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2 Place Jussieu, F-75251 Paris Cedex 05, France

E-mail: geck@math.jussieu.fr

Abstract. This paper is an expanded version of a talk given at the Banach Center Sympo-
sium on Knot Theory in July/August 1995. Its aim is to provide a general survey about trace
functions on Iwahori–Hecke algebras associated with finite Coxeter groups. The so-called Markov
traces are relevant to knot theory as they can be used to construct invariants of oriented knots
and links. We present a classification of Markov traces for the classical types A, B and D.

1. Introduction. The algebras in the title first came up in Iwahori’s work (cf. [CR],

§67) on endomorphism algebras of certain representations of finite Chevalley groups.

From this point of view, they are relevant to the representation theory of finite groups.

Alternatively, such an algebra can be described as a finite dimensional quotient of the

group algebra of an Artin-Tits braid group. In the case where the underlying Coxeter

group is a symmetric group, Jones [Jo] used this approach to construct invariants for

isotopy classes of oriented knots and links in the 3-sphere. (For generalizations to Coxeter

groups of type B, see [La].) In this article, we shall regard these algebras from a purely

algebraic point of view, as deformations of the group algebras of finite Coxeter groups.

Our aim is to describe a general plan for studying trace functions on Iwahori–Hecke

algebras associated with any given type of finite Coxeter group. This plan has been

developed in joint work with G. Pfeiffer [GP]. As an application, we present a classification

of so-called Markov traces on Iwahori–Hecke algebras of classical type. For type A, this

is originally due to Ocneanu; for type B, this is joint work with S. Lambropoulou [GL].

We shall give a self-contained account of the uniqueness part in the latter result but refer

the reader to [GL] for the technically more complicated details of the existence part. We

then show how the classification of Markov traces for type B can be used to classify

Markov traces for type D. These results are new; they are motivated by discussions with

S. Lambropoulou which are gratefully acknowledged.
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In Section 2 we define and state the main properties of finite Coxeter groups and

describe normal forms of the elements for the classical types A, B and D. In Section 3

we study conjugation in these groups by examining the signed cycle type of elements,

following Carter’s description in [Ca]. The associated Iwahori–Hecke algebras and their

trace functions are the subject of Section 4. We show how the operation of conjuga-

tion in the Coxeter group translates to the Iwahori–Hecke algebra. This will be the key

step in describing our general plan for trace functions, along the lines of [GP]. In Sec-

tion 5, we introduce Markov traces for Iwahori–Hecke algebras of classical type, and study

some of their basic properties. Finally, in Section 6, we give a classification of Markov

traces in the case of type D. This is followed by some concluding remarks and open

questions.

We have tried to keep the level of our exposition as elementary as possible. We assume

known the notions of finitely presented groups and associative algebras over commutative

rings, as well as some basic facts from the classical representation theory of associative

algebras over fields. The classical reference for Coxeter groups is N. Bourbaki [Bo]. Es-

pecially suited for the things that we need is [CR], § 64, 68.

2. Finite Coxeter groups of classical type. A Coxeter group W is a group given

by a presentation of a very special form: We have a finite set of generators S⊆W which

we write in the form S = {si | i ∈ I} for some finite index set I, and the defining

relations are just relations of the form (sisj)
m(i,j) = 1 where i, j ∈ I and m(i, j) > 1

for i 6= j, m(i, i) = 1. Since each generator is equal to its inverse, we can rewrite the

set of relations (sisj)
m(i,j) = 1, for i 6= j, equivalently in the form of the equalities

sisj · · · = sjsi · · ·, with m(i, j) factors on both sides. These relations will be called braid

relations, or homogeneous relations. Thus, a Coxeter group is a group generated by a set

of involutions which satisfy a defining set of homogeneous relations (where the number

of factors on each side of the equation has been prescribed).

We shall assume throughout that the integers m(i, j) are chosen so that W is a finite

group. This is the case if and only if the matrix (− cos(π/m(i, j)))i,j∈I is positive-definite.

We only remark that all matrices (m(i, j)) with this property can be classified, and that

this classification leads to the well-known list of classical types An−1, Bn, Dn (for n ≥ 1);

of exceptional types G2, F4, E6, E7, E8; and of non-crystallographic types I2(p) (for p≥5,

p 6= 6), H3 and H4. Moreover, every such group has a geometrical description as a finite

subgroup of the orthogonal group of an Euclidean space of dimension |I|, where the

generators si are represented by reflections. We shall not need this classification result

in this paper, and we shall only be dealing with the classical types An−1, Bn, Dn whose

diagrams are given as follows.

An−1 ©
s1

©
s2

· · · ©
sn−1

(n ≥ 1)

Bn ©
t

©
s1

©
s2

· · · ©
sn−1

(n ≥ 1)
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Dn ©
s1

©
s2

© u

©
s3

· · · ©
sn−1

(n ≥ 2)

These diagrams encode the relations among the generators by the following scheme. The

nodes of the diagram are in bijection with the generators of W . If two generators label

nodes which are not directly linked to each other then their product has order 2 (that is,

they commute with each other), if they are joined by a single bond then the product has

order 3, in the case of a double bond (which here only occurs for type Bn) the order is 4.

On W , we have a length function defined as follows. Let w ∈W . Then it is possible to

write w as a product of generators, w = si1 · · · sik say, where k is a non-negative integer

and i1, . . . , ik ∈ I. (Note that we don’t have to take into account the inverses of the

generators.) If we choose k minimal with this property, then the corresponding product

of generators will be called a reduced expression for w and k will be the length of w,

denoted l(w). Clearly, we have l(1) = 0 and l(si) = 1 for all i ∈ I. On the other hand,

for any w ∈ W and i ∈ I we have either l(siw) = l(w) + 1 or l(siw) = l(w) − 1 (and

similarly for right multiplication by a generator). A key property of a Coxeter group is

the fact (Matsumoto’s Theorem, see [CR], (64.20)) that any two reduced expressions for

a given element can be transformed into each other by applying a finite sequence of braid

relations.

We will see below how we can find reduced expressions for the elements of the Coxeter

groups of classical type An−1, Bn and Dn.

2.1. Normal form for type An−1. We consider the Coxeter group of type An−1 (n≥1)

with generators and relations given by the above diagram. Let us take an arbitrary

product of generators si1 · · · sir , for some r ≥ 0. We now use the braid relations and the

relations s2i = 1 as rewriting rules for subexpressions, that is, if our product contains

a subword which looks like the left hand side of any one of these relations then we can

replace it by the right hand side, and repeat this process. By a simple induction on r it

then follows that we can rewrite our expression in the form si1 · · · sir = sj1 · · · sjt where

j1, . . . , jt ∈ I for some 0 ≤ t ≤ r, and at most one factor in the product on the right hand

side equals sn−1. Now let us define the set

R+
n := {1, sn−1, sn−1sn−2, . . . , sn−1sn−2 · · · s1}.

(This definition works for all n ≥ 1, with R+
1 = {1}.) Note that R+

n has cardinality n.

A second induction then implies that an arbitrary product of si’s can be written in the

form r1 · · · rn with ri ∈ R+
i for all i. Since there are only n! expressions of this form we

conclude that our group has order at most n!.

On the other hand, we know that the symmetric group Sn on n letters is generated

by the transpositions σi (1 ≤ i ≤ n−1) which interchange the letters i, i+1 and leave all

others unchanged, and that these elements σi satisfy the defining relations for type An−1.

Thus we conclude that Sn is in fact a realization of the Coxeter group of type An−1. It
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also follows that the above expressions of the elements of Sn are reduced expressions; we

shall call them the normal form for the elements of Sn.

2.2. Normal form for type Bn. We consider the Coxeter group of type Bn (n ≥ 1)

and denote it by Wn. In order to obtain a normal form for its elements we define

tj := sjsj−1 · · · s1ts1 · · · sj−1sj ∈Wn for j = 0, 1, 2, . . . .

By a similar induction as before we see that every element of Wn can be written as a

product of factors si (1 ≤ i ≤ n− 1) and tj (0 ≤ j ≤ n− 1) in such a way that sn−1 and

tn−1 occur at most once, and if one of these two elements occurs the other doesn’t. Now

let us define the set

Rn := {sn−1 · · · si+1, sn−1sn−2 · · · si+1ti | 0 ≤ i ≤ n− 1}.

