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Abstract. We study universal properties of random knotting by making an extensive use

of isotopy invariants of knots. We define knotting probability (PK(N)) by the probability of
an N -noded random polygon being topologically equivalent to a given knot K . The question is
the following: for a given model of random polygon how the knotting probability changes with

respect to the number N of polygonal nodes? Through numerical simulation we see that the
knotting probability can be expressed by a simple function of N . From the result we propose a
universal exponent of PK(N), which may be a new numerical invariant of knots.

1. Introduction. We shall briefly define random knotting probability in terms of

random polygons. Let us consider an N -noded polygon given in 3 dimensions. We define

a configuration of the polygon by a sequence of the position vectors of the nodes (or the

vertices) : {~rj = (xj , yj , zj); j = 1, . . . , N}. Let us now assume that a model of random

polygon can produce random configurations of N -noded polygon. For example, we may

take the Gaussian random polygon, which will be introduced in §2. Suppose that we

have M configurations of N -noded polygon of the random model. For a given knot K we

define knotting probability PK(N) by the fraction of those configurations that have the

same knot type K; if MK configurations in the M configurations have a knot K, then

the knotting probability for K is given by PK(N) = MK/M .

Recently knotted ring polymers such as knotted DNA are synthesized in chemical and

biological experiments [4, 23]. The formation of knotted species on random ring closure
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of DNA was observed and their fractions were measured [21, 22]. In statistical mechanics,

the knotting probability is important in the study of the entanglement effect of polymers

[9, 13, 12]. The knotting probability PK(N) corresponds to the entropy SK(N) of an

N -noded ring polymer with knot type K: SK(N) = −kB logPK(N) + const.×N , where

kB is the Boltzmann constant. The asymptotic property of random knotting probability

has been studied from the viewpoint of mathematics [18]. It is proved that the knot type

of an infinitely large random polygon is given by a nontrivial knot [11, 24, 25]. Thus, the

problem of random knotting is studied in the different fields of science.

In this paper we discuss the following two problems: how the knotting probability

PK(N) behaves as a function of N and how universal the function is. We study the ran-

dom knotting probability through numerical experiments. The scheme of our experiments

is given in the following. Generating a large number of configurations of N -noded random

polygon by computers, and calculating certain knot invariants for each of the configu-

rations, we can practically enumerate the number MK of those polygons that have the

same knot type K: for a given configuration C we search such a knot K1 that has the

same set of values of the knot invariants with that of C, and we assume that the knot

type K of C is given by the knot K1 [7].

2. Numerical application of knot invariants. Let us briefly review on previous

numerical researches on random knotting. For trivial knot (K = 0) the knotting pro-

bability P0(N) has been evaluated for several different models of random polygon with

different lengths N less than about 2000 [28, 10, 17, 3, 15, 16]. For nontrivial knots, howe-

ver, the knotting probabilities have been evaluated only for short polygons with N < 200.

The authors of the previous numerical works employed only the special values of the Ale-

xander polynomial ∆K(t) evaluated at certain values of the variable t, in particular, the

determinant of knot |∆K(−1)|.

It seems that it would be practically difficult to calculate knot invariants such as the

Alexander and the Jones polynomials for very large polygons, except for the case of deter-

minant of knot |∆K(−1)|. When we calculate knot invariants such as knot polynomials for

large polygons, there are two technical difficulties: memory-size and computational-time

problems [5]. When we calculate polynomial-valued invariants for polygons with large N ,

the required memory size in computation will grow exponentially with respect to N : if

we evaluate a term tN for N = 103 by putting 2 to t, then we have a very large number

21000. Furthermore, if we use a straightforward algorithm computing Jones and HOMFLY

polynomials, the computation time will grow exponentially with respect to N [5, 14].

