down to a protein scaffold at various points on the DNA. This

periodic attachment endows human DNA with topological constraints similar to those

for circular DNA. These topological constraints can interfere with vital metabolic cellular

processes such as replication and transcription. Most mathematicians have, at some point,

taken a strip of paper, put an even number of twists in it before taping the ends together,

and cut the strip down the middle. The result is two linked strips of paper. This is what

occurs when DNA replicates if one thinks of the two edges of the strip as being the

sugar phosphate backbones of the two strands of DNA. Hence, enzymes are required to

solve these topological entanglement problems which arise through cellular metabolism

and replication. In this case topoisomerases, which are enzymes that mediate the passage

of one segment of DNA through an enzyme-bridged transient break in the backbone

strands of another DNA segment, are responsible for unlinking the DNA. Other enzymes
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called recombinases break two segments of DNA and interchange the ends, resulting in

an exchange of genetic information.

In order to study these enzymes, biologists create unknotted circular DNA in the lab

which is then used as the substrate (starting material) for topoisomerase or recombinase

experiments. The substrate can be either single-stranded or double-stranded. If it is

double-stranded then it can be either nicked or supercoiled. Supercoiled DNA can be

modeled with a belt. Take a belt and put an even number of twists in it before closing

the belt. Because the belt prefers a specific twist (which is usually zero in the case of a

belt), the twist is converted to supercoils. Instead of the two edges of the belt twisting

about each other, the centerline of the belt supercoils. Similarly the two strands of DNA

prefer a specific twist (about 10.5 base pairs per turn depending upon conditions) and

thus over and under twist is converted to supercoils. The DNA is negatively supercoiled

if all the crossings of the supercoiled DNA are negative and positively supercoiled if the

crossings are all positive.

Double-stranded DNA is nicked if one of the strands has been cut. Because the DNA

is nicked the two strands are free to rotate about each other. Therefore, nicked DNA

contains no supercoils.

To determine the knot or link type of the product DNA, biologists can take pictures

of the DNA (after nicking the DNA to remove supercoils) using an electron microscope

(EM). However, this is very difficult, expensive, and ineffective for high crossing number

knots and links. Fortunately another method called gel electrophoresis can be used to

give much information. The DNA products are put at the top of an agarose gel. Agarose

is a sugar polymer which forms a matrix through which the negatively charged DNA

can travel when a positive charge is put at the bottom of the gel. The smaller the DNA

molecule, the faster it can travel through the gel. For circular DNA molecules which are

all the same molecular weight, gel velocity is determined by the average geometric confor-

mation of each molecule as it migrates through the obstruction field imposed by the gel.

Knotted DNA travels faster than unknotted DNA, because a knot is more compact than

an unknot when tied in a molecule of the same contour length. In some circumstances,

gel velocity is determined by the crossing number of the knot [SK][KB].

The change in knot or link type can be used to study enzyme action as demonstrated

in the sections below. The first three sections give very brief introductions. For more
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information, please consult the general references below. The last section describes some

newer work with a little more detail.
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1. Differential geometry and DNA. Lk = Tw+Wr, a well known formula in dif-

ferential geometry, may be even better known in molecular biology. The meanings of twist

and writhe are probably best demonstrated with a belt. While holding on to one end of

the belt, twist the other end 180◦ for half a twist, 360◦ for 1 full twist, etc. Twist describes

how two strands (in this case, the two edges of the belt) wind about each other in space.

Now, without letting go of the twist, close up the belt. If you relax the belt, the twist is

converted into writhe. If the belt is unknotted, writhe describes the amount of supercoil-

ing. Writhe measures how the center line of the belt winds around in space. It is defined to

be the sum of all signed self-crossings of the center line averaged over all projections in R
3.

By moving the belt you are continuously converting writhe to twist and vice versa.

Thus, these values are neither integers nor topological invariants. However, their sum, Lk,

is both an integer and a topological invariant. The linking number is one-half the sum of

all the signed crossings between the two curves. DNA prefers a certain helical twist (10.4

base pairs/turn in the test tube). Therefore changes in linking number are converted to

writhe, i.e., the DNA becomes supercoiled. The more supercoiled the DNA is, the more

compact it is, and the faster it travels through a gel. Thus the integer differences in

linking number can be detected by gel electrophoresis.