This set has cardinality 2n (where R1 = {1, t}). As above, we can then conclude that

every element in Wn can be written in the form r1 · · · rn with ri ∈ Ri for all i. Since

there are only 2 · 4 · · · 2n = 2nn! expressions of this form, we deduce that our group has

order at most 2nn!.

On the other hand, we know that the hyperoctahedral group, that is, the symmetry

group of an n-dimensional cube, is a quotient of Bn. A good way to think about this

group is as follows. We consider the symmetric group of degree 2n where we denote

the objects being permuted by {n, . . . , 1, 1′, . . . , n′}. Then the hyperoctahedral group is

the subgroup of all elements which commute with the map i 7→ i′, i′ 7→ i (1 ≤ i ≤ n).

Thus, it is generated by the permutations t = (1, 1′), s1 = (1, 2)(1′, 2′), . . . , sn−1 =

(n−1, n)((n−1)′, n′). It is readily checked that these elements indeed satisfy the defining

relations for a Coxeter group of type Bn, and that it has the correct order.

It can be further shown that ti commutes with tj for all i, j, hence the set of elements

{ti1 · · · tir | 0 ≤ i1 < . . . < ir ≤ n − 1} is a subgroup of Wn isomorphic to the direct

product of n copies of the cyclic group C2 of order 2. This subgroup clearly is invariant

under conjugation by all generators. On the other hand, the subgroup of Wn generated

by {s1, . . . , sn−1} is isomorphic to the symmetric group Sn, and we obtain a decompo-

sition of Wn as the wreath product C2 o Sn where Sn acts on Cn
2 by permutation of the

components.

2.3. Normal form for type Dn. The Coxeter group of type Dn (for n ≥ 2) is best

described as a subgroup of index 2 in the Coxeter group Wn of type Bn considered

before. First note that the defining relations for Wn show that there exists a unique

group homomorphism ε : Wn → {1,−1} such that ε(t) = −1 and ε(si) = 1 for all

i. The kernel of this map, which we will denote by W ′n, is generated by the elements

u := ts1t, s1, . . . , sn−1, which satisfy the relations given by the above Dynkin diagram of

type Dn. Thus, the group W ′n is seen to be a quotient of the Coxeter group of type Dn.

Formally, this also works for n = 1 where it leads to the convention that W ′n = {1} and

u is considered as being equal to the identity element. On the other hand, one can check

(using the Reidemeister-Schreier procedure for finding a presentation of a subgroup of a

finitely presented group) that the subgroup of Wn generated by {u, s1, . . . , sn−1} indeed

is a realization of the Coxeter group of type Dn. An element of Wn belongs to W ′n if and
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only if it can be written as a product of various generators t, s1, . . . , sn−1 with an even

number of t’s.

Let us also derive a normal form for the elements in W ′n, directly in terms of the

generators {u, s1, . . . , sn−1}. We have Wn = W ′n ∪W ′nt and Wn =
⋃

r∈Rn
Wn−1r. These

two equalities imply that an element of W ′n either is of the form wr (with w ∈W ′n−1 and

where r ∈ Rn does not contain t) or of the form wtr (with w ∈W ′n−1 and where r ∈ Rn

does contain t). We can rewrite such expressions in terms of the generators of W ′n and

are lead to define the set

R′n := {sn−1sn−2 · · · si+1, sn−1sn−2 · · · s2us1 · · · si | 0 ≤ i ≤ n− 1}.

This set has cardinality 2n (where R′2 = {1, u, s1, us1} and, as a convention, R′1 = {1}).
Then every element in W ′n can be written uniquely in the form r1 · · · rn with ri ∈ R′i for

all i, and these expressions are reduced. (There are exactly 1 · 4 · 6 · · · 2n = 2n−1n! such

expressions.)

To summarize the above descriptions we introduce the following notation. The symbol

Xn (for n ≥ 1) denotes one of the above classical types An−1, Bn, or Dn. Then W (Xn)

is the corresponding Coxeter group and R(Xn) the subset of W (Xn) called R+
n for

type An−1, Rn for type Bn, and R′n for type Dn. For n ≥ 2, the group W (Xn−1) is

naturally embedded into W (Xn), and the set R(Xn) is nothing but the set of so-called

distinguished right coset representatives of W (Xn) with respect to W (Xn−1). Thus, it

satisfies the following properties (cf. [CR], (64.38)).

* R(X1) = W (X1).

* If n ≥ 2 then every element w ∈W (Xn) can be written uniquely in the form w = w′r

with w′ ∈W (Xn−1) and r ∈ R(Xn), and we have l(w) = l(w′) + l(r).

In particular, every element w ∈W (Xn) can be written uniquely in the form w = r1 · · · rn
with ri ∈ R(Xi) for all i (and these expressions are reduced). Thus we have a uniform

inductive description of the elements in Coxeter groups of classical type.

3. Conjugation in the Coxeter groups of classical type. We shall now use the

above inductive description as an essential tool to derive the crucial result about the form

of the conjugacy classes in Coxeter groups of classical types. Let again n ≥ 1 and Xn one

of the types An−1, Bn or Dn. Recalling the definition of the set R(Xn) we see that each

of its elements (for n ≥ 2) has a very special form: It is either a product of sn−1 and an

element lying in W (Xn−1) or it is equal to 1, respectively tn−1 = sn−1 · · · s1ts1 · · · sn−1
(in type Bn) or un−1 := sn−1 · · · s2us1s2 · · · sn−1 (in type Dn). In order to obtain a

uniform description we introduce subsets D(Xn) ⊆ R(Xn) for all n ≥ 1 as follows.

Definition. If n = 1 we let D(X1) := R(X1) = W (X1). For n ≥ 2 we give the

definition case by case.

Type An−1: D(Xn) := {1, sn−1}.
Type Bn : D(Xn) := {1, sn−1, tn−1}.
Type Dn : D(Xn) := {1, sn−1, un−1} for n ≥ 3 and D(X2) := W (X2).

(Recall that tn−1 = sn−1 · · · s1ts1 · · · sn−1 respectively un−1 = sn−1 · · · s2us1s2 · · · sn−1.)
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The form of the elements in the sets D(Xn) and R(Xn) then immediately implies the

following result.

Lemma 3.1 (Double coset decomposition). Let n ≥ 2 and D(Xn) as defined above.

Then every element w ∈ W (Xn) can be written in the form w = w1dw2 with w1, w2 ∈
W (Xn−1), d ∈ D(Xn) and l(w) = l(w1) + l(d) + l(w2).

Now recall the following general definition from [GP]. Let W be an arbitrary Coxeter

group, with generating set S = {si | i ∈ I}. Given w,w′ ∈ W we write w −→ w′ if

there exists a sequence of elements w = w1, . . . , wm = w′ (for some m ≥ 1) and indices

i1, . . . , im−1 such that wk+1 = sikwksik and l(wk+1) ≤ l(wk) for all k. Thus, the relation

w −→ w′ means that we can conjugate w to w′ step by step by a sequence of generators

such that the length of the elements remains the same at each step or decreases.

Now we can state our crucial result.

Proposition 3.2 (Cf. [GP], Proposition 2.3). Let n ≥ 1 and w ∈ W (Xn). Then

there exist some di ∈ D(Xi), for 1 ≤ i ≤ n, such that w → d1 · · · dn and such that the

generators performing the sequence of conjugations lie in W (Xn−1).

P r o o f. For n = 1 there is nothing to prove due to the definition of D(X1). Now let

n ≥ 2 and w ∈W (Xn). By Lemma 3.1 we can write w = w′dnw
′′ with w′, w′′ ∈W (Xn−1)

and dn ∈ D(Xn). Taking any reduced expression for w′′ and conjugating step by step by

the generators involved in this reduced expression yields that

w −→ wn−1dn for some wn−1 ∈W (Xn−1).

If n = 2 we are done, otherwise we can again write wn−1 = w′dn−1w
′′ with w′, w′′ ∈

W (Xn−2) and dn−1 ∈ D(Xn−1).

Now it readily follows using the braid relations that, for n ≥ 3, each element in D(Xn)

commutes with the generators for W (Xn−2), with the only exception that in type Dn we

only have un−1u = s1un−1 and un−1s1 = uun−1. In any case the following relation holds.

For each generator x of W (Xn−2) and each d ∈ D(Xn) there exists some generator x′ of

W (Xn−2) such that xd = dx′.

