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1. The aim of this paper is to study markovianity for states on von Neumann algebras
generated by the union of (not necessarily commutative) von Neumann subagebras which
commute with each other. This study has been already begun in [2] using several a priori
different notions of noncommutative markovianity. In this paper we assume to deal with
the particular case of states which define odd stochastic couplings (as developed in [3])
for all couples of von Neumann algebras involved. In this situation these definitions are
equivalent, and in this case it is possible to get the full noncommutative generalization of
the basic classical Markov theory results. In particular we get a correspondence theorem,
and an explicit structure theorem for Markov states.

2. Let M be a von Neumann algebra acting on an Hilbert space H. For ¢ in H
we denote by we the vector state on B(H) implemented by £. In order to simplify our
notations we shall often write (wg) s for we|ps or simply (we)q if the von Neumann algebra
involved is endowed with an index a.

We shall say C is a self-dual positive cone for M in H if there is a separating vector
Q for M in H, such that C is the selfdual positive cone for EME in EH (in the sense of
the modular theory for von Neumann algebras) which contains €, with E the orthogonal
projection from M to the closure of {af2,a € M}.

Let v be an index, M, be a von Neumann algebra acting on a Hilbert space H, and
let 2 be a vector in H which is separating for M,. We shall denote by H., the closure
of {aQ,a in M}, by E, the orthogonal projection from H to H,, and with the usual
notations endow with an index 7 the objects of the modular theory for the action of
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E,M,E, on H,; in particular we denote by J, the isometrical involution for E,M,E,
on H, which leaves C,, invariant. If M,,, M, are von Neumann algebras with M, contained
in M, we shall denote by ¢, , the w— (or generalized) conditional expectation (cf. [1])
from M, to M, which preserves wq. We shall denote by F'(¢,,,) the set of the fixed points
under €, ,,. If the w—conditional expectation is a norm one projection (i.e. F(e,,,) = M,)
we shall say M, to be expected in M,, with respect to (wq),-

We shall start by considering two mutually commuting (not necessarily commutative)
von Neumann algebras M and M5 (i.e. for all a; in M7, as in My we assume ajas = asaq)
and assume €2 in H to be separating for both M; and Ms.

Let a; be in M;. Then Fsa;Fs commutes with Ms; so there is a unique operator
A12(a1) such that Fara1& = JQ}\LQ(GT)JQ& for all £ in Hy. It is immediate to check that
the mapping ;2 : My — My is a linear, ultraweakly continuous, completely positive
contraction. If £, n are in C; we have, for all a; in Mj:

wy+i(A1,2(a1)) = (0 +4€ A1 2(a1) (n +i€))

= (n+ i, JaBaaf Ja(n +i€)) = (Bzaf (n — i), J2(n + i€))

= (Ezaf (n —i€),n — i€) = (n — i€, a1 (n — i€))

= wy—ig(ar).
This proves that the mapping A; 2 is the dual mapping of an odd stochastic transition
02,1 from (M2)* to (M7)* (cf. [3]). If we define g1 symmetrically the same proof yields
that (02,1, 01,2) is an Q implemented odd stochastic coupling for My and My as defined
in [3] provided we assume the following

CONDITION. Let of be the modular authomorphism group on M; for (wq); (i = 1,2).
For any ¢ real and a; in M; we have A\ 2(cf(a1)) = o5(A12(a1)).

In the following we shall always assume, without recalling it explicitly, this intertwin-
ing condition to be satisfied for all pairs of mutually commuting algebras we consider
with reference to the given vector.

It is proved in [3] that in this situation there is an antiunitary operator J on the
Hilbert space Hjj 2y spanned by H; U Hy which commutes with both £y and E; and
such that the action of JE; on H; coincides with the action of J; (i = 1,2). This implies
immediately the following lemma, basic for our development.

LEMMA 2.1. In the above situation JiE1FEs = E1JoE1 = EyJ Ey.
Proof. J1E1E2 = JE1E2 = ElJEQ = E1J2E2 and symmetrically. n
We recall also [3] for the following

LEMMA 2.2. In the above situation let Ry (Rs) be the von Neumann subalgebra of
My (resp. Ms) generated by the range of Ao (resp. Ai2). Then there are norm one
projections €; from M; to R; which preserve (wq); (i =1,2).