For example, biologists used differences in linking number to determine that a mutant

of Gin recombinase was capable of relaxing supercoiled DNA and performing recombina-
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tion using more than one DNA configuration, whereas wild-type Gin can only perform

recombination when the DNA is in one specific configuration. This information gave in-

sight into the enzyme mechanism as well. Linking differences have also been used to

determine topoisomerase activity.
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emy Press, (1995), 153–178.
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and DNA binding of enhancer-independent Gin recombinase mutants, EMBO 12 (1993),

1047–1057.

2. Graph theory and DNA. Trypanosome is parasite that infects the Tse-tse fly,

which in turn infects humans and cows with sleeping sickness. The kinetoplast DNA

of trypanosome consists of about 5000 mini circles (small circles of DNA consisting of

about 2500 base pairs) and 25 maxi circles (37,000 base pairs) linked together. Biologists

wanted to determine how the mini circles were linked together. Electron micrographs

of the kinetoplast DNA suggested that the huge kinetoplast link admits a diagram in

which each individual minicircle has no self-crossings, and that pairs of minicircles are

linked (if at all) like the Hopf link to adjacent minicircles. Ignoring the maxicircles, this

assumption allows the complex of minicircles to be translated into graph theory. Each

mini circle became a vertex; two vertices were connected by an edge if and only if their

respective minicircles were linked, giving rise to a planar graph. For biological reasons, it

is believed that the circles are uniformly linked and monolayered. Thus the researchers

investigated the seven different ways to tile the plane where all vertices have the same

valence and either the tiles have the same shape or there exist two different tile shapes

each of which is equally well represented:

They then looked at the probability that if some circles were randomly broken from

the graph that a monomer (single circle not linked to any other circle) or a dimer (two

linked circles) or some other configuration would result. For example, if p is the prob-

ability that a circle is broken, then for a 4-valent graph, the monomer probability is

p4(1 − p) since the 4 circles that the monomer is linked to would have to be broken
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(probability = p4), but the monomer itself would have to remain unbroken (probability

= 1− p). For a 3-valent graph the monomer probability is p3(1− p).

Biologists determined the above probabilities applied to the trypanosome kDNA by

adding endonucleases, enzymes that break the backbone of DNA, in order to randomly

break the minicircles. The results were then subjected to gel electrophoresis in order

to determine the percentage of monomers versus dimers, etc., that were formed. The

experimental results were then compared to the mathematical results to determine that

the following is the most likely configuration:

[CR] J. Chen, C. Rauch, J. White, P. Englund and N. Cozzarel l i, The topology of the

kinetoplast DNA network , Cell 80 (1995) 61–69.

3. Knot theory and DNA: tangles. Some enzymes require DNA to be in a certain

configuration in order for the enzyme to act. Electron micrographs of the enzyme-DNA

complex show the enzyme as a blob with DNA looping out of it. The configuration of

the DNA within the blob cannot be determined from the EM. Thus, the mathematics of

tangles has been used in many cases to determine the configuration of the DNA within

the enzyme blob.

The enzyme-DNA complex can be modeled by writing the DNA as the numerator

closure of the sum of three tangles. The tangle Of represents the free DNA, i.e., the part

of DNA that is not bound by the enzyme. Tangles Ob and P are both bound by the

enzyme, but the enzyme only affects the tangle P . Tangles Ob and Of do not change

during the reaction.

The enzyme action is modeled by replacing tangle P with tangle R. Many recombinase

enzymes act processively (i.e. it acts more than once in the same place before releasing
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the DNA). This is modeled by adding on multiple R tangles. Since the substrate and

products of the experiment are known, this gives several equations which can then be

solved for some of the unknown tangles:

N(Of +Ob + P ) = Substrate

N(Of +Ob +R) = Product 1
...

