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1. The aim of this paper is to study markovianity for states on von Neumann algebras

generated by the union of (not necessarily commutative) von Neumann subagebras which

commute with each other. This study has been already begun in [2] using several a priori

different notions of noncommutative markovianity. In this paper we assume to deal with

the particular case of states which define odd stochastic couplings (as developed in [3])

for all couples of von Neumann algebras involved. In this situation these definitions are

equivalent, and in this case it is possible to get the full noncommutative generalization of

the basic classical Markov theory results. In particular we get a correspondence theorem,

and an explicit structure theorem for Markov states.

2. Let M be a von Neumann algebra acting on an Hilbert space H. For ξ in H

we denote by ωξ the vector state on B(H) implemented by ξ. In order to simplify our

notations we shall often write (ωξ)M for ωξ|M or simply (ωξ)α if the von Neumann algebra

involved is endowed with an index α.

We shall say C is a self–dual positive cone for M in H if there is a separating vector

Ω for M in H, such that C is the selfdual positive cone for EME in EH (in the sense of

the modular theory for von Neumann algebras) which contains Ω, with E the orthogonal

projection from M to the closure of {aΩ, a ∈M}.
Let γ be an index, Mγ be a von Neumann algebra acting on a Hilbert space H, and

let Ω be a vector in H which is separating for Mγ . We shall denote by Hγ the closure

of {aΩ, a in Mγ}, by Eγ the orthogonal projection from H to Hγ , and with the usual

notations endow with an index γ the objects of the modular theory for the action of
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EγMγEγ on Hγ ; in particular we denote by Jγ the isometrical involution for EγMγEγ
onHγ which leaves Cγ invariant. IfMµ,Mν are von Neumann algebras withMν contained

in Mµ we shall denote by εµ,ν the ω– (or generalized) conditional expectation (cf. [1])

from Mµ to Mν which preserves ωΩ. We shall denote by F (εµ,ν) the set of the fixed points

under εµ,ν . If the ω–conditional expectation is a norm one projection (i.e. F (εµ,ν) = Mν)

we shall say Mν to be expected in Mµ with respect to (ωΩ)µ.

We shall start by considering two mutually commuting (not necessarily commutative)

von Neumann algebras M1 and M2 (i.e. for all a1 in M1, a2 in M2 we assume a1a2 = a2a1)

and assume Ω in H to be separating for both M1 and M2.

Let a1 be in M1. Then E2a1E2 commutes with M2; so there is a unique operator

λ1,2(a1) such that E2a1ξ = J2λ1,2(a+
1 )J2ξ for all ξ in H2. It is immediate to check that

the mapping λ1,2 : M1 7→ M2 is a linear, ultraweakly continuous, completely positive

contraction. If ξ, η are in C1 we have, for all a1 in M1:

ωη+iξ(λ1,2(a1)) = 〈η + iξ, λ1,2(a1)(η + iξ)〉
= 〈η + iξ, J2E2a

+
1 J2(η + iξ)〉 = 〈E2a

+
1 (η − iξ), J2(η + iξ)〉

= 〈E2a
+
1 (η − iξ), η − iξ〉 = 〈η − iξ, a1(η − iξ)〉

= ωη−iξ(a1).

This proves that the mapping λ1,2 is the dual mapping of an odd stochastic transition

%2,1 from (M2)∗ to (M1)∗ (cf. [3]). If we define %2,1 symmetrically the same proof yields

that (%2,1, %1,2) is an Ω implemented odd stochastic coupling for M1 and M2 as defined

in [3] provided we assume the following

Condition. Let σti be the modular authomorphism group on Mi for (ωΩ)i (i = 1, 2).

For any t real and a1 in M1 we have λ1,2(σt1(a1)) = σt2(λ1,2(a1)).

In the following we shall always assume, without recalling it explicitly, this intertwin-

ing condition to be satisfied for all pairs of mutually commuting algebras we consider

with reference to the given vector.

It is proved in [3] that in this situation there is an antiunitary operator J on the

Hilbert space H{1,2} spanned by H1 ∪ H2 which commutes with both E1 and E2 and

such that the action of JEi on Hi coincides with the action of Ji (i = 1, 2). This implies

immediately the following lemma, basic for our development.