Proof. Cf. Lemma 5.1, [3]. =

3. Markovianity on triples of mutually commuting von Neumann algebras.
In this section we consider a triple M7, My, M3 of mutually commuting von Neumann
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algebras which act on a Hilbert space H containing a vector () separating for the von
Neumann algebra M generated by M7 U My U M3. For i, = 1,2,3,i # j, we denote by
My; ;3 the von Neumann algebra generated by M; U M}, and endow with the index {4, j}
all the already introduced objects when referred to My; 1. If k = 1,2,3,k # 4,7, then
My; ;1 commutes with M. We shall generalize this notation in the natural way when
dealing with more than three mutually commuting von Neumann algebras.

THEOREM 3.1. The following statements are equivalent:
a. A3 1,2y (Ms3) is contained in Ms.
b. A3 (1,2} = A32.
C. E{172}E3 = E2E3.
d. A3.q1,2y(Ms3) is contained in F'(gf1,2y,2)-
Proof. In the following we take asz in Msz, and use the fact that by Lemma 2.1,
J2E2a3Q = EQJg(ng and E{172}J3a3§2 = J{LQ}E{LQ}agQ.
a. = b.
)\3,{172} (ag)Q = EQ)\&{LQ} (ag)Q
= EQJ{LQ}E{LQ}CL;’FQ = EQE{l)Q}JgCL;_Q
= E2J3G;Q = JQEQG,;;Q = )\32(@3)9,
which is b. since € is separating for M .
b. = c.
E12yJ3a3Q = Jg1 01 By 0ya38)
= )\37{1’2}(0/;)9 = )\3,2(01;)9
= JQEQ(IgQ = EQJgCLgQ,
which implies c.
c. = d.
41,21 ( X312 (a3))Q = Jo Eaa;
= EQJ3Q§Q = E{lvg}Jga;;Q
= Ju 2y Ep12ya3 Q = Ao (1,23 (a3) <
SO 8{1,2},20\3,{1,2} (az)) = )\3,{1,2} (a3).
d. = a. Trivial. =

DEFINITION 3.2. We shall say Q to be a Markov vector (and wq to be a Markov
state) for M with respect to the localization (Mj, Ms, Ms) if the equivalent conditions of
Theorem 3.1 are met.

Since in the abelian case A3 (1) is nothing else than the restriction to Mj of the
(wa)wm preserving conditional expectation from M to My; oy by a. in Theorem 3.1 our
definition is a generalization of the classical notion of markovianity.

THEOREM 3.3. The state wq is a Markov state with respect to the localization (M7, M,
Ms) iff for all a1 € My, a3 € M3 we have

A1,31,2(a1a3) = A 2(a1)As 2(as). (%)
If so then A1 2(M7) commutes with Az o(Ms).
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Proof. We have:
)\{1,3}’2(a1a3)§2 = JgEgagLaIrQ = nggafa?fQ
= JQEQE{LQ}(IIL(Z;_Q = J2E2arE{172}a;—Q
= JaEsai J{1 0323 41,23 (a3) 92
On the other hand:
)\12(@1))\372(&3)9 = JQEQGTJ2)\372(Q3)Q.
If  is markovian then by c. in Theorem 3.1:
Ji1,230s,(1,23 (a3)Q2 = Epy 0303 Q
= EQG;Q = J2A372(a3)9
and (*) follows.
Conversely, (x) implies for all a; € M; (i = 1,2,3):
(a1a29, J(1 23 A5, 41,23 (a3)Q) = (@29, Eaal J(1 23 A5 41,23 (a3)Q)
= <(ZQQ7E2(LILJ2)\372(G,3)Q> = <a1aQQ,J2)\372(a3)Q>.
As both Jgy 23 A3 (1,23 (a3)2 and Jo X3 2(a3)Q2 are in Hyy 53 we get:
B opad Q= Jp1 oy Az (1,23 (a3)Q = JoAs 2(a3) = Erad Q,
which is c¢. in Theorem 3.1.
Let (%) be satisfied. Then
A12(a1)A32(a3) = A1 33,2(a1a3) = Ay 3y,2(azar)
= Ausy2((afa3)™) = (M 2(a)As2(az)) ™ = Az 2(a3) A1 2(ar). m
COROLLARY 3.4 (reversibility). The state wq is a Markov state for M with respect to

the localization (M1, Ma, M3) iff it is a Markov state for M with respect to the localization
(M3, My, My).
Proof. If Q is Markovian for M with respect to the localization (M7, My, M3) then
by Theorem 3.3
Agaay2(azar) = A1 3y 2(aras)
= /\1,2(&1)/\3,2((13) = )\372(a3))\172(a1).