It has been shown in Ref. [5] through numerical experiment that the derivatives of

the Jones polynomial and those of the quantum link invariants are practically useful for

numerical application. The method gives a solution to both the computaion time and

memory-size problems. Independently, Przytycka and Przytycki have shown that trunca-

ted Jones (or HOMFLY, Kauffman) polynomial can be calculated in polynomial time [20].

Recently, Gauss diagram formulas for some Vassiliev-type invariants are introduced [19].

These independent algorithms give methods for computing Vassiliev-type invariants in

polynomial time. The application of these algorithms are also interesting future prob-



KNOT INVARIANTS AND RANDOM KNOTTING 79

lems. Applying the algorithm of the oriented state sum, however, we have investigated

the knotting probability of the Gaussian and the rod-bead random polygons for several

nontrivial knots [7, 27, 26, 8]. By utilizing oriented state sum models we can calculate

the Vassiliev-type invariants derived from the quasi-classical expansion of the quantum

knot invariants in polynomial time without using large memory area in computers [5, 7].

For an illustration we give a list of the values of the Alexander polynomial and some

Vassiliev-type invariants for some knots.

Knot type the determinant the Vassiliev-type invariants

Knot K |∆K(−1)| v2(K) v3(K) v4(K)

31(+) 3 -12 60 -199

31(−) 3 -12 -36 -55

41 5 12 -12 31

51(+) 5 -36 276 -1365

51(−) 5 -36 -204 -645

52(+) 7 -24 168 -758

52(−) 7 -24 -120 -326

31(+)♯31(+) 9 -24 120 -254

31(+)♯31(−) 9 -24 24 -110

31(−)♯31(−) 9 -24 -72 34

31(+)♯41 15 0 48 -312

31(−)♯41 15 0 -48 -168

41♯41 25 24 -24 208

Table I. The values of the determinant of knot |∆K(−1)| and those of the j-th coefficient vj(K)
in the quasi-classical expansion of Jones polynomial (j = 2, 3, and 4). Symbols 31(+) and 31(−)
denote the mirror images of the trefoil. Symbol K1♯K2 denotes the product of K1 and K2 [5, 7].

3. Models of random polygon. Let us introduce two different types of models

of random polygon, the Gaussian random polygon and the rod-bead random polygon.

The former is given by ideal chains with no excluded volume (no thickness of polymer),

while the latter consists of real chains with the excluded volume. We can study the self-

avoiding effect on the knotting probability through simulations on the rod-bead models

with different values of the bead radius [8].

Let us explain the random polygons more explicitly. We define jump vector ~uj by ~rj−

~rj−1. Then the position vector ~rj of the jth node is given by the sum of the jump vectors:

~rj=~u1 + · · ·+ ~uj. A configuration of the polygon is specified by its jump vectors. For the

Gaussian random polygon, the probability distribution P (~u1, . . . , ~uN) for a configuration

~u1, . . . , ~uN is given by

P (~u1, . . . , ~uN) = A exp(−
N∑

j=1

~u2
j)δ(~u1 + · · ·+ ~uN),(1)

where the constant A is the normalization factor and δ(x) is the Dirac delta function [10].

Let us consider the rod-bead polygon [3]. It has a bead with radius r on each of the

vertices of the polygon. All the jump vectors have a unit length (|~uj | = 1), and they
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have a rigid constriant that any pair of the vertices should be separated larger than 2r:

|~rj −~rk| > 2r for any j, k; if there is a pair of vertices m and n with |~rm −~rn| < 2r, then

the whole configuration of the polygon is not allowed and discarded. [3] The condition

|~rj − ~rk| > 2r for any vertices j and k realizes the rigidity of the beads of the polygon.

The jump vectors can have any directions with equal probability as far as the rigidity

constriant is satisfied. The parameter r expresses the excluded volume or the thickness

of the polygon.