Returning to our above equation wn−1 = w′dn−1w
′′ we take a reduced expression for

w′′, conjugate step by step by the generators involved in it, and conclude that

wn−1dn = w′dn−1w
′′dn −→ wn−2dn−1dn for some wn−2 ∈W (Xn−2).

Continuing in this way, we obtain the desired result after finitely many steps. Note that

the conjugating elements all lie in W (Xn−1). This completes the proof.

An element of the form d1 · · · dn, with di ∈ D(Xi) for all i, will be called an element

in signed block form. Such elements play an essential role later on in our classification of

Markov traces. If we group together consecutive factors si we obtain a decomposition of

our given element as a product of “blocks”. To explain this and the notion of “positive

blocks” and “negative blocks” in more detail we consider in turn the classification of

conjugacy classes for type An−1, Bn and Dn.

3.3. Conjugacy classes for type An−1. By Proposition 3.2, any element of W (An−1)

(for n ≥ 1) is conjugate to an element of the form d1 · · · dn with di ∈ D(Ai−1) for all i.
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Let us fix such an element. Since each factor di either equals 1 or equals si−1 we see that

our element is uniquely determined by the sequence of non-negative integers defined by

the condition that di+1 = 1 if and only if i belongs to that sequence. Denote this sequence

by 0 = m1 < . . . < mr, and let us also define λ := (λ1, . . . , λr) where λi := mi+1 −mi

for i = 1, . . . , r (with the convention that mr+1 = n). Note that the entries of λ are all

positive and their sum equals n (that is, λ forms a composition of n). The integers mi

are determined from λ by the rule mi = λ1 + . . .+λi−1 for all i ≥ 1. With this notation,

we now have d1 · · · dn = w(λ) where

w(λ) := b+(m1, λ1) · · · b+(mr, λr)

and where we define, for any m ≥ 0 and d ≥ 1,

b+(m, d) := sm+1 · · · sm+d−1.

Under the isomorphism W (An−1) ∼= Sn, such an element b+(m, d) corresponds to the

d-cycle (m+ 1, . . . ,m+ d) which permutes the d numbers in the interval between m+ 1

and m+ d cyclically and leaving all other numbers unchanged. We call it a positive block

of length d and starting at m; the interval {m+1, . . . ,m+d} will be called the underlying

index set. The braid relations imply that two positive blocks commute with each other if

the underlying index sets are disjoint.

Let λ and λ′ be two compositions of n which are obtained from each other by

permuting the parts. Assume at first that only two consecutive parts have been per-

muted. Then there exists an element y ∈ W (An−1) such that yw(λ)y−1 = w(λ′) and

l(yw(λ)) = l(y) + l(w(λ)). The element y can be written down explicitly as a reduced

expression in the generators (see [GP], Proposition 2.4(a)). The relevance of the length

condition will become clear later on. Applying this relation repeatedly eventually proves

that every element of W (An−1) is conjugate to an element w(λ) where λ is a partition of

n, that is, a composition with parts ordered by increasing length. Since conjugation in Sn
never changes the cycle type of elements, we have thus recovered the well-known classifi-

cation of conjugacy classes by partitions of n, and we have described canonically reduced

expressions for a set of representatives in the various conjugacy classes. We remark that

theses representatives have minimal length in their classes (see [GP], (2.6)).

For example, the classes for W (A3) ∼= S4 are parametrized by the partitions (1111),

(112), (13), (22), and (4). The corresponding representatives of minimal length are given

by 1, s3, s2s3, s1s3 and s1s2s3, respectively.

3.4. Conjugacy classes for type Bn. Let us denote Wn = W (Bn) for n ≥ 1. Using

Proposition 3.2, we can proceed similarly as for type An−1, with the only difference that

we also have to take into account the double coset representatives ti. Therefore we define,

for any m ≥ 0 and d ≥ 1,

b−(m, d) := tmsm+1 · · · sm+d−1,

and call this element a negative block of length d and starting at m, with underlying index

set {m+ 1, . . . ,m+ d}. (Positive blocks are defined in exactly the same way as for type

An−1.) We can now conclude that every element in Wn is conjugate to an element of the
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form

w(λ, ε) := bε1(m1, λ1) · · · bεr (mr, λr),

where λ= (λ1, . . . , λr) is a composition of n, ε= (ε1, . . . , εr) is a vector of signs, and mi

is the sum of the first i−1 parts of λ (as before). Using the description of Wn as a certain

subgroup of S2n described in (2.2), a positive block b+(m, d) is given by the “d-cycle”

(m+ 1, . . . ,m+ d)((m+ 1)′, . . . , (m+ d)′) while the corresponding negative block equals

(m+1, (m+1)′)b+(m, d). (Thus, multiplication by tm = (m+1, (m+1)′) is considered as

a “sign change” for a permutation.) Again the braid relations imply that any two blocks

commute with each other if the underlying index sets are disjoint.

We conjugate our element further so as to obtain a signed block structure where the

positive and negative blocks are arranged in some prescribed order. This is done as follows.

In a first step, we have w(λ, ε) −→ w(λ′, ε′) where λ′, ε′ are obtained by rearranging λ, ε

such that all negative parts are in the beginning and ordered by increasing length (see

[GP], Proposition 2.4(b,c)). Thus, ε′=(−1, . . . ,−1, 1, . . . , 1) with m negative signs say. If

the sign vector has such a form, we also denote the element w(λ′, ε′) by w(α, β) where α is

the sequence consisting of the first m parts of λ′ (with corresponding negative sign) and β

of the remaining parts. The sequence α already forms a partition, while the parts of β may

have some arbitrary order. Thus, we see that for each w ∈ Wn we have w −→ w(α, β)

where α is a partition and β is a composition such that the total sum of their parts

equals n. Finally, the positive blocks (corresponding to the parts of β) can be arranged

in increasing order in exactly the same way as this was done in type An−1.

Thus, given partitions α = (α1, . . . , αr) and β = (β1, . . . , βs) such that
∑

i αi +∑
j βj = n, we let mi := α1 + . . .+αi−1 and nj := mr+1 +β1 + . . .+βj−1 for all i, j ≥ 1;

then the corresponding representative is given by

w(α, β) = b−(m1, α1) · · · b−(mr, αr)b+(n1, β1) · · · b+(ns, βs).

In this way we can recover the classification of conjugacy classes by pairs of partitions of n

(see [Ca]). We have described reduced expressions for a set of canonical representatives in

the various conjugacy classes. Again, these representatives have minimal length in their

classes (see [GP], (2.7)).

For example, the classes forW (B3) are parametrized by the double partitions (−, 111),

(1, 11), (11, 1), (111,−), (−, 12), (2, 1), (1, 2), (12,−), (−, 3), and (3,−). The correspond-

ing representatives of minimal length are given by 1, t, tt1, tt1t2, s2, ts1, ts2, tt1s2, s1s2,

and ts1s2, respectively.

3.5. Conjugacy classes for type Dn. We use the notation of (2.3) and consider the

Coxeter group W ′n of type Dn as a subgroup of index 2 in the Coxeter group Wn of

type Bn (for n ≥ 2). The description of the classes of W ′n is then in terms of the results

obtained above in (3.4). Since W ′n is a normal subgroup, it is a union of conjugacy classes

of Wn. Let (α, β) be a pair of partitions such that the total sum of their parts equals n,

and let C(α, β) be the corresponding class in Wn. Then C(α, β) belongs to W ′n if and

only if the number of parts of α (corresponding to the negative blocks) is even. Assume

that this is the case. Then C(α, β) either is one conjugacy class of W ′n or it splits up into

two classes. The latter happens if and only if α is empty and all parts of β are even; in
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this case, the two classes are mapped to each other under conjugation by the generator t.

(For these results, see [Ca].)

Taking the elements w(α, β) obtained in (3.4) and rewriting them in terms of the

generators of W ′n will yield canonical representatives of minimal length in the classes of

W ′n. This is done as follows. We define a negative block of length d ≥ 1 and starting at

m ≥ 0 by

b−(m, d)′ := umsm+1 · · · sm+d−1 ∈W ′n,

with the convention that u0 = 1. (Positive blocks are defined in exactly the same way

as before.) Given compositions α and β such that the total sum of their parts equals n

we define the element w(α, β)′ in a similar way as in (3.4) as the product of consecutive

negative and positive blocks corresponding to the sequence of parts in α and β. The

relation u = ts1t and the definition of ui show that ui = tti for all i ≥ 0. Inserting this

into the above expressions for negative blocks we conclude that w(α, β)′ is either equal

to w(α, β) (defined above for type Bn) or to tw(α, β)t.