Lemma 2.1. In the above situation J1E1E2 = E1J2E1 = E2J1E1.

P r o o f. J1E1E2 = JE1E2 = E1JE2 = E1J2E2 and symmetrically.

We recall also [3] for the following

Lemma 2.2. In the above situation let R1 (R2) be the von Neumann subalgebra of

M1 (resp. M2) generated by the range of λ2,1 (resp. λ1,2). Then there are norm one

projections εi from Mi to Ri which preserve (ωΩ)i (i = 1, 2).

P r o o f. Cf. Lemma 5.1, [3].

3. Markovianity on triples of mutually commuting von Neumann algebras.

In this section we consider a triple M1,M2,M3 of mutually commuting von Neumann
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algebras which act on a Hilbert space H containing a vector Ω separating for the von

Neumann algebra M generated by M1 ∪M2 ∪M3. For i, j = 1, 2, 3, i 6= j, we denote by

M{i,j} the von Neumann algebra generated by Mi ∪Mj , and endow with the index {i, j}
all the already introduced objects when referred to M{i,j}. If k = 1, 2, 3, k 6= i, j, then

M{i,j} commutes with Mk. We shall generalize this notation in the natural way when

dealing with more than three mutually commuting von Neumann algebras.

Theorem 3.1. The following statements are equivalent :

a. λ3,{1,2}(M3) is contained in M2.

b. λ3,{1,2} = λ3,2.

c. E{1,2}E3 = E2E3.

d. λ3,{1,2}(M3) is contained in F (ε{1,2},2).

P r o o f. In the following we take a3 in M3, and use the fact that by Lemma 2.1,

J2E2a3Ω = E2J3a3Ω and E{1,2}J3a3Ω = J{1,2}E{1,2}a3Ω.

a. ⇒ b.
λ3,{1,2}(a3)Ω = E2λ3,{1,2}(a3)Ω

= E2J{1,2}E{1,2}a
+
3 Ω = E2E{1,2}J3a

+
3 Ω

= E2J3a
+
3 Ω = J2E2a

+
3 Ω = λ3,2(a3)Ω,

which is b. since Ω is separating for M1,2.

b. ⇒ c.
E{1,2}J3a3Ω = J{1,2}E{1,2}a3Ω

= λ3,{1,2}(a
+
3 )Ω = λ3,2(a+

3 )Ω

= J2E2a3Ω = E2J3a3Ω,

which implies c.

c. ⇒ d.
ε{1,2}(λ3,{1,2}(a3))Ω = J2E2a

+
3 Ω

= E2J3a
+
3 Ω = E{1,2}J3a

+
3 Ω

= J{1,2}E{1,2}a
+
3 Ω = λ2,{1,2}(a3)Ω;

so ε{1,2},2(λ3,{1,2}(a3)) = λ3,{1,2}(a3).

d. ⇒ a. Trivial.

Definition 3.2. We shall say Ω to be a Markov vector (and ωΩ to be a Markov

state) for M with respect to the localization (M1,M2,M3) if the equivalent conditions of

Theorem 3.1 are met.

Since in the abelian case λ3,{1,2} is nothing else than the restriction to M3 of the

(ωΩ)M preserving conditional expectation from M to M{1,2} by a. in Theorem 3.1 our

definition is a generalization of the classical notion of markovianity.

Theorem 3.3. The state ωΩ is a Markov state with respect to the localization (M1,M2,

M3) iff for all a1 ∈M1, a3 ∈M3 we have

λ{1,3},2(a1a3) = λ1,2(a1)λ3,2(a3). (∗)

If so then λ1,2(M1) commutes with λ3,2(M3).
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P r o o f. We have:

λ{1,3},2(a1a3)Ω = J2E2a
+
3 a

+
1 Ω = j2E2a

+
1 a

+
3 Ω

= J2E2E{1,2}a
+
1 a

+
3 Ω = J2E2a

+
1 E{1,2}a

+
3 Ω

= J2E2a
+
1 J{1,2}λ3,{1,2}(a3)Ω.

On the other hand:

λ1,2(a1)λ3,2(a3)Ω = J2E2a
+
1 J2λ3,2(a3)Ω.