Now by the converse implication of Theorem 3.3 our claim follows. =

4. Noncommutative Markov chains

LEMMA 4.1. Let M; (i = 1,...,n; n > 4) be mutually commuting von Neumann
algebras acting on a Hilbert space H and §) be markovian for My iy with respect to
the localization (M. p—2y, Mp—1, My) for all k = 3,...,n. Then for all aj € My (k =
3,...,n) we have:

.....

(3,4, n},{1,2} (@304 . .. ay)Q
= EQJgag_JgEg . E"—Q‘]"—la:—ljn—l/\n,n—l(an)ﬂ.
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Proof. By induction. For n = 3 our equality is the Markov property of €2 for My 5 3y
with respect to the localization (Mj, My, M3). On the other hand by the induction
hypothesis applied to Ag4,.. n}.{1,2,3} (a3a4...a,) Q we get:

(3,4, nh{1,21(a3aq ... an)Q = J{I’Q}E{l’Q}CL;—aI catQ

= J{LQ}E{LQ}E{LQ’g}a;aI catQ

= Jua Epayad Epasag - a9

= Ju 2 E2yad J2siMa,.ony (1,2,3) (04 - - - an)Q

= J{l,Q}E{172}a§J{17273}E3J4aZJ4E4 e By odn1at (Jn i Ann1(an)
= Ju2yEpipyad Bsaf JiBy ... Ep_oJn 10} 1 Jn1Apn—1(an)Q

= E{172}J3a§“E3aIJ4E4 e En72<]n71ai71<]n71)\n,n71(an)Q

= EyJsaf JsEsJsaf JuEs ... En_odn 10} 1 Jp_1Ann-1(as). =

PROPOSITION 4.2. Let the hypothesis of Lemma 4.1 be satisfied. Then € is marko-
vian for My, . ny with respect to the localization My . g1y, My, Mipi1, .. ny) for k =
2,...,n—1. Moreover for j =1,...n—3, a, € M,, we have:

M—jin—j—1(- - An—1,n—2(Ann=1(an))) ...) = Ann—j—1(an),
when j is even (chain rule) and
M—jn—i—1(e o Anctn—2Ann—1(an))) .. )Q = Jnj_1Ann—j—1(a;))Q
when j is odd.

Proof. By Lemma 4.1 we have for ay € My (k=3,...,n):

E{l’z}a3a4 e anQ = J{I,Q}A{3,4,..‘,n},{1,2} (CL;CLZ e G,;LF)Q

= J{1,2}E2J3a3J3E3 cee En72Jn71an71Jn71)\n,n71(an)Q

= J{1,2}E{1,2}J3a3J3E3 cee En—ZJn—lan—lJn—l)\n,n—l(an)Q

= Eqya3 3B .. By adn 100 10 1A n—1(a)02

= JoEsJsza3JsEs ... Ey_odn_16n_1Jpn—1Ann—1(an)S2

= JQA{3’4"H’n},{1’2} (a;ai . G,:'L_)Q = E2a3a4 e anQ;
so c. in Theorem 3.1 is satisfied for 2 and My, ., with respect to the localization
(My, My, M3, ny)-

Our hypothesis now allows us to let My . 1} play the role of M; above, M} the
role of My and M4, .. ny of My3 . ) and we get our first claim.