N(Of +Ob +R + ...+R) = Product n
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emy Press, (1995), 202–235.
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and Topology, Proceedings of Symposia in Applied Math., Vol. 45, AMS, (1992), 39–72.

[SE] D. W. Sumners, C. Ernst, S. Spengler and N. Cozzarel l i, Analysis of the mecha-

nisms of DNA recombination using tangles, Quarterly Review of Biophysics 28 (1995)

253–313.

4. Knot theory and DNA: unknotting numbers and topoisomerases. Topo-

isomerases are enzymes that (1.) break the backbone of DNA, (2.) allow passage of

another segment of DNA through the transient enzyme-bridged break, and (3.) reseal

the break. They are responsible for unknotting, unlinking, and maintaining the proper

supercoiling of DNA during the processes of replication, transcription, and recombination.

Topoisomerases are also the targets of many antibacterial and anti-cancer drugs [Rc][Wa].

There are two main types of topoisomerases. Type 2 topoisomerases break both backbone

strands of double-stranded DNA and thus can change the topology of double-stranded

DNA knots and links. Type 1 topoisomerases can only break a single backbone strand

of DNA and thus can only change the topology of single-stranded DNA knots and links

or double-stranded DNA knots and links if the double-stranded DNA contains a nick

(a nick is a broken phosphodiester bond between the sugars of two consecutive bases in

one of the strands of dsDNA). Type I topoisomerases can then break the phosphodiester

bond between the sugars of the complementary bases, thereby breaking the duplex DNA

segment.

Since topoisomerase substrate can be either double-stranded or single-stranded, the

line drawings in this paper can represent either double-stranded or single-stranded DNA,

depending on context.

Crossing change = DNA strand passage.

In the test tube, at high concentrations, topoisomerases may produce knots by per-

forming strand passages [Hs][DSKC][WC][RBW][Rd]. Hence, the unknotting number

from knot theory can be used to study topoisomerase action.

Definition. The unknotting number of a knot is the minimum number of crossing

changes needed to convert the knot into the unknot where the minimum is taken over all

possible diagrams for the knot.
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This is equivalent to determining the minimum number of times needed for topoiso-

merase to mediate strand passage on a DNA knot to convert it to the unknot, because

this temporal sequence of spatial events (strand passages mediated by the enzyme topoi-

somerase) can be simultaneously visualized in a single knot diagram. To see this, for each

strand passage event tie an imaginary string between the segments of string that pass

through each other. Simultaneously shorten all the strings until all such pairs are almost

touching; now project. Each of the n short strings give rise to a crossing in the resulting

diagram; changing all these crossings converts the diagram to a diagram of the unknot.

Thus if the unknotting number is n, then biologically, the enzyme must act n times to

convert the knot to the unknot, and mathematically, there exists a diagram of the knot

in which one can see n crossings which if changed convert the knot to an unknot.

Example:

Unknotting number of 31 = u(31) = 1

Note that the minimum is taken over all diagrams of the knot.

For example, the minimal diagram of the knot 108 requires three crossing changes to

change it to the unknot.

Minimal diagram of the knot 108

But Nakanishi in 1983 and Bleiler in 1984 found a more complicated non minimal

diagram of 14 crossings of the same knot which required only 2 crossing changes to

convert it to the unknot.

A non-minimal diagram of the knot 108 with 14 crossings

Perhaps there exists a diagram of this knot (with possibly a huge number of crossings)

which only requires one crossing change to convert it to the unknot. This is the difficult

question. Fortunately, there exist bounds on unknotting number ([Ms], [N1]):

u(K) ≤ 1

2
|number of crossings −1|

u(K) ≥ g∗(K) ≥ 1

2
|σ(K)|

↑ ↑
4− genus signature

u(K) ≥ sd(K) = surgery description number of K
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Many of the above invariants have been calculated and can be found in a knot theory

book or at the URL http://www.math.fsu.edu/˜darcy.

For example, σ(108) = 4 and

u(108) ≥
1

2
|σ(108)| ≥

1

2
(4) = 2.