Now, if α is empty and all parts of β are even then w(α, β)′ is a product of positive

blocks, starting with s1 · · · sd−1, for some d ≥ 2. Conjugation by t then leads to an

expression of the same form where s1 has been replaced by u. These two elements are

representatives for the two classes into which C(α, β) splits up in W ′n. For example, if

n is even, then the two elements s1s2 · · · sn−1 and us2 · · · sn−1 are transformed into each

other by conjugation with t but they are not conjugate in W ′n. Note that if α is not

empty, then w(α, β) and tw(α, β)t are in the same conjugacy class in W ′n.

Using these relations and a careful comparison of conjugation in Wn and in W ′n we

arrive at the following conclusion (see [GP], (2.8), and [Pf], Section 4.1, for details). For

each w ∈W ′n we either have w −→ w(α, β)′ where α is a partition with an even number

of parts and β a composition such that the total sum of their parts equals n or, possibly,

w −→ tw(α, β)′t if α is empty and all parts of β are even. In both cases, the positive

blocks can be arranged in increasing order by the same reasoning as in type An−1. Thus,

we obtain canonical representatives of minimal length in the conjugacy classes of W ′n.

For example, in W (D4), the above classification yields that there are 9 classes which

are invariant under conjugation by t; these are parametrized by the double partitions

(−, 1111), (11, 11), (1111,−), (−, 112), (12, 1), (11, 2), (22,−), (−, 13), and (13,−). The

corresponding representatives of minimal length are given by 1, u1, u1u2u3, s3, u1s2,

u1s3, s1u2s3, s2s3, and u1s2s3, respectively. Moreover, we have the two double partitions

(−, 22) and (−, 4) for which we have two classes each, with representatives of minimal

length given by s1s3, us3 and s1s2s3, us2s3, respectively.

In summary, the above arguments were used in [GP] to prove the following basic

results for Coxeter groups of classical type.

Theorem 3.6 (See [GP], Theorem 1.1). Let W be a finite Coxeter group, C a conju-

gacy class in W , and Cmin be the set of elements of minimal length in C.

(a) For each w ∈ C there exists some w′ ∈ Cmin such that w −→ w′, that is, there

exists a sequence of elements w = w1, . . . , wm = w′ (for some m ≥ 1) and indices

i1, . . . , im−1 such that wk+1 = sikwksik and l(wk+1) ≤ l(wk) for all k.
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(b) If w,w′ ∈ Cmin then w ∼ w′, that is, there exists a sequence w = w0, . . . , wm = w′

(for some m ≥ 1) and elements x1, . . . , xm ∈W (Xn) such that l(wk) = l(wk+1), wk+1 =

xkwkx
−1
k , and l(xkwk) = l(xk) + l(wk) or l(wkx

−1
k ) = l(wk) + l(x−1k ) for all k.

4. Iwahori–Hecke algebras. Let W be a finite Coxeter group with generating set

S = {si | i ∈ I} as introduced in Section 2. Let A be a commutative ring with identity

and fix a collection of invertible elements qi ∈ A (i ∈ I) such that qi = qj whenever si
and sj are conjugate in W . (The latter condition holds for si and sj which are joined on

the Dynkin diagram if and only if the integer m(i, j) is odd.) The associated Iwahori–

Hecke algebra H is a free A-module with a basis labelled by the elements of W , say

{gw | w ∈ W}, and where the multiplication of two basis elements is determined by

“deforming” the multiplication in the Coxeter group using the parameters qi (i ∈ I).

To simplify notation, let us write gi = gsi for i ∈ I. A convenient way to describe the

multiplication is then given by the following two rules.

If w ∈W and w = si1 · · · sik is any reduced expression then gw = gi1 · · · gik .

If i ∈ I then g2i = qi · 1H + (qi − 1)gi.

It is a non-trivial fact that this indeed is a well-defined multiplication and gives H the

structure of an associative algebra over A. The identity element 1H is the basis element

corresponding to w = 1. (A proof is sketched in [Bo], Ch. IV, §2, Exercise 23; for full

details see [CR], Proposition 68.1. Note that this works even if W is not finite.) If the qi
are all equal to 1 then the second rule simply becomes g2i = 1 for all i ∈ I; in this case,

H is nothing but the group algebra of W over A.

The above relations show that H is generated by the elements gi (i ∈ I). Moreover,

for i 6= j, we have gigjgi · · · = gjgigj · · · (with m(i, j) factors on both sides) since sisjsi · · ·
and sjsisj · · · (with m(i, j) factors) are reduced expressions and equal in W . It is then

not difficult to see (cf. [CR], Proposition 68.8) that these homogeneous relations together

with the above quadratic relations for the generators gi form in fact a set of defining

relations for H (as an associative A-algebra with identity).

It may be worthwhile to be a bit more explicit about the multiplication in H. Let

us multiply two arbitrary basis elements gv and gw for v, w ∈ W . For this purpose, we

take a reduced expression for one of them, say v = si1 · · · sik . By the first rule above we

have gv = gi1 · · · gik . Thus, we are reduced to the case where v = si for some i ∈ I. If

l(siw) = l(w)+1 then siw also is reduced and we have, again by the first rule above, that

gigw =gsiw. If l(siw)= l(w)−1 we take a reduced expression for siw, say siw=sj1 · · · sjt .
Then w = si(siw) = sisj1 · · · sjt also is reduced and we can compute that

gw = gsi(siw) = gsisj1 ···sjt = gi(gj1 · · · gjt) = gigsiw.

We conclude that

gigw = g2i gsiw = qigsiw + (qi − 1)gigsiw = qigsiw + (qi − 1)gw.

Thus, in order to compute the product of basis elements we essentially need to be able

to compute reduced expressions of products of elements in the underlying Coxeter group.

We have described algorithms for computing such reduced expressions for the classical

types An−1, Bn and Dn in Section 2.
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Definition. A trace function on H is an A-linear map λ : H→A such that λ(hh′)=

λ(h′h) for all h, h′ ∈ H.

This definition is in fact valid for any associative algebra over a commutative ground

ring. In the case of a group algebra it is clear that every trace function is constant on the

conjugacy classes of the underlying group. Since our Iwahori–Hecke algebra H is defined

as a deformation of the group algebra of the corresponding Coxeter group W , we can

hope for similar “deformed” relations between the values of trace functions on H. This is

indeed true. At first note that the fact that the parameters qi are invertible in A implies

that the basis elements gi are invertible in H; we have

g−1i = (1/qi)gi + (1/qi − 1)1H for all i ∈ I.

Consequently, every basis element gw (for w ∈W ) is invertible in H.

In order to understand how conjugation in W translates into H, we first note that

it is not really conjugation that counts in an algebra. Instead we have to look at the

quotient space of H by the commutators. For any h, h′∈H we define their commutator by

[h, h′] := hh′−h′h. Let [H,H] ⊆ H be the A-subspace ofH generated by all commutators.

Note that, if two elements h, h′ are conjugate by some unit in H then h ≡ h′ mod [H,H].

Thus, “conjugation” translates to ”equivalence modulo commutators”.

It is clear that [H,H] lies in the kernel of every trace function on H. Conversely, if

λ : H → A is any A-linear map which is identically zero on the subspace [H,H] then λ is

a trace function. We conclude that there is a canonical bijective correspondence between

the space of trace functions on H and the dual space of the quotient module H/[H,H].

Thus, we have to find out how the images of basis elements gw in H/[H,H] look like. Let

us first consider the following two special cases which are in fact the elementary steps in

the relations −→ and ∼ defined on W (cf. [GP], Section 1).

Let w,w′ ∈ W and i ∈ I such that w′ = siwsi and l(w′) = l(w). Then gi conjugates

gw to gw′ . More generally, this holds if w,w′ ∈ W and x ∈ W such that l(w) = l(w′),

w′ = xwx−1 and l(xw) = l(x)+ l(w). For, we then have gw′gx = gw′x = gxw = gxgw, and

so gw and gw′ are conjugate in H. (The same conclusion holds if the length condition is

l(wx−1) = l(w) + l(x−1).) Hence, in these cases, we have

gw ≡ gw′ mod [H,H].

