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Abstract. By using F. A. Berezin’s canonical transformation method [5], we derive a

nonadapted quantum stochastic differential equation (QSDE) as an equation for the strong limit

of the family of unitary groups satisfying the Schrödinger equation with singularly degenerating

Hamiltonians in Fock space. Stochastic differentials of QSDE generate a nonadapted associative

Ito multiplication table, and the coefficients of these differentials satisfy the formal unitarity

conditions of the Hudson–Parthasarathy type [10].

Introduction. The derivation of equations for quantum noise is an important prob-

lem related to applications in quantum optics, quantum information and measurement

theories [1, 4, 9, 15]. The main advantage of quantum stochastic theory is an elegant im-

plicit construction of solutions for the class of adapted QSDE describing the joint unitary

evolution of a quantum system and its environment [10]. The conceptual disadvantage of

this approach is a gap in understanding the unitary stochastic evolution in the spirit of

the classical Stone theorem describing the infinitesimal generator of a unitary group as a

self-adjoint operator.

Until the recent papers [7, 8], it was not known that a unitary cocycle satisfying the

QSDE can be described not by a symmetric operator but rather by a symmetrical bound-
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ary value problem. The boundary condition describes jumps of the solution in amplitude

and in phase. The jumps are supported by the set of singularities of the formal generator,

and the selfadjointness of the boundary value problem is necessary and sufficient for the

existence of the unitary solution of the appropriate QSDE.

These results were obtained by the explicit analysis of the class of solvable problems for

the Schrödinger equation in Fock space [7, 8]. In the present paper, we extend the class

of Hamiltonian operators by using the standard analytical tool: the Berezin canonical

transformation technique.

In §1 we recall the construction of the normal form of the resolving operator for

the Schrödinger equation in Fock space. In §2 we consider a solvable model and describe

explicitly the limit unitary group and the corresponding unitary cocycle which satisfies the

adapted QSDE. In §3 we analyze the range of the resolvent (the domain of the infinitesimal

operator) and derive boundary discontinuity conditions and the dissipative operator,

which turns out to be symmetric on the linear subspace of Fock vectors satisfying the

imposed boundary condition. In §4, by the asymptotic analysis of the normal form of

the resolving operator, we prove similar results for the class of Hamiltonians containing

squares of creation and annihilation operators. We also describe a nontrivial connection

between the coefficients of the Hamiltonian operator and the coefficients of QSDE.

1. Berezin’s approach to the Schrödinger equation in Fock space. In the six-

ties, F. A. Berezin has developed the technique of canonical transformations of CCR–CAR

representations [5] which can be used to construct the resolving operator of the Cauchy

problem for the Schrödinger equation in Fock space with the quadratic Hamiltonian

H2(a
∗, a) =

1

2

{
(a∗, Haaa

∗) + (a,Haaa) + 2(a∗, Ha∗aa)
}
+(a∗, Ha)+(a,Ha)+H0. (1.1)

He proved an explicit formula for the normal symbol Ut(a
∗, a) of the resolving operator

Ut(a
†, a) = exp

{
itH2(a

†, a)
}
,

where the pairs (a†, a) are the creation and annihilation operators in the symmetric Fock

space ΓS(L2(IR)), and the pairs (a∗, a) are functions from L2(IR).

The theory involves the real inner product in L2(IR) and three involutions assuming

the representation of operators by integral kernels. These involutions are the Hermite

conjugation (star∗), the complex conjugation (bar) and the transposition (prime′) such

that B∗ = B
′
.

One of the main assertions of the book [5] (Chap. III, §6, Th.2) is a theorem describing

the construction of the normal form Ut(a
∗, a) of the resolving operator Ut(a

†, a) for the

quadratic Hamiltonian H2(a
∗, a):

Ut(a
∗, a) = Ct exp

{
1

2
Σt(a

∗, a)− (a∗, a)

}
, Ct =

{
det(ΦtPt)

}−1/2
eiSt , (1.2)

where

Mt =

(
Φt Ψt

Ψt Φt

)
= exp

{
it

(−Ha∗a −Haa,

Haa Ha∗a

)}
, Nt =

(
ΨtΦ

−1
t (Φ′

t)
−1

Φ−1
t − Φ−1

t Ψt

)
,
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Σt =

(
a

a∗

)′ (
Nt

(
a

a∗

)
+

(
gt −ΨtΦ

−1
t gt

−Φ−1
t gt

))
,

(
gt
gt

)
= i

t\
0

dτMτ

(−Ha

Ha

)
,

St =

t\
0

dτ
{(

(gτ (Φ
′
τ )

−1Haa −Ha

)
,Φ−1

τ gτ +H0

}
, Pt = eitHa∗a . (1.3)

The normal symbol (1.2) is well defined provided Ψt ∈ T2(L2(IR)) ⊂ B(L2(IR)), that is,

Ψt is a Hilbert–Schmidt operator, and gt(ω) ∈ L2(IR) for each t ∈ IR+.