Thus u(108) = 2. No diagram of this knot can be changed to the unknot with only

one crossing change.

The unknotting number can be generalized to a metric on knot types where the

distance between any two knots is defined as follows:

Definition (Strand passage metric on knot types):

u(K1,K2) = minimum number of strand passages needed to convert K1 to K2 where

the minimum is taken over all diagrams.

This satisfies all the properties of a metric:

1.) u(K1,K2) = 0 if and only if K1 = K2.

2.) u(K1,K2) = u(K2,K1).

3.) u(K1,K2) ≤ u(K1,K) + u(K,K2), for any knot K.

Example: u(K1,K2) ≤ u(K1, 01) + u(01,K2), where 01 is the unknot.

I.e., u(K1,K2) ≤ u(K1) + u(K2).

That is, the distance between two knots is less than or equal to the sum of their

unknotting numbers. However, there may be a shorter path that does not go through

the unknot. By doing the crossing changes on a particular diagram, either by hand or

by computer, one can easily determine upper bounds for the distance between two given

knots. The difficult question is then knowing whether or not there exists a shorter path.

For this lower bounds are needed. Murakami[Mk] generalized Murasugi’s signature lower

bound for the unknotting number to obtain the following lower bound for the strand

passage metric:

u(K1,K2) ≥
1

2
|σ(K1)− σ(K2)|

This lower bound also holds for semi-oriented links. Example:

4 ≥ u(K(7, 2),K(−3, 2)) ≥
1

2
|σ(K(7, 2))− σ(K(−3, 2))| =

1

2
|6− (−2)| = 4

Thus, u(K(7, 2),K(−3, 2)) = 4.

In general, for (p,2) torus knots (p odd):

u(K(p, 2)) =
1

2
(|p| − 1)
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and

u(K(p, 2),K(q, 2)) =







1

2
|p− q|, if pq > 0

1

2
|p− q| − 1, if pq < 0

since σ(K(p, 2)) =

{

p− 1 if p > 0
p+ 1 if p < 0

Many of the unknotting number lower bounds such as signature were found by deter-

mining the effect a crossing change has on a particular invariant followed by an induction

argument.

The strand passage metric table on the next page lists the distance between two knots

up to mirror images (since u(K1,K2) = u(K∗

1 ,K
∗

2 ) ). Unfortunately, not all values are

known. For example the distance between 41 and 51 is either 2 or 3. That is, 41 can

be changed to 51 by only 3 strand passages. However, it is possible that there exists a

projection of 41 in which only 2 strand passages are required to change 41 to 51, but

there is no way to change 41 to 51 with only 1 strand passage. Also note that the knot

designations refer to those given in Rolfsen’s table of knots and not Burde and Zieschang’s

([BZ]’s 52 = [R]’s 5∗
2
).

This metric was calculated for 4-plat knots and composites of 4-plat knots by computer

(with 8 crossing non 4-plats put in by hand) using the following information:

4-plat 〈c1, ..., cn〉

(1.) d2(〈c1, ..., ci, ..., cn〉, 〈c1, ..., ci − 2, ..., cn〉) = 1

(2.) [T][DS] Classification of distance one 4-plats.

(3.) Triangle Inequality.

(4.) [Mk]: d2(K1,K2) ≥
1

2
|σ(K1)− σ(K2)|.

(5.) [Mk] Linking form requirements on |H1(MK)|.

(6.) [DS] Homology requirements on H1(MK).

(7.) [Sc][Zh]: Unknotting number one knots are prime.

This metric gives the following information about topoisomerase experiments:

1.) The minimum number of times topoisomerase must perform strand passage to

inter-convert knots.

2.) All possible reaction pathways in a topoisomerase experiment if all intermediates

are known.