Now let w,w′ ∈ W and i ∈ I such that w′ = siwsi and l(w′) < l(w). Then gi
conjugates gw to qigw′ + (qi − 1)gsiw, hence we have

gw ≡ qigw′ + (qi − 1)gsiw mod [H,H].

(Note that both w′ and siw have length strictly less than l(w).)

Theorem 3.6(a) implies that, for each w ∈ W there exists some w′ ∈ W of minimal

length in its conjugacy class such that w−→w′. Applying repeatedly the above relations

shows that, modulo [H,H], the basis element gw can be expressed as an A-linear com-

bination of basis elements gw′ where w′ runs over a set of elements of minimal length in

various conjugacy classes.
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Theorem 3.6(b) implies that, if w,w′ ∈ W are conjugate and of minimal length in

their conjugacy class then gw and gw′ will be conjugate in H. In particular, gw and gw′

are equal modulo [H,H].

If we take these two statements together we arrive at the following conclusion.

Lemma 4.1. Let {C} be the conjugacy classes of W . In each class C, we choose once

and for all a representative wC ∈ C of minimal length. Then the following holds. For

each w ∈W there exist constants fw,C ∈ A such that

gw ≡
∑
C

fw,CgwC
mod [H,H].

We have fw,C = 0 unless l(wC) ≤ l(w). The constants fw,C are called class polynomials

in [GP] ; they can be computed recursively using the above rules.

Note that, at this stage, it is conceivable that the class polynomials might not only

depend on w and C but also on the sequences of generators which are used to conjugate

arbitrary elements in W to those of minimal length in their classes. We will see below

that this is not the case. For this purpose, we have to show that the basis elements gwC

are linearly independent modulo [H,H]. In the case where A is a suitably chosen field,

this was already established in [GP]. The general case can be easily deduced from this,

using an argument of [GR]. Since this is essential in the existence proof of Markov traces

(in fact, of any kind of trace functions) we will give a proof for that general case here.

Theorem 4.2 (Existence and uniqueness of trace functions). The quotient space

H/[H,H] is a free A-module. A canonical basis is given by the images (under the natural

map H → H/[H,H]) of the elements gwC
where C runs over the conjugacy classes of W

and wC is some fixed element of minimal length in C.

(The term canonical means that the basis does not depend on the choice of elements wC .)

P r o o f. Lemma 4.1 already implies that the images of the elements {gwC
} form a

generating set for the A-module H/[H,H]. It remains to prove their linear independence.

For this purpose, it is sufficient to construct a collection of trace functions {fC} on H,

one for each conjugacy class C of W , such that

fC(gw) = δC,C′ if w ∈ C ′min.

The following arguments are a typical application of the technique of specialization:

At first, the desired result is proved in a “generic” situation, for a sufficiently general

choice of the ground ring A where the parameters qi are in fact indeterminates. Then

the conclusion for any other choice of A and the qi is achieved by “specializing” those

indeterminates to the given values.

Step 1: The “generic” situation. Let A be the ring of Laurent polynomials (over the

integers) in indeterminates ui (i ∈ I) such that ui = uj whenever si, sj are conjugate in

W . Let H be the “generic” Iwahori–Hecke algebra associated with W and defined over

A (with parameters ui). Let K be an algebraic closure of the field of fractions of A and

KH the K-algebra obtained from H by extending scalars from A to K. Then KH is

a split semisimple K-algebra (see [CR], Corollary 68.12). Hence every trace function on

KH is a linear combination of the characters of the irreducible representations of KH.
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Moreover, by Tits’ Deformation Theorem (see [CR], Theorem 68.21), the algebra KH

is in fact isomorphic to the group algebra of W over K. It follows that the number of

irreducible characters of KH equals the number of conjugacy classes of W , and that

the (square) matrix of values (χ(gwC
)), where χ runs over the irreducible characters of

KH and C runs over the conjugacy classes of W , is invertible. This immediately implies

that the basis elements gwC
are linearly independent modulo [KH,KH], and hence the

class polynomials fw,C of Lemma 4.1 are uniquely determined. The definition of the class

polynomials shows that fw,C = δC,C′ for w ∈ C ′min.

The following arguments are taken from [GR], Section 5.1. For each class C, we can

define a linear map fC : KH→ K by

fC(gw) := fw,C for all w ∈W.

We check that fC is a trace function on KH. Indeed, for each w ∈W , we have equations

χ(gw) =
∑
C

fw,Cχ(gwC
) for all irreducible characters χ.

We can invert these equations and hence obtain expressions of the functions fC as linear

combinations of the irreducible characters of KH. Hence the functions fC must be trace

functions themselves.

Finally, we note that the class polynomials of H and KH clearly are the same, and

that they lie in A. Hence the functions fC restrict to trace functions on H with values

in A. This collection of trace functions on H has the required properties.

Step 2: “Specialization”. Given any other choice for A and the parameters {qi}, we

have a unique ring homomorphism ϕ : A → A such that ϕ(ui) = qi for all i. Then the

Iwahori–Hecke algebra H (over A and with parameters {qi}) can also be described as the

tensor product A⊗AH where A becomes an A-module via ϕ. This operation of extending

scalars from A to A also induces a canonical map from the space of trace functions on

H to the space of trace functions on H. (In more concrete terms, the following happens.

Let a(w,w′, w′′) ∈ A be the structure constants for the multiplication of basis elements

in the generic algebra H, that is, we have

gw · gw′ =
∑

w′′∈W
a(w,w′, w′′)gw′′ for w,w′ ∈W.

Then the elements ϕ(a(w,w′, w′′)) ∈ A are the structure constants for the multiplication

of basis elements in the algebra H over A. If f : H → A is a trace function on H then

the map fϕ : H → A defined by gw 7→ ϕ(f(gw)), is a trace function on H.) The images

of the functions fC then have the required properties. This completes the proof of the

Theorem.

Using the duality between trace functions and the quotient space modulo the com-

mutators, we can immediately translate the last two results to trace functions.

Lemma 4.1 implies that every trace function on H is uniquely determined by its values

on the basis elements gwC
, where C runs over the conjugacy classes of W .

Theorem 4.2 implies that, conversely, if {aC} is a collection of elements in A, one for

each conjugacy class C of W , then there exists a unique trace function λ on H such that

λ(gw) = aC if the element w ∈W has minimal length in the class C.
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5. Definition and basic properties of Markov traces. Let again Xn (for n ≥ 1)

be one of the classical types An−1, Bn or Dn, and W (Xn) the corresponding finite Coxeter

group. We have natural embeddings W (X1) ⊂W (X2) ⊂ . . ., and we let

W∞ :=
⋃
n≥1

W (Xn).

Let H(Xn) be the associated Iwahori–Hecke algebra defined over a commutative ring A

as in Section 4. Since all generators si are conjugate, the corresponding parameters qi
must be equal, and we denote them by q. In type Bn, the parameter corresponding to

the generator t will be denoted by Q. In type Dn, the parameter corresponding to the

generator u also equals q (since u is conjugate to s1, as soon as n ≥ 3). We also have

natural embeddings H(X1) ⊂ H(X2) ⊂ . . ., and we let

H∞ :=
⋃
n≥1

H(Xn).

The algebra H∞ is a free A-algebra of infinite rank, generated by the elements g1, g2, . . .

(corresponding to the generators s1, s2, . . .), and an additional generator which we denote

by T in type Bn, and by U in type Dn.

Definition (cf. [Bi], p. 264) Let z ∈ A and τ : H∞ → A be A-linear. Then τ is

called a Markov trace (with parameter z) if the following conditions are satisfied.

(1) τ is a trace function.

(2) τ(1) = 1 (normalization).

(3) τ(hgn) = zτ(h) for all n ≥ 1 and h ∈ H(Xn) (Markov property).

We note that all generators gi (for i = 1, 2, . . .) are conjugate in H∞. In particular,

any trace function on H∞ must have the same value on these elements. This explains

why the parameter z is independent of n in rule (3) of this definition.

The crucial step in the classification of Markov traces is the observation that the

values of such a trace on basis elements of H∞ corresponding to elements in signed block

form in W∞ only depend on the number of positive and negative blocks if we replace some

generators gi by their inverses. For this purpose, recall the definition of the sets D(Xn)

and the double coset representatives tn−1 (in type Bn) and un−1 (in type Dn) from

Section 3. We define corresponding elements in the Iwahori-Hecke algebras as follows.