The normal forms of the Hamiltonian H(a∗, a) and its resolving operator Ut(a
∗, a)

are related by the Schrödinger equation{
d

dt
− iH (a∗, a+ δa∗)

}
Ut(a

∗, a) = 0, (1.4)

where the Fréchet derivative δa∗ acts the first, and the multiplication by the function

a∗(ω) ∈ L2(Ω) acts the second.

2. The limits of solvable models. Consider the family of unitary groups

U
(α)
t = exp{itH(α)}, α ∈ IR+

generated by the family of selfadjoint Hamiltonians with commuting coefficients

H(α) = I ⊗ E +H0 ⊗ I +R∗ ⊗A(fα) +R⊗A†(fα) +K ⊗A†(gα)A(gα), (2.1)

where H0 and E

E =

∞\
−∞

dω ω a†(ω)a(ω)

are the energies of the system and the environment, K is a self–adjoint operator, R is a

closed operator, and {gα} and {fα} are sequences of functions with positive Fourier trans-

forms from L2(IR)∩L1(IR) degenerating to the constant 1
/√

2π as α→ 0. The main ex-

ample of dependence on α is given by the scaling transformation gα(ω) = g(αω), g(ω) =

exp{−ω2}/
√
2π (see [6]).

In the particular case H2(a
∗, a) = (a∗, Ca) + (a∗, f) + (f, a), we have Haa = 0 and

Ha∗a = C ∼= I ⊗ ω1 δ(ω1 − ω2) +K ⊗ {gα(ω1)gα(ω2)}, Ha = f ∼= R∗ ⊗ fα(ω).

The equivalence “∼=” denotes the correspondence between an integral operator and its

kernel, and between a vector from H and an appropriate function from L2(IR) = H.

In the sequel, we suppose for simplicity that the operators H0, K and R are bounded

and have a joint spectral family Eλ such that

H0 =
\
νλ dEλ, K =

\
λdEλ, R =

\
ρλe

iθλ dEλ, λ ∈ SpK,

where νλ, ρλ, θλ are measurable real functions corresponding to the operators H0, K

and R. These assumptions single out the class of simple solvable models with nontrivial

behavior as α → 0.

Since Haa = 0, equations (1.3) imply:

Ψ
(α)
t = 0, (Φ

(α)
−t )

′ = Φ
(α)
−t = P

(α)
t = eitH

(α)

a∗a = eit(ω+K⊗|gα〉〈gα|),
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C
(α)
t = det(Φ

(α)
t P

(α)
t )−1/2 = 1, g

(α)
t = −iR∗

t\
0

dτ P
(α)
−τ fα,

and Eq. (1.2) reads as follows

U
(α)
t (a∗, a) = exp

{1
2
Σ

(α)
t (a∗, a) + iS

(α)
t − (a∗, a)

}
, (2.2)

where

S
(α)
t = i

t\
0

dτ

τ\
0

dsR∗(fα, P
(α)
s fα)R+H0t,

1

2
Σ

(α)
t = (a∗, P

(α)
t a) + i

(
a∗,

t\
0

dsP (α)
s fα

)
R+ iR∗

(t\
0

dsP
(α)
s fα, a

)
.

Equation (1.3) is satisfied for all t > 0 and Ut(a
∗, a)

∣∣
t=0

= I.