For example, in an unpublished experiment of J. Wang, a topoisomerase acting on

single-stranded circular DNA produced exclusively (+) (2n+1) torus knots which corre-

spond to (2n+1)1 in the knot table. Suppose we are interested in the knot 51. The metric
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tells us that (1.) topoisomerase had to act to act at least two times on the unknotted

DNA substrate in order to produce the knot 51. and (2.) since all products are of the

form (2n+1)1, 51 can only be produced from topoisomerase action on the knot 31 or the

knot 71. This kind of reasoning tells us that the only possible reaction pathway in this

experiment is 01 ↔ 31 ↔ 51 ↔ 71 ↔ . . .Strand Passage Metric Table:01 31 41 51 52 61 62 63 31 # 31 31 # 3�1 71 7231 1 0 2 1 1 2 1 1 1 1 2 23�1 1 2 2 3 2 2 2 1 3 1 4 241 1 2 0 2-3 2 1 1 2 2-3 2-3 3-4 251 2 1 2-3 0 1 2-3 2 2 2 2 1 25�1 2 3 2-3 4 3 2-3 3 2 4 2 5 352 1 1 2 1 0 2 2 2 2 2 2 15�2 1 2 2 3 2 2 2 2 3 2 4 261 1 2 1 2-3 2 0 1 2 2-3 1-3 3-4 26�1 1 2 1 2-3 2 1 2 2 2-3 1-3 3-4 262 1 1 1 2 2 1 0 2 2 2 2-3 26�2 1 2 1 3 2 2 2 2 3 2 4 263 1 1 2 2 2 2 2 0 2 2 3 231 # 31 2 1 2-3 2 2 2-3 2 2 0 2 2-3 2-33�1 # 3�1 2 3 2-3 4 3 2-3 3 2 4 2 5 331 # 3�1 2 1 2-3 2 2 1-3 2 2 2 0 3 2-371 3 2 3-4 1 2 3-4 2-3 3 2-3 3 0 27�1 3 4 3-4 5 4 3-4 4 3 5 3 6 472 1 2 2 2 1 2 2 2 2-3 2-3 2 07�2 1 2 2 3 2 2 2 2 3 2-3 4 273 2 3 2-3 4 3 2-3 3 2-3 4 2-3 5 37�3 2 2 2-3 1 1 2-3 2-3 2-3 2-3 2-3 1 174 2 2-3 2-3 3-4 2-3 2-3 2-3 2 3-4 2 4-5 2-37�4 2 1 2-3 2 1 2-3 2 2 2 2 2 275 2 1 2-3 1 1 2-3 2 2 2 2 1 17�5 2 3 2-3 4 3 2-3 3 2 4 2 5 376 1 1 1 2 1 2 2 2 2 2 2-3 17�6 1 2 1 3 2 2 2 2 3 2 4 277 1 2 1 2-3 2 2 2 2 2-3 1-2 3-4 27�7 1 1 1 2 2 2 2 2 2 1-2 3 231 # 41 2 1 1 1-2 1-2 2 2 2 2 2 2-3 2-33�1 # 41 2 2-3 1 3-4 2-3 2 2 2 3-4 2 4-5 2-381 1 2 2 2-3 2 1 2 2 2-3 2-3 3-4 28�1 1 2 2 2-3 2 2 2 2 2-3 2-3 3-4 282 2 1 2 1 2 2 1 2 2 2 2 2-38�2 2 3 2 4 3 2-3 3 2 4 2 5 383 2 2-3 2 2-4 2-3 1 2 2-3 2-4 2-4 3-5 2-384 2 2 1 2-3 2-3 2 1 2-3 2-3 2-3 2-4 2-38�4 2 2-3 1 3-4 2-3 1 2 2-3 3-4 2-3 4-5 2-385 2 3 2 4 3 2-3 3 2-3 4 2-3 5 38�5 2 1-2 2 2-3 1-3 2 1 2-3 1 2-3 1-4 1-386 2 1 2 2 2 1 1 2 2 2 2-3 2-38�6 2 2-3 2 3-4 2-3 2 2-3 2 3-4 2 4-5 2-387 1 2 2 3 2 2 2 1 3 2 4 2
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The above four sections are only a very brief sampling of applications of topology to

biology. This is truly an extremely rich and fascinating area with questions that mathe-

maticians have been working on without any thoughts about biology as well as questions

where mathematicians must work alongside the biologists.