T ′n−1 := gn−1 · · · g1Tg−11 · · · g
−1
n−1 for all n ≥ 1 in type B,

and

U ′n−1 := gn−1 · · · g2Ug−11 g−12 · · · g
−1
n−1 for all n ≥ 2 in type D.

The braid relations in H(Xn) imply that the generators g1, . . . , gn−2 commute with T ′n−1
in type Bn, and that the generators g2, . . . , gn−2 commute with U ′n−1 in type Dn, while

UU ′n−1 = U ′n−1g1 but g1U
′
n−1 6= U ′n−1U for all n ≥ 3!

We use these elements to define the analogues of the sets D(Xn) as subsets of H∞.

If n = 1, we let D′(X1) := {gw | w ∈ W (X1)}. For n ≥ 2 we give the definition case by

case.
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Type An−1: D′(Xn) := {1, gn−1}.
Type Bn : D′(Xn) := {1, gn−1, T ′n−1}
Type Dn : D′(Xn) := {1, gn−1, U ′n−1} for n ≥ 3 and D′(X2) := {1, g1, U, U ′1}.

Now recall from Section 4 that a trace function on an Iwahori-Hecke algebra is uniquely

determined by its values on basis elements corresponding to representatives of minimal

length in the various conjugacy classes of the underlying Coxeter group. Also recall from

Section 3 that representatives of minimal length in the classes of Coxeter groups of classi-

cal types are of the form d1 · · · dn, where di is a distinguished double coset representative

of W (Xi) with respect to W (Xi−1). If we are also willing to consider elements in signed

block form which have not necessarily minimal length in their class we arrive at the

following result (which already appeared in [GL], Proposition 3.4 and Corollary 3.5, for

type B). It translates Proposition 3.2 from the level of Coxeter groups to the level of

Iwahori–Hecke algebras, taking into account the modified sets D′(Xn).

Lemma 5.1. Let h ∈ H(Xn) for some n ≥ 1. Then there exists a function ah :

D′(X1)× · · · × D′(Xn)→ A such that

λ(h) =
∑

(d′1,···,d′n)

ah(d′1, . . . , d
′
n)λ(d′1 · · · d′n)

and

λ(hgn) =
∑

(d′1,···,d′n)

ah(d′1, . . . , d
′
n)λ(d′1 · · · d′ngn)

for all trace functions λ : H → A (where d′i ∈ D′(Xi) for all i).

P r o o f. We may clearly assume that h = gw for some w ∈ W (Xn). We proceed by

induction on l(w). If l(w) = 0 or l(w) = 1, there is nothing to prove. Now let l(w) ≥ 2

(and hence n ≥ 2). Recall from Proposition 3.2 that for each w ∈ W (Xn) there exists

a sequence of generators in W (Xn−1) which conjugates w step by step to an element of

the form d1 · · · dn (with di ∈ D(Xi) for all i) in such a way that the length either remains

the same or decreases at each step. (Note that we don’t necessarily reach representatives

of minimal length in the classes of W (Xn).) Since the generators in W (Xn−1) commute

with sn we thus have

w −→ d1 · · · dn and wsn −→ d1 · · · dnsn,

where in both cases we can use the same sequence of generators.

If we apply the analogous conjugations to the basis elements in H(Xn) and use the

relations in the beginning of Section 4, we find the following. For each w ∈W (Xn) there

exists a function bw : D(X1)× · · · × D(Xn)→ A such that

gw ≡
∑

(d1,...,dn)

bw(d1, . . . , dn)gd1
· · · gdn

mod [H(Xn), H(Xn)]

and

gwgn ≡
∑

(d1,...,dn)

bw(d1, . . . , dn)gd1
· · · gdn

gn mod [H(Xn), H(Xn)].
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Now we have to replace the basis elements corresponding to the elements di by the

modified elements d′i. If di = gi−1 there is nothing to be changed. So let us assume that

di = ti−1 (in type Bn) or di = ui−1 (in type Dn). Consider the corresponding product of

the generators in H(Xi). Replacing the appropriate generators gj by their inverses and

using the inversion formula for gj shows that

gdi
= ql(di)d′i +A-linear combination of gv with v ∈W (Xi) and l(v) < l(di)

where d′i is the element in D′(Xi) analogous to di. We insert these expressions in the

above relations and conclude that

gw ≡ h̃+
∑

(d1,...,dn)

bw(d1, . . . , dn)d′1 · · · d′n mod [H(Xn), H(Xn)]

and

gwgn ≡ h̃gn +
∑

(d1,...,dn)

bw(d1, . . . , dn)d′1 · · · d′ngn mod [H(Xn), H(Xn)],

where h̃ ∈ H(Xn) is a linear combination of basis elements corresponding to elements in

W (Xn) of strictly smaller length than w. We can then apply induction to complete the

proof.

The above Lemma allows us to reduce the computation of the value of any trace

function on H∞ to the computation of the values on elements of the form d′1 · · · d′n, with

d′i ∈ D′(Xi) for all i. The next result is the key to the evaluation of Markov traces on

such elements. For type B, this already appeared in [GL], Lemma 4.2. It shows that we

can always apply a Markov type rule to factors gn, and shift the remaining factors T ′n or

U ′n to the left as far as possible.

Lemma 5.2. Let τ be a Markov trace on H∞ with parameter z. To abbreviate notation,

we let Yi denote the element T ′i (in type B) respectively U ′i (in type D).

(a) Let n ≥ 1 in type B and n ≥ 2 in type D. If h ∈ H(Xn) and m ≥ 0, then

τ(hgnYn+1 · · ·Yn+m) = zτ(hYn · · ·Yn+m−1).

(b) Let n ≥ 1. If h ∈ H(Xn) and m ≥ 0, then

τ(hYn+1 · · ·Yn+m) = τ(hYn · · ·Yn+m−1).

P r o o f. To prove these relations we will proceed by induction on m. If m = 0 then

there is nothing to prove in (b), while in (a) we can apply directly rule (3) in the definition

of Markov traces. Now let us assume that m > 0. Let x = gn in (a) and x = 1 in (b). We

have to evaluate the expression

τ(hxYn+1 · · ·Yn+m).

Since n ≥ 1 we can write Yn+1 = gn+1Yng
−1
n+1. The braid relations in H imply that g−1n+1

commutes with Yn+2, . . . , Yn+m. Since τ is a trace our expression is equal to

τ(g−1n+1hxgn+1YnYn+2 · · ·Yn+m).
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Now h lies in H(Xn), that is, h only involves the generators t, g1, . . . , gn−1. It follows

that h commutes with g−1n+1. Hence, if x = 1 we find that our expression equals

τ(hYnYn+2 · · ·Yn+m).

We can apply induction with h′ := hYn, and we are done.

We let x = gn from now on. Using the braid relation g−1n+1gngn+1 = gngn+1g
−1
n , the

above expression can be rewritten as

τ(hgngn+1g
−1
n YnYn+2 · · ·Yn+m).

If we are in type B with any n, respectively in type D with n ≥ 2, we can write Yn =

gnYn−1g
−1
n . Then the left hand term gn will cancel and then gn+1 commutes with Yn−1.

Now our expression reads

τ(hgnYn−1gn+1g
−1
n Yn+2 · · ·Yn+m).

The element g−1n commutes with all terms to the right of it. Hence our expression equals

τ(g−1n hgnYn−1gn+1Yn+2 · · ·Yn+m).

We write h′ := g−1n hgnYn−1 and observe that this element lies in Hn+1. So we can apply

the induction and obtain that

τ(hgnYn+1 · · ·Yn+m) = τ(h′gn+1Yn+2 · · ·Yn+m) = zτ(h′Yn+1 · · ·Yn+m−1).

We insert the expression for h′ again, note that g−1n commutes with Yn+1 · · ·Yn+m−1, and

conclude that

τ(h′Yn+1 · · ·Yn+m) = τ(hgnYn−1g
−1
n Yn+1 · · ·Yn+m) = zτ(hYnYn+1 · · ·Yn+m−1).

Putting things together we see that this completes the proof.

5.3. Markov traces for type A. Let τ be a Markov trace with parameter z, and let

d′i ∈ D′(Ai−1) for i = 1, . . . , n. Then each d′i either equals 1 or gi−1, hence the Markov

property directly implies that

τ(d′1 · · · d′n) = za,

where a is the number of factors equal to gi−1. Thus, τ is uniquely determined by its

parameter z.