4. Numerical results. Let us now consider our numerical results in Ref. [7, 27, 26,

8]. We introduce the following formula [7]

PK(N) = C(K)(N/N(K))m(K) exp(−N/N(K)),(2)

wherem(K),N(K) and C(K) are fitting parameters. We call it scaling formula. Applying

the scaling formula to the numerical data we see that it gives good fitting curves to the

graphs of PK(N) versus N both for the Gaussian random polygon and the rod-bead

random polygon [7, 27, 26, 8]. Here we consider N -noded polygons with N in the region:

50 ≤ N ≤ 2000 or 4000, and also consider the cases of several nontrivial knots, for

example, some prime knots such as 31, 41, and some composite knots such as 31♯31, 31♯41
and 31♯31♯31.

In Fig. 1, the numerical values of the knotting probability PK(N) of the Gaussian

random polygon are plotted against the step number N (the number of nodes) for three

nontrivial knots 31, 31♯31, and 31♯31♯31. In Figs. 2, 3, and 4, the data of PK(N) versus

N of the rod bead models with three different values of the radius r=0.05, 0.10 and 0.15

are plotted, respectively. They are for those of two nontrivial knots 31 and 31♯31.

Fig. 1. Random knotting probability of the Gaussian random polygon for K = 31, 31♯31 and
31♯31♯31. Large dots denote the numerical values of the knotting probability PK(N) for K = 31.
The error bars denote the standard deviations of the binomial distribution. The parameters of
the fitting curves are given in Table II.
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Fig. 2. Random knotting probability of the rod-bead random polygon with the radius r = 0.05,
for K = 31, 31♯31. Large dots denote the data of the knotting probability PK(N) for K = 31.
The error bars denote the standard deviations.

Fig. 3. Random knotting probability of the rod-bead random polygon with the radius r = 0.10,
for K = 31, 31♯31. Large dots denote the data of the knotting probability PK(N) for K = 31.
The error bars denote the standard deviations.

From Figs. 1, 2, 3 and 4, we find that fitting curves given by the scaling formula are

good. Here, the parameters of the fitting curves in Figs. 1, 2, 3, and 4 are given in Table

II. We see that the values of N(K) are different for the different values of the bead radius;

Fig. 2 shows the data for r = 0.05 with N < 2000 which give N(K) ≈ 300, while Fig. 4

shows the data for r = 0.15 with N < 4000 which give N(K) ≈ 900. Thus, the fitting

curves are good for large polygons with N > 100. However, we should note that the fitting

is not very good for small polygons such as those with N < 100 [8]. This discrepancy
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Fig. 4. Random knotting probability of the rod-bead random polygon with the radius r = 0.15,
for K = 31, 31♯31. Large dots denote the data of the knotting probability PK(N) for K = 31.
The error bars denote the standard deviations.

may be due to the discreteness of the models of random polygon. As a summary, we may

conclude that the random knotting probability for large polygons with N > 100 can be

expressed by the scaling formula, while that for small polygons with N < 100 can be

model-dependent.

model knot K m(K) C(K) N(K)

Gaussian 0 0.0 1.05 ± 0.03 (3.4 ± 0.1) ×102

Gaussian 31 1.0 0.62 ± 0.02 (3.4 ± 0.3) ×102

Gaussian 31♯31 2.0 0.17 ± 0.02 (3.4 ± 0.2)×102

Gaussian 31♯31♯31 3.0 0.033 ± 0.006 (3.3 ± 0.2) ×102

r = 0.05 0 0.0 1.06 ± 0.03 (3.0 ± 0.3)×102

r = 0.05 31 1.0 0.63 ± 0.02 (3.1 ± 0.3) ×102

r = 0.05 31♯31 2.0 0.19 ± 0.02 (3.0 ± 0.2) ×102

r = 0.10 0 0.0 1.04 ± 0.03 (4.2 ± 0.1)×102

r = 0.10 31 1.0 0.70 ± 0.02 (4.3 ± 0.4) ×102

r = 0.10 31♯31 2.0 0.25 ± 0.03 (4.4 ± 0.3) ×102

r = 0.15 0 0.0 1.00 ± 0.03 (9.0 ± 0.3)×102

r = 0.15 31 1.0 0.82 ± 0.02 (8.8 ± 0.8)×102

r = 0.15 31♯31 2.0 0.34 ± 0.04 (9.2 ± 0.5) ×102

Table II. The fitting parameters m(K), N(K), and C(K) to the knotting probabilities for the
Gaussian model and the rod-bead models with the three bead-radii: r=0.05, 0.10, and 0.15 [8].