If Ω is markovian then by c. in Theorem 3.1:

J{1,2}λ3,{1,2}(a3)Ω = E{1,2}a
+
3 Ω

= E2a
+
3 Ω = J2λ3,2(a3)Ω

and (∗) follows.

Conversely, (∗) implies for all ai ∈Mi (i = 1, 2, 3):

〈a1a2Ω, J{1,2}λ3,{1,2}(a3)Ω〉 = 〈a2Ω, E2a
+
1 J{1,2}λ3,{1,2}(a3)Ω〉

= 〈a2Ω, E2a
+
1 J2λ3,2(a3)Ω〉 = 〈a1a2Ω, J2λ3,2(a3)Ω〉.

As both J{1,2}λ3,{1,2}(a3)Ω and J2λ3,2(a3)Ω are in H{1,2} we get:

E{1,2}a
+
3 Ω = J{1,2}λ3,{1,2}(a3)Ω = J2λ3,2(a3)Ω = E2a

+
3 Ω,

which is c. in Theorem 3.1.

Let (∗) be satisfied. Then

λ1,2(a1)λ3,2(a3) = λ{1,3},2(a1a3) = λ{1,3},2(a3a1)

= λ{1,3},2((a+
1 a

+
3 )+) = (λ1,2(a+

1 )λ3,2(a+
3 ))+ = λ3,2(a3)λ1,2(a1).

Corollary 3.4 (reversibility). The state ωΩ is a Markov state for M with respect to

the localization (M1,M2,M3) iff it is a Markov state for M with respect to the localization

(M3,M2,M1).

P r o o f. If Ω is Markovian for M with respect to the localization (M1,M2,M3) then

by Theorem 3.3

λ{3,1},2(a3a1) = λ{1,3},2(a1a3)

= λ1,2(a1)λ3,2(a3) = λ3,2(a3)λ1,2(a1).

Now by the converse implication of Theorem 3.3 our claim follows.

4. Noncommutative Markov chains

Lemma 4.1. Let Mi (i = 1, . . . , n; n ≥ 4) be mutually commuting von Neumann

algebras acting on a Hilbert space H and Ω be markovian for M{1,...,k} with respect to

the localization (M{1,...,k−2},Mk−1,Mk) for all k = 3, . . . , n. Then for all ak ∈Mk (k =

3, . . . , n) we have:

λ{3,4,...,n},{1,2}(a3a4 . . . an)Ω

= E2J3a
+
3 J3E3 . . . En−2Jn−1a

+
n−1Jn−1λn,n−1(an)Ω.
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P r o o f. By induction. For n = 3 our equality is the Markov property of Ω for M{1,2,3}
with respect to the localization (M1,M2,M3). On the other hand by the induction

hypothesis applied to λ{4,...,n},{1,2,3} (a3a4 . . . an) Ω we get:

λ{3,4,...,n},{1,2}(a3a4 . . . an)Ω = J{1,2}E{1,2}a
+
3 a

+
4 . . . a

+
nΩ

= J{1,2}E{1,2}E{1,2,3}a
+
3 a

+
4 . . . a

+
nΩ

= J{1,2}E{1,2}a
+
3 E{1,2,3}a

+
4 . . . a

+
nΩ

= J{1,2}E{1,2}a
+
3 J{1,2,3}λ{4,...,n},{1,2,3}(a4 . . . an)Ω

= J{1,2}E{1,2}a
+
3 J{1,2,3}E3J4a

+
4 J4E4 . . . En−2Jn−1a

+
n−1Jn−1λn,n−1(an)Ω

= J{1,2}E{1,2}a
+
3 E3a

+
4 J4E4 . . . En−2Jn−1a

+
n−1Jn−1λn,n−1(an)Ω

= E{1,2}J3a
+
3 E3a

+
4 J4E4 . . . En−2Jn−1a

+
n−1Jn−1λn,n−1(an)Ω

= E2J3a
+
3 J3E3J4a

+
4 J4E4 . . . En−2Jn−1a

+
n−1Jn−1λn,n−1(an)Ω.