To prove the existence of a Markov trace with any given parameter z ∈ A, we refer

to [Jo], Theorem 5.1, or [GP], (4.1). In the framework of the theory developed here, the

argument is as follows. We define a trace that has the Markov property on the elements

d′1 · · · d′n corresponding to elements of minimal length in the conjugacy classes of W∞,

and we have to show that the Markov property then holds for all elements of H∞.

In particular for type A we have, by (3.3), that each element of the form d1 · · · dn,

with n ≥ 1 and di ∈ D(Ai−1) for all i, has minimal length in its class in W (An−1).

Note that the corresponding elements d′i ∈ D′(Ai−1) are just gdi
. By Theorem 4.2 we

can define a trace function τn : H(An−1) → A by specifying its values on elements of

the form d′1 · · · d′n, and the Markov property forces us to let τ(d′1 · · · d′n) = za, with a as

above. These traces are compatible with the embeddings H(A1) ⊂ H(A2) ⊂ . . ., hence

they define a unique trace function on the infinite union of these algebras. It remains to
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show that the Markov property holds for all elements of H∞. This follows by combining

the two equations in Lemma 5.1.

5.4. Markov traces for type B. Let τ be a Markov trace with parameter z, and let

d′i∈D′(Bi) for i=1, . . . , n. Then each d′i either equals 1 or gi−1 or T ′i−1, hence Lemma 5.2

implies that

τ(d′1 · · · d′n) = zaτ(T ′0 · · ·T ′b−1),

where a is the number of factors d′i which are equal to gi−1 and b is the number of factors

d′i which are equal to T ′i−1. Thus, τ is uniquely determined by its parameter z and the

values on the elements in the set

{T ′0 · · ·T ′k−1 | k = 1, 2, . . .}.

Conversely, given z, y1, y2, . . . ∈ A there does exist a Markov trace τ with parameter z

and such that τ(T ′0T
′
1 · · ·T ′k−1) = yk for all k ≥ 1. For the details of this existence result,

we refer to [GL], Theorem 4.3. The argument is very roughly analogous to type A but

complications arise from the fact that one also has to consider conjugates of T where the

conjugating element is of the form g±11 · · · g
±1
i , with any choice of signs.

6. Markov traces for type D. The aim of this section is to classify Markov traces

for Iwahori–Hecke algebras of type D. The best way to achieve this seems to be by

embedding these algebras into those for type B, and then to use the known results for

type B. To fix notation we let Wn (for n ≥ 2) denote the Coxeter group of type Bn, with

generators {t, s1, . . . , sn−1} and W ′n ⊆Wn the Coxeter group of type Dn, with generators

{u = ts1t, s1, . . . , sn−1} (see Section 2.3). We let

W ′∞ :=
⋃
n≥2

W ′n ⊂ W∞ :=
⋃
n≥2

Wn.

We denote the Iwahori–Hecke algebras of type Bn and Dn by Hn and H ′n, respectively.

In order to have an embedding of H ′n into Hn, we have to set the parameter Q equal

to 1. Indeed, in this case, we have T 2 = 1 in Hn and can compute that

U2 = (Tg1T )2 = Tg21T = q · 1H + (q − 1)Tg1T = q · 1H + (q − 1)U.

Furthermore, we have a decomposition of A-modulesHn = H ′n⊕H ′nT whereH ′nT = TH ′n.

Thus, H ′n is the subalgebra of Hn generated by the elements U = Tg1T, g1, . . . , gn−1. We

let

H ′∞ :=
⋃
n≥2

H ′n ⊂ H∞ :=
⋃
n≥2

Hn

and consider the restriction of trace functions from H∞ to H ′∞. It is clear that the

restriction of a Markov trace on H∞ is a Markov trace on H ′∞ (and both have the same

parameter). Our main result will show that every Markov trace on H ′∞ can be obtained

in this way.

At first we will establish a uniqueness result for Markov traces on H ′∞, similarly to

that for H∞. Recall that we have D′(D2) = {1, g1, U, U ′1} and D′(Di) = {1, gi−1, U ′i−1}
for i ≥ 3, where

U ′i = gi · · · g2Ug−11 g−12 · · · g
−1
i for all i ≥ 1.
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The main difference to type B lies in the set D′(D2) which does not just contain the

elements g1 and U ′1 (as would be analogous to type B) but also the extra generator U .

The main complication arising from this is that g1 respectively U do not commute with

U ′i for i ≥ 2. On the level of W ′n we have uui = uis1 and uiu = s1ui, but on the level of

H ′n we only have UU ′i = U ′ig1 but U ′iU 6= g1U
′
i for all i ≥ 2. Nevertheless, we have the

following relations:

U±1U ′i = U ′ig
±1
1 +A-linear combination of gw with w ∈W ′n and l(w) < l(uui),

g±11 U ′i = U ′iU
±1 +A-linear combination of gw with w ∈W ′n and l(w) < l(uui).

(Indeed, we know that uui = uis1 and s1ui = uiu. So we also have UUi = Uig1 and

g1Ui = UiU where Ui = gi · · · g2Ug1g2 · · · gi. The above formulas then follow by inserting

the expressions gj = qg−1j +(q−1)1H or U = qU−1 +(q−1)1H at the appropriate places,

and expanding.)

We will argue carefully by induction on the length of elements, and then the above

two rules will be sufficient.

Proposition 6.1 (Uniqueness of Markov traces for type D). Let z ∈ A and τ : H ′∞ →
A be a Markov trace with parameter z. Then τ is uniquely determined by its values on

the elements in the set

{U ′1 · · ·U ′2k−1 | k = 1, 2, . . .}.

P r o o f. For each N ≥ 0 let H ′(≤ N) be the A-subspace of H ′ generated by all

elements gw with w∈W ′n for some n ≥ 2 and l(w) ≤ N . The subspace H ′(<N) is defined

in the analogous way. We claim that, for all N , the values of τ on elements in H ′(≤ N)

are determined by the values on elements of the form U ′1 · · ·U ′2k−1, for k = 1, 2, . . .. If

N = 0 there is nothing to prove. Now assume that our claim holds for N ≥ 0 and that

w ∈ W ′n for some n such that l(w) = N + 1. Since the Wn form an increasing chain we

may assume that n is large enough. (Actually, we shall use that n ≥ 3.) We must show

that τ(gw) is determined as required.

By Lemma 4.1, τ(gw) can be expressed as a linear combination of values τ(gwC
) where

C runs over a set of conjugacy classes of W ′n such that l(wC) ≤ l(w). Let us fix such a

class C, labelled by the pair of partitions (α, β) say. The discussion in (3.5) shows that

two different types of classes can occur.

Type I. The elements wC and twCt are not conjugate in W ′n. Then wC must have a

very special form: Up to possibly interchanging the roles of wC and twCt, we must have

wC = s1si1 · · · sir and hence twCt = usi1 · · · sir , for some 2 ≤ i1 < · · · < ir. Using the

Markov property, we can therefore compute that

τ(gwC
) = τ(g1gi1 · · · gir ) = τ(g1)zr and τ(gtwCt) = τ(Ugi1 · · · gir ) = τ(U)zr.

Now we observe that u and s1 are two generators of W ′n, and that all generators are

conjugate (since n ≥ 3). Clearly, they are of minimal length in their conjugacy class.

Using Theorem 3.6(b) and the Markov property, we conclude that τ(U) = τ(g1) = z.

Hence, the values of τ on gwC
and gtwCt are already determined (they are equal to zr+1).

Type II. The elements wC and twCt are conjugate in W ′n. If the partition α is empty,

then we can assume that wC is a product of generators si, hence the Markov property
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alone determines the value of τ on gw. From now on, let us assume that α is not empty. We

can assume that wC = d1 · · · dn with di ∈ D(Di) for all i. As in the proof of Lemma 5.1

we see that, up to a power of q, the element gwC
= gd1···dn is congruent to d′1 · · · d′n

modulo H ′(< l(wC)) ⊆ H ′(≤ N) where d′i ∈ D′(Di) is the element of the analogous form

as di. By induction, it is therefore sufficient to show that the value of τ on d′1 · · · d′n is

determined as required.

Recall from (3.5) that wC = w(α, β)′ where α has an even number of parts and ele-

ments of the form uisi+1 · · · si+d−1 are considered as negative blocks (with the convention

that u0 = 1). Hence the total number of “proper” factors ui 6= 1 in this expression for

wC is odd!