It is possible to describe explicitly the action of the resolving operator on direct

products h⊗ ψ(v), where h ∈ H, ψ(v) ∈ ΓS(L2(IR)), v ∈ L2(IR), and ψ(v) is a coherent

(exponential) vector. The unitary group U
(α)
t = exp{iH(α)t} with Hamiltonian (2.1) and

normal form (2.2) acts on exponential vectors as follows:

U
(α)
t h⊗ ψ(v) =

\
eiνλt dEλ h⊗ ψ(v

(α)
t (λ)) exp

{
iρλe

−iθλ

t\
0

(fα, v
(α)
s (λ)) ds

}
, (2.3)

where v
(α)
t (λ) = P

(α)
t (λ)v + iρλe

iθλ
Tt
0
P

(α)
s (λ)fα ds. We recall that we use the real inner

product in (2.3).

The limit of the derivative

Hw = −i lim
α→0

{
d

dt
eitH

(α)

∣∣∣∣
t=0

}
,

coincides clearly with the weak limit of Hamiltonians (1.1)

Hw = I ⊗ E +H0 ⊗ I +R∗ ⊗A(1) +R⊗A†(1) +K ⊗ A†(1)A(1) (2.4)

with the same operator coefficients R and K. To find the derivative of the limit

Hsrs = −i d
dt
{ lim
α→0

eitH
(α)}|t=0,

which gives the limit of the generators in the strong resolvent sense, we use the expansion

exp{icπ̂} = I + (eic − 1)π̂, π̂ = π̂∗ = π̂2, c ∈ IC (2.5)

for any projector π̂, and the “Lemma on Four Limits” [6, 7] describing the singular limits

of the components of functionals Σ
(α)
t and S

(α)
t in equation (2.3):

lim

t\
0

ds (fα, P
(α)
s fα) = (2− iK)−1,

lim
(
a∗,

t\
0

dsP (α)
s fα

)
=

t\
0

ds√
2π

\dω a∗(ω)eisω
I − iK/2

=
2

(2− iK)

(
a∗, eiωtFτ→ωI[0,t)(τ)

)
,

lim
(t\
0

dsP
(α)
s fα, a

)
=

t\
0

ds√
2π

\dω a(ω)e−isω

I − iK/2
=

2

(2− iK)

(
Fτ→ωI[0,t)(τ), a

)
,
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s− lim P
(α)
t = eitω

(
I + (W − I)π̂[0,t)

)
. (2.6)

By π̂T we denote the projection-valued set function π̂T v(ω) = Ft→ω IT (t)F−1
ω→tv(ω);

Ft→ω is the Fourier transformation:

Ft→ωf = (2π)−1/2
\
dt e−iωtf(t),

and IT (t) is the indicator function of the set T .

Substituting limits (2.6) into equation (2.2) for the normal form of the resolving

operator, we obtain

lim
α→0

U
(α)
t (a∗, a) = exp{Zt(a

∗, a)}
with

Zt(a
∗, a) = it

(
H0 −R∗(2− iK)−1R

)
+ (W − I)(a∗, eiωtπ̂[0,t)a) + (a∗, eiωta)

+i(I − iK/2)−1R (a∗, eiωtĨ[0,t)) + iR∗(I − iK/2)−1(Ĩ[0,t), a). (2.7)

By differentiating (2.7), we find the normal form of the infinitesimal operator of the limit

unitary group:

iHsrs = iI ⊗ E + L0 ⊗ I + (W − I)⊗A†(1)A(1) + L⊗A†(1)− L∗W ⊗A(1)

with L = i(1 − iK/2)−1R, L0 = iH0 − R∗(2 − iK)−1R, and W = (2 + iK)(2 − iK)−1.

Thus, we conclude that there exist two different limits as α → 0: the weak limit Hw (2.4)

and Hsrs which has the meaning of the strong resolvent limit of Hamiltonians (1.2):

Hsrs = I ⊗ E + i−1
{
L0 ⊗ I + L1 ⊗A(1) + L2 ⊗A†(1) + L3 ⊗A†(1)A(1)

}
(2.8)

with the coefficients Lℓ,

L1 = R∗ 2i

2− iK
, L2 =

2i

2− iK
R, L3 =

2iK

2− iK
,

L0 = iH0 −R∗ iK

4 +K2
R−R∗ 2

4 +K2
R

satisfying exactly the formal unitarity conditions of the Hudson–Parthasarathy type:

L∗
0 + L0 = L∗

2L2, L2 = −L∗
1W, L3 =W − I, W ∗W =WW ∗ = I (see [10]).