Proposition 4.2. Let the hypothesis of Lemma 4.1 be satisfied. Then Ω is marko-

vian for M{1,...,n} with respect to the localization M{1,...,k−1},Mk,M{k+1,...,n}) for k =

2, . . . , n− 1. Moreover for j = 1, . . . n− 3, an ∈Mn we have:

λn−j,n−j−1(. . . (λn−1,n−2(λn,n−1(an))) . . .) = λn,n−j−1(an),

when j is even (chain rule) and

λn−j,n−j−1(. . . (λn−1,n−2(λn,n−1(an))) . . .)Ω = Jn−j−1λn,n−j−1(a+
n )Ω

when j is odd.

P r o o f. By Lemma 4.1 we have for ak ∈Mk (k = 3, . . . , n):

E{1,2}a3a4 . . . anΩ = J{1,2}λ{3,4,...,n},{1,2}(a
+
3 a

+
4 . . . a

+
n )Ω

= J{1,2}E2J3a3J3E3 . . . En−2Jn−1an−1Jn−1λn,n−1(an)Ω

= J{1,2}E{1,2}J3a3J3E3 . . . En−2Jn−1an−1Jn−1λn,n−1(an)Ω

= E{1,2}a3J3E3 . . . En−2Jn−1an−1Jn−1λn,n−1(an)Ω

= J2E2J3a3J3E3 . . . En−2Jn−1an−1Jn−1λn,n−1(an)Ω

= J2λ{3,4,...,n},{1,2}(a
+
3 a

+
4 . . . a

+
n )Ω = E2a3a4 . . . anΩ;

so c. in Theorem 3.1 is satisfied for Ω and M{1,...,n} with respect to the localization

(M1,M2, M{3,...,n}).

Our hypothesis now allows us to let M{1,...,k−1} play the role of M1 above, Mk the

role of M2 and M{k+1,...,n} of M{3,...,n} and we get our first claim.

Let us now prove our second claim for j even. Then, applying Lemma 4.1 to the local-

ization (M{1,...,n−j−2},Mn−j−1,M{n−j,...,n}) and setting an−1 = an−2 = . . . = an−j = l,

we get:

λn,n−j−1(an)Ω = λ{n−j,...,n},{1,...,n−j−1}(an)Ω

= En−j−1En−j . . . En−2λn,n−1(an)Ω

= Jn−j−1En−j−1Jn−jEn−jJn−j+1 . . . jn−3En−3Jn−2En−2λn,n−1(an)Ω

= λn−j,n−j−1(. . . (λn−1,n−2(λn,n−1(an)+)+) . . .+)Ω,

and our claim follows since Ω is separating for Mn−j−1.
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If j is odd we have, using the preceding case:

λn,n−j−1(an)Ω

= En−j−1Jn−jEn−jJn−j+1 . . . Jn−3En−3Jn−2En−2λn,n−1(an)Ω

= En−j−1λ+ n− j + 1, n− j(. . . (λn−1,n−2(λn,n−1(an)+)+) . . .+)Ω

= Jn−j−1λn−j,n−j−1(. . . (λn−1,n−2(λn,n−1(an))) . . .)Ω.

Proposition 4.3. Let Mi (i integer) be the von Neumann algebras acting on a Hilbert

space H. We call M[i (M) the von Neumann algebra generated by the union of Mk with

k≥ i (by the union of all Mk). We assume the vector Ω in H to be markovian for M{1,...,k}
with respect to the localization (M{1,...,k−2},Mk−1,Mk) for all integers k. Then for all

integers k Ω is markovian for M with respect to the localization (M{1,...,k−2},Mk−1,M[k).

P r o o f. The projection E[k on H is the supremum of the projections E{k,...,k+n}
for n natural. So by Proposition 4.2 we have (the limit is taken in the strong operator

topology):

E{1,...,k−1}E[k = limE{1,...,k−1}E{k,...,k+n}

= limEk−1E{k,...,k+n} = Ek−1E[k,

and c. in Theorem 3.1 is proved for our localization.

Theorem 4.4. Let for all natural numbers i Mi be a von Neumann algebra acting on

a Hilbert space H and Ω in H be Markovian for M{1,...,k} with respect to the localization

(M{1,...,k−2},Mk−1,Mk) for k natural. Let A,B,C be subsets of the natural numbers such

that for a in A, b in B, c in C we have a < b < c. Then Ω is Markovian for MA∪B∪C
with respect to the localization (MA,MB ,MC).