Let us now prove our second claim for j even. Then, applying Lemma 4.1 to the local-
ization (M, p—j—oy,Mn_j_1, Mg, . ) and setting ap—1 = an_2 = ... = an_j =1,
we get:

)\n,nfjfl(an)Q = )‘{n—j,...,n},{l,...,n—j—l} (an)Q

= n—j—lEn—j cee En—Q)\n,n—l(an)Q

= nfjflEnfjflJnijnfjJnfjJrl .. -jn73En73Jn72Enf2)\n,n71(an)Q
== An—j,n—j—1(~ .. ()\n—l,n—Z()\n,n—l(an)Jr)Jr) .. ~+)Qa

and our claim follows since €2 is separating for M,,_;_1.
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If j is odd we have, using the preceding case:
Ann—j—1(an)82
=FE, j 1Jn—jEn_jJn_jt1.. . In—sEn_3Jn_oE,_ o), n_1(a,)
=FEp_joad+n—j+1n—3(.. Atn—2nn-1(an))T) ... +)Q
=Jn—jo1dm—jm—j-1(.. Az n—2(Ann-1(an)))...)Q2. =
PROPOSITION 4.3. Let M; (i integer) be the von Neumann algebras acting on a Hilbert
space H. We call My (M) the von Neumann algebra generated by the union of My, with
k>i (by the union of all My). We assume the vector Q in H to be markovian for My . i

with respect to the localization (M, x—2y, My—1, My) for all integers k. Then for all
integers k 2 is markovian for M with respect to the localization (M. x—2y, My—1, My).

Proof. The projection Ejx on H is the supremum of the projections Fyp . ryn}
for n natural. So by Proposition 4.2 we have (the limit is taken in the strong operator
topology):

Eg, w0y Ex =lmEq w1y Bk, kin)
=lim Ex 1 B, kiny = Ee-1Ep,
and c. in Theorem 3.1 is proved for our localization. m

THEOREM 4.4. Let for all natural numbers i M; be a von Neumann algebra acting on
a Hilbert space H and ) in H be Markovian for My . xy with respect to the localization
(My1,... k—2), Mx—1, My) for k natural. Let A, B, C be subsets of the natural numbers such
that for a in A, b in B, ¢ in C we have a < b < c¢. Then Q is Markovian for Maupuc
with respect to the localization (Ma, Mg, M¢).

Proof. Let b = max B, By prop. 4.3 for all a¢ in M¢ we have EaupacS) = Eyact,
which implies Eaupac.) = Egacf2 and c. in th. 3.1 is satisfied for our localization. m

5. A structure theorem for markovian states

THEOREM 5.1. Let Q be a Markov state for M with respect to the localization (M, Ma,
Ms). We set Mo 3 (M2, M2, Ms2) to be the von Neumann subalgebra of My generated
by the range of A3 o (resp. of M2, A21,M2,3), N1 (Na, N3, N) the von Neumann algebra
generated by M271 U MLQ (7”68]?. M271 U M2,3, Mg,g U ]\43727 Mg,l U MLQ U M273 U M372).

Then N1 and N3 mutually commute and there are wq preserving norm one projections
e:Mw— N,ey: My — Mg, ea: My — Ny and €3 : M3 — M3 o such that for all a; in
M; (i=1,2,3)

e(aragas) = e1(a1)ez(az)es(as).
Further let us denote by A\N3:1 (AN1.3) the dual of the Q0 implemented odd stochastic cou-
pling for N3 and Ny (resp. for N1 and Ns3), and by Z21 (Za,3) the center of Maq (Mas).
Then AN31(N3) C Za 1 and AN13(Ny) C Za 3.

Proof. By Theorem 3.3 M 3 and M5 ; mutually commute; this implies that N; and
Nj also mutually commute. We note also that Lemma 2.2 gives the existence of £ and
€3 as above, as well as the existence of wq preserving norm one projections €27 and €23
from M to M>; and to My 3. This implies the existence of e5.
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We have now, if by € Ml,g,bg € Ny and b3 € M3’2:

(b1babsQ, aazaz) = (af aF bibaQ), b az)
= (JsAq1,2).3(a a3 b1b2)Q, b5 asQ)
JsA(1,2},3(a] a3 b1ba)2, e5(b5 as)2)
A (1,2),3(a] a3 b1b2)Q, b e3(a3)<?)
af es(as) T habsQ, bF a1 Q) = (af es(as) Thabs 2, by er (a1)Q)
e1(a1) T bies(as) Tb3Q, b asQ2)

J)\{lg}g(b 51( ) 53(&3)

=

=(J

=

=

= Q, b3 ax9)
= (oA 2(be1(a1))As,2(b5 e3(a3) )R, by a2 Q)
= (b3

=

=

= (b

)
)7)
Jod12(bi e1(ar)) Az 2(b5 e3(az) ™), e2(b3 a2)Q)
Jod12(bfe1(a1)) Az 2(b3 e3(az) ™), by e2(az))
e1(a1)Tbies(az) b3, b ea(as)f)
1020392, €1 (a1)e2(az)es(asz) ),

so our first claim follows.