In the sequel, we assume that (I−iK)−1 : H → domR∗. Since R∗ is a closed operator,

by the closed graph theorem ([11, Chap. 3 §4]), L1 = 2iR∗(2 − iK)−1 is a bounded

operator, and so is L∗L. Hence, the densely defined operator L2 = 2i(2 − iK)−1R =

−WL∗
1 can be extended from domR to entire H as a bounded operator. Thus, under the

assumption (I − iK)−1 : H → domR∗ all operators Lk, 1 ≤ k ≤ 3 are bounded.

The connection between the operator and its normal form ([5]) implies the explicit

representation of the unitary group generated by the normal exponent (2.7):

Ut h⊗ ψ(v) =
\
e−Gλt dEλ h⊗ ψ

(
eiωt

(
eiZλπ̂[0,t)v + iρλe

iθλ
2

2− iλ
Ĩ[0,t)

))

× exp

{
iρλe

−iθλ
2

2− iλ
(Ĩ[0,t), v)

}
, (2.9)

where Gλ is the spectral density of the dissipative operator G = −iH +R∗(2− iK)−1R,

and exp{iZλ} = (2 + iλ)/(2 − iλ). By “Lemma on Four Limits”, the same equations
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(2.8)–(2.9) also follows from representation (2.3) of the unitary group U
(α)
t as α → 0.

The commutation rules

[π̂A, π̂B] = 0 for A ∩B = ∅, and π̂T e
iωt = eiωtπ̂T+t

imply the group property of Ut.

The operators A(1), A†(1) and A†(1)A(1) can be characterized by quadratic forms

acting on exponential vectors with arguments from W̃ 1
2 (IR) as follows:

(ψ(f), A(1)ψ(g)) = g̃(0)e(f,g), (ψ(f), A†(1)A(1)ψ(g)) = f̃(0)g̃(0)e(f,g). (2.10)

These unclosable quadratic forms generate well defined fundamental operator-valued set

functions which are unitarily equivalent to the fundamental processes of creation, anni-

hilation and number process introduced in [10]. We use here the following representation

for these processes:

A+(T ) =
\
T

dt√
2π

\
dω eiωta†(ω) =

\
T

dtA†
t (1),

A(T ) =
\
T

dt√
2π

\
dω e−iωta(ω) =

\
T

dtAt(1),

Λ(T ) =
\
T

dt

2π

\\
dω dν ei(ω−ν)ta†(ω)a(ν) =

\
T

dtA†
t (1)At(1),

where At(1) = JtA(1)J
∗
t , Jt = eitE , E =

T
IR
ω dω a†(ω) a(ω).

Consider the operator-valued set function u(s, t) (the unitary cocycle) generated by

the unitary group Ut :

u(s, t) = JsUt−sJ
∗
t .

Using the commutation rule J∗
t ψ(f) = ψ(e−iωtf), we immediately obtain from (2.9) an

explicit equation representing the action of u(s, t) on tensor products h⊗ ψ(v)

u(T )h⊗ ψ(v) =
\
e−Gλ mesT dEλ h⊗ ψ

(
eiZλπ̂T v + iρλe

iθλ
2

2− iλ
ĨT

)

× exp

{
iρλe

−iθλ
2

2− iλ
(ĨT , v)

}
, (2.11)

where ĨT (ω) is the Fourier transform of the indicator function IT (t). Straightforward

computation of the time derivative implies the adapted QSDE for u(s, t) :

du(s, t) = u(s, t)M(dt+), s− lim
t→s

u(s, t) = I,

M(T ) = L0 ⊗mesT + L1 ⊗A(T ) + L2 ⊗A†(T ) + L3 ⊗ Λ(T ). (2.12)

The set-function u(T ) has a cocycle property: u(T1)u(T2) = u(T1 ∪ T2) for disjoint sets

T1, T2 ⊆ IR. Therefore, QSDE (2.12) can be considered as a unitary representation of the

Schrödinger equation with the formal Hamiltonian (2.8):

u(s, t) = JsUt−sJ
∗
t , M(T ) = i

\
T

dt Jt
(
Hsrs − I ⊗ E

)
J∗
t .