P r o o f. Let b = maxB, By prop. 4.3 for all aC in MC we have EA∪BaCΩ = EbaCΩ,

which implies EA∪BacΩ = EBacΩ and c. in th. 3.1 is satisfied for our localization.

5. A structure theorem for markovian states

Theorem 5.1. Let Ω be a Markov state for M with respect to the localization (M1,M2,

M3). We set M2,3 (M2,1,M1,2,M3,2) to be the von Neumann subalgebra of M2 generated

by the range of λ3,2 (resp. of λ1,2, λ2,1, λ2,3), N1 (N2, N3, N) the von Neumann algebra

generated by M2,1 ∪M1,2 (resp. M2,1 ∪M2,3, M2,3 ∪M3,2, M2,1 ∪M1,2 ∪M2,3 ∪M3,2).

Then N1 and N3 mutually commute and there are ωΩ preserving norm one projections

ε : M 7→ N , ε1 : M1 7→ M1,2, ε2 : M2 7→ N2 and ε3 : M3 7→ M3,2 such that for all ai in

Mi ( i = 1, 2, 3)

ε(a1a2a3) = ε1(a1)ε2(a2)ε3(a3).

Further let us denote by λN3,1 (λN1,3) the dual of the Ω implemented odd stochastic cou-

pling for N3 and N1 (resp. for N1 and N3), and by Z2,1 (Z2,3) the center of M2,1 (M2,3).

Then λN3,1(N3) ⊆ Z2,1 and λN1,3(N1) ⊆ Z2,3.

P r o o f. By Theorem 3.3 M2,3 and M2,1 mutually commute; this implies that N1 and

N3 also mutually commute. We note also that Lemma 2.2 gives the existence of ε1 and

ε3 as above, as well as the existence of ωΩ preserving norm one projections ε2,1 and ε2,3

from M2 to M2,1 and to M2,3. This implies the existence of ε2.
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We have now, if b1 ∈M1,2, b2 ∈ N2 and b3 ∈M3,2:

〈b1b2b3Ω, a1a2a3Ω〉 = 〈a+
1 a

+
2 b1b2Ω, b+3 a3Ω〉

= 〈J3λ{1,2},3(a+
1 a

+
2 b1b2)Ω, b+3 a3Ω〉

= 〈J3λ{1,2},3(a+
1 a

+
2 b1b2)Ω, ε3(b+3 a3)Ω〉

= 〈J3λ{1,2},3(a+
1 a

+
2 b1b2)Ω, b+3 ε3(a3)Ω〉

= 〈a+
2 ε3(a3)+b2b3Ω, b+1 a1Ω〉 = 〈a+

2 ε3(a3)+b2b3Ω, b+1 ε1(a1)Ω〉
= 〈ε1(a1)+b1ε3(a3)+b3Ω, b+2 a2Ω〉
= 〈J2λ{1,3},2(b+1 ε1(a1)b+3 ε3(a3)+)Ω, b+2 a2Ω〉
= 〈J2λ1,2(b+1 ε1(a1))λ3,2(b+3 ε3(a3)+)Ω, b+2 a2Ω〉
= 〈J2λ1,2(b+1 ε1(a1))λ3,2(b+3 ε3(a3)+)Ω, ε2(b+2 a2)Ω〉
= 〈J2λ1,2(b+1 ε1(a1))λ3,2(b+3 ε3(a3)+)Ω, b+2 ε2(a2)Ω〉
= 〈ε1(a1)+b1ε3(a3)+b3Ω, b+2 ε2(a2)Ω〉
= 〈b1b2b3Ω, ε1(a1)ε2(a2)ε3(a3)Ω〉,

so our first claim follows.

The vector Ω is obviously markovian with respect to the localization (N1,M2,3,M3,2)

for the von Neumann algebra N ; it is also markovian with respect to the localization

(M1,2,M2,1,M2,3) for the von Neumann algebra generated by the union of these latter

algebras (it is obvious that the von Neumann algebras involved in the above triples

mutually commute). It follows then by Proposition 4.2 that it is markovian with respect

to the localization (M1,2,M2,1, N3) for the von Neumann algebra generated by their

union. This implies by Theorem 3.1 a. the range of λN3,1 to be contained in M2,1. We

also note that the dual of the Ω implemented odd stochastic transition for M1,2 and

M2,1 coincides with the restriction of λ1,2 to M1,2 and that its range generates M2,1 By

the first part of this theorem the ranges of λN3,1 and of this latter mapping commute;

λN3,1(N3) ⊆ Z2,1. Symmetrically we prove that λN1,3(N1) ⊆ Z2,3.