If the first negative block has length 1 it just consists of u0 = 1 hence in our expression

d′1 · · · d′n we have d′1 = 1, d′2 = U ′1. We can directly apply Lemma 5.2 and conclude that

τ(d′1 · · · d′n) = zaτ(U ′1 · · ·U ′2b−1)

where a is the number of factors d′i equal to gi−1 and 2b is the number of parts of α.

If the first negative block has length > 1 it consists of a product of factors s1 · · · sm−1
for some m ≥ 2 hence in our expression d′1 · · · d′n we have d′1 = 1, d′2 = g1, . . . , d

′
m = gm−1.

Using Lemma 5.2, we conclude that

τ(d′1 · · · d′n) = zaτ(g1U
′
2 · · ·U ′2b),

where a is the number of factors d′i which are equal to gi−1 and 2b is the number of parts

of α. We write U ′2 = g2Ug
−1
1 g−12 and obtain that

τ(g1U
′
2 · · ·U ′2b) = τ(g1g2Ug

−1
1 g−12 U ′3 · · ·U ′2b) = τ(g−12 g1g2Ug

−1
1 U ′3 · · ·U ′2b),

since g2 and hence also g−12 commutes with U ′i for i ≥ 3. Now we use the braid relation

g−12 g1g2 = g1g2g
−1
1 and rewrite the above expression as τ(g1g2Ug

−2
1 U ′3 · · ·U ′2b). We apply

the above commutation rules for g−21 , U with U ′3 · · ·U ′2b and conclude that

g1g2Ug
−2
1 U ′3 · · ·U ′2b ≡ Ug−21 g1g2U

′
3 · · ·U ′2b = U ′1g2U

′
3 · · ·U ′2b mod H(≤ N)′.

Now Lemma 5.2 implies that

τ(U ′1g2U
′
3 · · ·U ′2b) = zτ(U ′1U

′
2 · · ·U ′2b−1).

This completes the proof.

Theorem 6.2 (Classification of Markov traces for type D). Let z, y2, y4, . . . ∈ A. Then

there exists a unique Markov trace τ on H ′∞ with parameter z such that

τ(U ′1 · · ·U ′2k−1) = y2k for all k ≥ 1.

Every Markov trace on H ′∞ is the restriction of a Markov trace on H∞.

P r o o f. Uniqueness was already proved in Proposition 6.1. In order to prove existence,

choose any elements y1, y3, . . .∈ A, in addition to the given elements z, y2, y4, . . .∈ A. By

the classification of Markov traces for type B (see (5.4) and [GL], Theorem 4.3), there

exists a (unique) Markov trace τ on H∞ with parameter z such that τ(T ′0T
′
1 · · ·T ′k−1) = yk

for all k ≥ 1. We restrict this Markov trace to H ′∞ and it remains to check that the value

of τ on U ′1 · · ·U ′2k−1 indeed equals y2k. This is done as follows. We rewrite the elements
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U ′i in terms of the generators of H∞ and obtain that

U ′i = gi · · · g2Tg1Tg−11 g−12 · · · g
−1
i = TT ′i for all i ≥ 1.

Hence we must compute the value of τ on (TT ′1) · · · (TT ′2k−1). While, on the level of W∞,

the elements t and ti commute with each other, this is no longer true on the level of

H∞ for the elements T and T ′i . By [GL], Lemma 2.4(c), we have the commutation rule

TT ′2i−1 = T ′2i−1,0T where T ′2i−1,0 =g2i−1 · · · g2g−11 Tg1g
−1
2 · · · g

−1
2i−1. We apply this rule to

every factor with an odd index; this will produce, for each i, a factor TT between the

(2i − 1)-th and the 2i-th term. Since Q = 1 we have TT = 1H , and hence our desired

trace value equals

τ(T ′1,0T
′
2 · · ·T ′2k−2T ′2k−1,0T ) = τ(T ′0T

′
1,0T

′
2 · · ·T ′2k−2T ′2k−1,0).

The argument on the right hand side now has a form to which we can apply the results

[GL], (4.4), on the evaluation of Markov traces for type B. By [loc. cit.], we can replace

each T ′i,0 by an arbitrary element of the form xTx−1 with x = g±1i · · · g
±1
1 , without

affecting the trace value. Applying this to the factors T ′2i−1,0 yields that the above value

in fact equals

τ(T ′0T
′
1 · · ·T ′2k−1) = y2k.

This completes the proof.

Finally, we can establish the following improvement to Proposition 6.1.

Corollary 6.3. Let τ : H ′∞ → A be a Markov trace with parameter z. Let n ≥ 1 and

d′i ∈ D′(Di) for 1 ≤ i ≤ n. Then

τ(d′1 · · · d′n) = zaτ(U ′1 · · ·U ′2b−1),

where a is the number of factors d′i which are equal to gi−1 or U , and 2b−1 is the smallest

odd number less than or equal to the number of factors d′i which are equal to U ′i−1.

P r o o f. We only sketch this. By Theorem 6.2, the trace τ is the restriction of a Markov

trace on H∞, which we shall denote by the same symbol. We can rewrite each U ′i as TT ′i
and obtain an expression for d′1 · · · d′n in terms of the generators of Hn. If there is a factor

U we also rewrite it as Tg1T . Now we use the commutation rule for T and T ′i already

mentioned in the proof of Theorem 6.2 to cancel intermediate factors T . The resulting

expression either has signed block form in Hn or is conjugate to such an expression by

T (but possibly with factors T ′i,0 instead of T ′i ). Performing this conjugation if necessary

(which does not effect the trace value!) and using once more the evaluation rule in [GL],

(4.4), we conclude that the value of τ on d′1 · · · d′n is equal to the value on an element of

the form d′′1 · · · d′′n where each d′′i either equals gi−1 or T ′i−1, and the number of factors

T ′i−1 is even. Now Lemma 5.2 implies that this value equals zaτ(T ′0 · · ·T ′2b−1) for some

a, b. We can argue as above in the proof of Theorem 6.2 to compare the values of τ on

products T ′0T
′
1 · · · with those on products U ′1U

′
2 · · ·, and hence get the desired conclusion.

7. Concluding remarks and open questions

7.1. Relations with knot theory. Iwahori–Hecke algebras of type A can also be de-

scribed as quotients of the group algebras of Artin’s braid groups. The motivation for
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introducing Markov traces in type A is then given by Markov’s Theorem in classical knot

theory (see [Jo], Section 4). Now braid groups exist for any given type of finite Coxeter

groups (cf. [BS]), and the corresponding Iwahori–Hecke algebras again are quotients of

their group algebras. Does there exist a knot theory in some suitable topological space

such that the Markov traces for type B and D yield invariants for isotopy classes of

oriented knots and links in an analogous way as Ocneanu’s trace leads to the Jones poly-

nomial? S. Lambropoulou [La] has shown that this is indeed the case for type B. The

same question for type D seems to be open.

7.2. Relations with R-matrices. Turaev has given an interpretation in terms of R-

matrices for the construction of generalized Markov traces on classical braid groups (see

[Bi], Section 3). In this way, invariants like the Jones polynomial and the Kauffman

polynomial can all be derived in a uniform way. Does there exist such an R-matrix

interpretation for the Markov traces discussed in this paper? (I wish to thank J. Birman

for mentioning this problem to me.) In type B and in the special case where there exists

some y ∈ A such that τ(T ′0T
′
1 · · ·T ′k−1) = yk for all k ≥ 1 (notation of (5.4)), such an

interpretation has been given by T. tom Dieck in [Di], §4 and 6. The question seems to

be open for general choices of the yk’s, as well as for type D.

7.3. The problem of weights. Let KH be the “generic” Iwahori–Hecke algebra of type

An−1, Bn or Dn, defined over an algebraically closed field as in the proof of Theorem 4.2.

Then every trace function on KH is a linear combination of the characters corresponding

to the irreducible representations of KH. (These irreducible characters are labelled by

partitions or pairs of partitions in a similar way as this was the case for the conjugacy

classes of the underlying Coxeter groups.) In particular, it must be possible to express the

Markov traces discussed in this paper as linear combinations of the irreducible characters,

where the coefficients are called “weights”. For Ocneanu’s original trace function in type

A these weights are known and given in [Jo], pp.345. The weights in type B and D do

not seem to be known.
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