Thus we obtain
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Theorem 1. Suppose that K and R are commuting operators , K is a self-adjoint

operator and R is a closed operator such that (I − iK)−1 : H → domR∗. Then the family

of Hamiltonians (2.1 ) generates the family of unitary groups U
(α)
t = eitH

(α)

such that

• there exists a strong limit of the family of unitary groups Ut = s − limU
(α)
t which

is a unitary group with the formal generator Hsrs (2.8 );

• there exists an adapted unitary cocycle (2.11 )

u(τ, t) = s− lim
α→0

Jτe
i(t−τ)H

(α)
2 J∗

t ,

such that u(τ, t) is a unitary solution of QSDE with the stochastic differential

(2.12 ).

3. Symmetric boundary value problem associated to QSDE. It should be

pointed out that Hw and Hsrs are not well defined operators on the product H ⊗
ΓS(L2(R)). They vanish in the dense set

E0 = span{ψ(h) : h ∈ W̃ 1
2 (IR), h̃(0) = 0}

and in this sense they are singular. Typically, there exists an implicit correspondence

between singular perturbed operators and boundary value problems for these operators

([2, 3, 12]). Since we have the explicit representation of the unitary group Ut, we can

describe the generator rigorously. First of all let us describe the domain of the infinitesimal

operator. Main observations of this Section are generalizations of the algebraic properties

of the following toy boundary value problem.

For any λ ∈ IR, L ∈ IC, consider the set Dλ,L of vectors F = {f0, f1, . . .} with sym-

metric continuous components:

f0 ∈ IC, fn : (IR \ {0})n → IC, n = 1, 2, . . .

such that {(
A+ −A−e

iλ
)
fn+1

}
(x) = Lfn(x), x ∈ (IR \ {0})n,

where A±f0 = 0 and
(
A±fn+1

)
(x1, . . . , xn) = lim

ε→±0
fn+1(x1, . . . , xn, ε), n = 1, 2, . . .

by the definition. Then, clearly, for F,G ∈ Dλ,L the following identity holds true:
(
(A− −A+)gn+1fn+1

)
(x) =

(
gn+1fn+1

)
(x)

∣∣xn+1=−0

xn+1=+0

= −|L|2gn(x)fn(x)− e−iλL
(
A−gn+1

)
(x)fn(x) − gn(x)Le

iλ
(
A−fn+1

)
(x).

Set ∂x =
∑

k
∂

∂xk
. Integrating by parts over (IR \ {0})n the sesquilinear inner product

in L2((IR \ {0})n), we obtain

(gn+1, i∂xfn+1) = (i∂xgn+1, fn+1)

−(n+ 1){i|L|2(gn, fn)) + (gn, iLe
iλ(A−fn+1)) + (iLeiλ(A−gn+1), fn)}.

Therefore, the operator

Ĥ = H0 + i∂x + i|L|2/2 + iLeiλA−, H0 ∈ IR
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is symmetric on the vector subspace Dλ,L in the Hilbert space H with sesquilinear inner

product

(G,F ) =

∞∑

k=0

1

n!
(gn, fn)L2((IR\{0})n).

Indeed,

(G, Ĥ F )) = (G,H)(H0 + i|L|2/2) + (i∂xG,F ) +
(
G, iLeiλA−F

)

−i|L|2(G,F )−
(
G, iLeiλA−F

)
+ i

(
iLeiλA−G,F

)
= (Ĥ G, F ).

Thus, the operator Ĥ = H0+ i∂x+ i|L|2/2+ iLeiλA− being restricted to the set
{(
A+−

A−e
iλ
)
−L

}
F = 0 is a symmetric operator. Let us prove that the range of the resolvent

generated by the unitary group (2.9) has a similar characterization.

Consider the vectors Φ from the range of the resolvent of unitary group Ut: Φ ∈ h =

H⊗ ΓS
(
L2(IR)

)
:

Φ = Rµh⊗ ψ(v) =

∞\
0

dt e−µtUth⊗ ψ(v) = {Φn(ω)},

Φn( · ) IRn → H, ω = {ω1, . . . , ωn},
with the components

Φn(ω) =

∞\
0

dt exp
{
−(µ+G)t− L∗W

t\
0

ṽ(−τ) dτ
}
φn,t(ω),

φn,t(ω) =
n∏

1

(
(W − 1)π[0,t)e

iωktv(ωk) + eiωktv(ωk) + LĨ[0,t)(ωk)
)
h,

where L,W and G are commuting operators described by the spectral densities

L(λ) = 2iρ(λ)e−iΦ(λ)(2− iλ)−1, W (λ) = eiZ(λ), G(λ) = −iν(λ) + ρ(λ)2(2− iλ)−1.