Example 5.2. Let us assume in Theorem 5.1 λ1,2 and λ3,2 to be surjective, M2,1 and

M2,3 to be factors and M2 to be generated by their union. Then Theorem 5.1 implies that

(ωΩ)M is a state product of its restrictions to the von Neumann subalgebras generated

by the union of M1 and M2,1 and of M2,3 and M3.

Theorem 5.3. Let Ω be a Markov state for M with respect to the localization (M1,

M2, M3) and σt be the modular authomorphism group for (ωΩ)M on M . Then σt(M1) ⊆
M{1,2} for all real t.

P r o o f. We shall use the notations established in Theorem 5.1 and prove that the

von Neumann algebra L1 generated by the union of M1 and M2,1 is (ωΩ)M expected in

M . This will imply σt(M1) ⊆ L1 and therefore our claim.

Let L3 be the von Neumann algebra generated by M3∪M2,3, and L the von Neumann

algebra generated by L1∪L3. We prove first that L is (ωΩ)M expected in M . Let a1, b1∈
M1, a3, b3 ∈M3, a2 ∈M2 and b2 ∈ N2. Then:
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〈b1b2b3Ω, a1a2a3Ω〉 = 〈a+
1 b1a

+
3 b3Ω, b+2 a2Ω〉

= 〈J2λ{1,3},2(b+1 a1b
+
3 a

+
3 )Ω, b+2 a2Ω〉

= 〈J2λ{1,3},2(b+1 a1b
+
3 a

+
3 )Ω, ε2(b+2 a2)Ω〉

= 〈J2λ{1,3},2(b+1 a1b
+
3 a

+
3 )Ω, b+2 ε2(a2)Ω〉

= 〈a+
1 b1a

+
3 b3Ω, b+2 ε2(a2)Ω〉

= 〈b1b2b3Ω, a1ε2(a2)a3Ω〉,
so the required projection εL is obtained by setting

εL(a1a2a3) = a1ε2(a2)a3

and extending it then by linearity and continuity to M .

Let λL3,1 be the dual of the stochastic coupling for (L3, L1) implemented by Ω. Then

λL3,1(L3) ⊆ Z2,1. As M2,3 ⊇ λ3,{1,2}(M{1,2}), Ω is markovian on L with respect to the

localization (L1,M2,3,M3), Ω is also markovian on the von Neumann algebra generated

by the union of L1 and M2,3 with respect to the localization (L1, Z2,1,M2,3). Indeed if we

take a1 in M1, a2,1 in M2,1 and a2,3 in M2,3, and remember that E2,3E2,1 = EZ2,3E2,1;

this follows from:

〈a1a2,1Ω, a2,3Ω〉 = 〈a2,1E2,1a1Ω, a2,3Ω〉
= 〈E2,1a2,1a1Ω, a2,3Ω〉 = 〈EZ2,3E2,1a2,1a1Ω, a2,3Ω〉
= 〈E2,1a2,1a1Ω, EZ2,3a2,3Ω〉 = 〈EZ2,1a2,1a1Ω, a2,3Ω〉
= 〈a2,1a1Ω, EZ2,1a2,3Ω〉.

Now Lemma 4.1 yields that Ω is markovian on L for the localization (L1, Z1,2,M2,3),

which implies λL3,1(L3) to be contained in Z2,1.

Let now a1 be in L1, a3 in L3 and EL1 the projection on the closure of {a1Ω : a1 ∈ L1}.
We have:

EL1a1a3Ω = a1E
L1a3Ω

= a1J1λ
L3,1(a+

3 )Ω = a1λ
N3,1(a3)Ω,

and the mapping εL1 obtained by setting εL1(a1a3) = a1λ
N3,1(a3) and extending it

once more to L1 by linearity and continuity is the required (ωΩ)L preserving generalized

conditional expectation from L to L1. This completes the proof.
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