Let us consider the parameter N(K). From Table II we see that in a given model of

random polygon, the parameters N(K) for the different knots are given by almost the

same value: N(K) ≈ N(0) for K = 0, 31 and 31♯31.



KNOT INVARIANTS AND RANDOM KNOTTING 83

5. Universality of random knotting. The exponent m(K) of knot K does not

change for the Gaussian and the rod-bead models with the three different values of the

bead radius: r=0.05, 0.10 and 0.15 [8]. From Figs. 1-4 we can see it directly from the

graphs of the knotting probability PK(N) versus the step number N for the different

models of random polygon [8]. The fitting parameters given in Table II are calculated by

assuming that the exponent m(K) should be the same for the different models of random

polygon and also that m(0)=0.0, 31=1.0, 31♯31=2.0, and 31♯31♯31=3.0.

Let us discuss how the assumption on the exponent is valid. We consider universal

fitting curve for the knotting probability. We define renormalized step number x by x =

N/N(K), where N is the step number and N(K) is the fitting parameter given in Table

II. We also define renormalized knotting probability pK(x) by pK(x) = PK(N)/C(K),

where PK(N) is the knotting probability and C(K) is the fitting parameter given in

Table II. If the exponent m(K) is universal (i.e., m(K) has the same value for any model

of random polygon) and the knotting probability is given by the scaling formula, then

the renormalized knotting probability pK(x) and the renormalized step number x should

be related by the universal curve for any model of random polygon:

pK(x) = xm(K) exp(−x).(3)

The universal curves of pK(x) versus x for K = 31 and K = 31♯31 are shown in Fig. 5

and 6, respectively. All the numerical data of knotting probabilities for the Gaussian and

the rod-bead models with the three radii r=0.05, 0.10 and 0.15 are shown in Figs. 5 and 6.

We see that the universal curves give good fitting. This suggests that the assumption on

the exponent should be valid. The error bars for the exponentm(K) could be less than 0.1.

Fig. 5. Universal fitting curve for K = 31: pK(x) = x exp(−x), and the numerical values of
the knotting probability of knot 31 for the Gaussian random polygon and the rod-bead random
polygons with the three radii r=0.05, 0.10 and 0.15. The values for the Gaussian polygon is
denoted by large dots.
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Fig. 6. Universal fitting curve for K = 31♯31: pK(x) = x
2 exp(−x), and the numerical values

of the knotting probability of knot 31♯31 for the Gaussian random polygon and the rod-bead
random polygons with the three radii r=0.05, 0.10 and 0.15. The values for the Gaussian polygon
is denoted by large dots.

From the numerical result we propose that the exponent m(K) is universal for each

knot type K: for different models of random polygon the knotting probability for knot K

is expressed by the scaling formula with the same value of the exponent m(K) and that

the exponent m(K) is determined only by the knot type [8].

Let us summarize our numerical result. For a knot K and for a model of random

polygon the knotting probability PK(N) is given by

PK(N) = C(K)(N/N(0))m(K) exp(−N/N(0)),(4)

where the exponentm(K) is universal but C(K) and N(0) are model-dependent. We have

a conjecture that the exponent of a composite knot is given by the sum of the exponents of

the constituent prime knots: m(K1♯K2) = m(K1)+m(K2) [7, 27]. As far as the numerical

results we have obtained, this conjecture together with the above expression of PK(N)

is consistent with the data.
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