Let us denote by φ̃n,t(τ) the Fourier-transformation of the function φn,t(ω)

φ̃n,t(τ) =

n∏

1

(
(W − I)I[0,t)(τk)ṽ(τk − t) + ṽ(τk − t) + LI[0,t)(τk)

)
h,

where τ = {τ1, . . . , τn}. Let K be a subset in {1, . . . , n} and let Ka be its complement.

Set

P
(n)
K,t (τ) =

∏

k∈K

(
(W − I)ṽ(τk − t) + L

)
I[0,t)(τk) ∈ B(h),

then

φ̃n,t(τ) =
∑

K

(
P

(n)
K,t (τ)

∏

m∈Ka

ṽ(τm − t)
)
h. (3.1)

Note that on the set τ ∈ (IR \ {0})n the function φ̃n,t(τ) depends on arguments τk − t.

Clearly, the functions P
(n)
K,t (τ) have discontinuities of the first kind in all hyperplanes

where variables τk changes sign:

lim
τk→−0

P
(n)
K,t (τ) = IKa(k)P

(n)
K,t (τ),
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lim
τk→+0

P
(n)
K,t (τ) = IKa(k)P

(n)
K,t (τ) +

(
(W − I)ṽ(−t) + L

)
P

(n−1)
K\{k},t(τ). (3.2)

Therefore, Eq. (3.2) implies the following difference of substitutions:

P
(n)
K,t (τ)

∣∣τk=−0

τk=+0
= −

(
(W − I)ṽ(−t) + L

)
P

(n−1)
K\{k},t(τ)IK(k). (3.3)

Let us calculate the jump of φ̃n,t(τ) at the points where τk changes sign. Note that

lim
τk→−0

φ̃n,t(τ) = ṽ(−t)φ̃n−1,t(τ1, . . . , τk−1, τk+1, . . . , τn).

Taking into account Eqs. (3.1) and (3.3), we find the jumps in amplitude and phase of

the functions from the domain of the infinitesimal operator of the group Ut :

lim
τk→+0

φ̃n,t(τ) =W lim
τk→−0

φ̃n,t(τ) + Lφ̃n−1,t(τ1, . . . , τk−1, τk+1, . . . , τn). (3.4)

Let DW,L = D⊗ΓS(W̃ 1
2 (IR\ {0})) be a vector subspace in h with the elements satisfying

assumption (3.4), and let A(δ±),Λ(δ±), N̂ be operators acting on Fock vectors by the

rules

(Φ,Λ(δ±)Ψ) = lim
ε→+0

∞∑

1

1

n!

n∑

k=1

\
(IR\{0})n−1

∏

m 6=k

dτm(Φ̃n, Ψ̃n)H
∣∣
τk=±ε

,

Fω→τ

(
A(δ±)Ψ

)
n
(τ) = lim

ε→+0

n∑

k=1

Ψ̃n+1(τ)
∣∣
τk=±ε

, N̂Ψn(ω) = nΨn(ω).

In this notation, the boundary condition (3.4) in the symmetric Fock space ΓS looks as fol-

lows

(N̂ + 1)−1
(
I ⊗A(δ+)−W ⊗A(δ−)

)
Ψ = L⊗ I Ψ. (3.5)

This condition is fulfilled for components Ψ1,Ψ2, . . . of the Fock vectors Φ ∈ DW,L.

Let us prove that the operator

Ĥ = iG⊗ I + I ⊗ Ê + iL∗W ⊗A(δ−), Ê =
\

IR\{0}

dτ a+(τ)a(τ)i∂τ , (3.6)

is symmetric in DW,L. Let Φ,Ψ ∈ DW,L and let B be a Hermitian operator such that

domB ⊗ I ⊇ DW,L. The integration by parts gives an identity, where the difference of

substitutions is expressed through the operators Λ(δ±):

(Φ, B ⊗ ÊΨ)− (B ⊗ ÊΦ,Ψ) = i
(
Φ, B ⊗

(
Λ(δ−)− Λ(δ+)

)
Ψ
)

= i

∞∑

1

1

n!

n∑

k=1

\
(IR\{0})n−1

∏

m 6=k

dτm
(
Φ̃n(τ), BΨ̃n(τ)

)
H

∣∣τk=−0

τk=+0
. (3.7)