The vector  is obviously markovian with respect to the localization (N1, M 3, M3 2)
for the von Neumann algebra N; it is also markovian with respect to the localization
(M2, M3 1, M 3) for the von Neumann algebra generated by the union of these latter
algebras (it is obvious that the von Neumann algebras involved in the above triples
mutually commute). It follows then by Proposition 4.2 that it is markovian with respect
to the localization (M 2, Ma 1, N3) for the von Neumann algebra generated by their
union. This implies by Theorem 3.1 a. the range of AN2:1 to be contained in M ;. We
also note that the dual of the € implemented odd stochastic transition for M; 2 and
My 1 coincides with the restriction of A\; 2 to M; 2 and that its range generates My ; By
the first part of this theorem the ranges of A1 and of this latter mapping commute;
AN2.1(N3) C Zs 1. Symmetrically we prove that AN1:3(N;) C Zo 5. m

EXAMPLE 5.2. Let us assume in Theorem 5.1 A; 2 and A3 2 to be surjective, M5 ; and
M 5 to be factors and Ms to be generated by their union. Then Theorem 5.1 implies that
(wq)ar is a state product of its restrictions to the von Neumann subalgebras generated
by the union of M; and M5 ; and of My 3 and M.

THEOREM 5.3. Let Q be a Markov state for M with respect to the localization (My,
My, M3) and oy be the modular authomorphism group for (wq)a on M. Then o¢(M;) C
My 2y for all real t.

Proof. We shall use the notations established in Theorem 5.1 and prove that the
von Neumann algebra Ly generated by the union of My and Ms ;1 is (wq)m expected in
M. This will imply o4(M;) C Ly and therefore our claim.

Let L3 be the von Neumann algebra generated by M3 U M5 3, and L the von Neumann
algebra generated by L;UL3. We prove first that L is (wq)as expected in M. Let aq,b; €
My, a3, bz € M3, as € My and by € Ny. Then:
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<b1b2b39, a1a2a39> = <aILb1(l§Lb3Q, b;a29>
= <J2)\{173}72(bfa1b§'a§')9,b;aQQ>
= <J2)\{1’3}72(bfa1b§a§)9,52(b§a2)9>
= <J2)\{1,3}72(bfa1b§'a§')9,bgsg(a2)9>
= (afb1a§b3(2, b;fg(ag)gb
= (b1b2b3Q2, a1e2(az)asl),
so the required projection €y, is obtained by setting
er(arazas) = area(az)as
and extending it then by linearity and continuity to M.

Let A3t be the dual of the stochastic coupling for (L3, L1) implemented by Q. Then
Aea(Lg) € Zoq. As Mg D A3.11,23(M{1,2y), © is markovian on L with respect to the
localization (L1, Ms 3, M3), Q is also markovian on the von Neumann algebra generated
by the union of Ly and My 3 with respect to the localization (L1, Z5 1, M2 3). Indeed if we
take al in Ml, a21 in M271 and az3 in ]\42737 and remember that E273E271 = EZ2'3E271;
this follows from:

(a1a2,182, as382) = (az,1F21a19, az39)

= (F21a21019,a23Q) = (E#23Fy a3 1019, ag 3Q)
= (By10a210:19Q, E?%ay 3Q) = (E%21a510,9, as 3Q)
= <CL2)1alQ,EZ2’1a2739>.

Now Lemma 4.1 yields that © is markovian on L for the localization (L1, Z1 2, Ma3),
which implies A22:1(L3) to be contained in Z ;.
Let now a; bein Ly, a3 in L3 and EX1 the projection on the closure of {a1Q : a1 € L1 }.
We have:
EL1a1a3Q = alELlagQ
= alJl)\L?”l(a;)Q = a1\ (a3)Q,

and the mapping X' obtained by setting £ (aja3) = a;A™31(a3) and extending it
once more to L; by linearity and continuity is the required (wq);, preserving generalized
conditional expectation from L to Li. This completes the proof. m
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