By using the boundary condition (3.5) for functions φ̃n and ψ̃n, we find the difference of

substitutions of the integral (3.7):

I
(
Φ, B ⊗

(
Λ(δ+)− Λ(δ−)

)
Ψ
)
= i(Φ, (W ∗BW −B)Λ(δ) −Ψ)

+i(LΦ, BLΨ)+ I(WA(δ−)Φ, BLΨ) + i(LΦ, BWA(δ−)Ψ). (3.8)

In particular, Eq. (3.8) is simplified for B = I:

I
(
Φ, I⊗

(
Λ(δ+)−Λ(δ−)

)
Ψ
)
= i(Φ, L∗LΨ)− (iL∗W ⊗A(δ−)Φ,Ψ)+(Φ, iL∗W ⊗A(δ−)Ψ).
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Taking into account the identity iG− iL∗L = (iG)∗, we obtain from here an identity

which means the symmetry property of the operator Ĥ in DW,L:

(Φ, ĤΨ) =
(
(I ⊗ ÊΦ,Ψ

)
+
(
Φ, {iG⊗ I + iL∗W ⊗A(δ−)}Ψ

)

−i
(
Φ, I ⊗

(
Λ(δ+)− Λ(δ−)

)
Ψ
)

=
(
(I ⊗ ÊΦ,Ψ

)
+
(
Φ, (iG)∗ ⊗ IΨ

)
+ (iL∗W ⊗A(δ−)Φ,Ψ) = (ĤΦ,Ψ).

Let us find how the generator of the group Ut acts on vectors belonging to the resol-

vent. Set Ψ ∈ h, Φ = Rµh⊗ ψ(v). By the definitions of the generator, we have

(Ψ, ĤΦ) = lim
s→+0

1

i

d

ds
(Ψ, UsΦ) =

1

i

∞\
0

dt

∞∑

n=0

1

n!

\
(IR\{0})n

dτ

×
(
ψ̃n(τ),

d

ds
e−(G+µ)t−Gs−iL∗W

T
t+s

0
ṽ(−τ) dτ φ̃n,t+s(τ)

)

H

∣∣∣
s=0

. (3.9)

As it was observed earlier, the functions φ̃n,t(τ) depend on differences τk − t. Therefore,

d

dt
φ̃n,t(τ) = −

n∑

k=1

∂

∂τk
φ̃n,t(τ) = iÊφ̃n,t(τ). (3.10)

On the other hand,
˜A(δ−)φn,t(τ) = nṽ(−t)φn−1,t(τ) (3.11)

by definition of the operator A(δ−). Now, taking into account definition (3.9) and iden-

tities (3.10) and (3.11), we obtain

(Ψ, ĤΦ)h =

∞\
0

dt(ψ0, iGe
−(G+µ)t−iL∗W

T
t

0
ṽ(−τ) dτh)H +

∞\
0

dt

∞∑

n=1

1

n!

\
(IR\{0})n

dτ

×
(
ψ̃n(τ), e

−(G+µ)t−iL∗W
T
t

0
ṽ(−τ)dτ

(
iG+ iL∗Wṽ(−t) + I

n∑

k=1

∂

∂τk

)
φ̃n,t(τ)

)

H

=
(
Ψ, {iG+ iL∗W ⊗A(δ−) + I ⊗ Ê}Φ

)
h
,

that is the generator Ĥ of the group Ut has the form (3.6). Thus, we have proved the

following theorem.

Theorem 2. The operator

Ĥ = iG⊗ I + I ⊗ Ê + iL∗W ⊗A(δ−),

where G = iH + 1
2L

∗L, H = 1
4L

∗KL − H0, is symmetric in DW,L. It generates the

one-parameter unitary group Ut (2.9 ).

It is important to stress that the proof of the symmetry property does not assume

that the operators L,G and W commute. The proof can be easily extended to operators

of the form

Ĥ = iG+ I ⊗ Ê + i
∑

l,m

L∗
lWl,m ⊗Am(δ−) (3.12)
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with the boundary condition

(N̂ + 1)−1
(
I ⊗Al(δ+)−

∑

m

Wl,m ⊗Am(δ−)
)
Ψ = Ll ⊗ IΨ, (3.13)

whereW = {Wl,m} is an (M ×M)-matrix with coefficients in B(H) such thatW ∗W = I,

and {Am(g) : g ∈ L2(IR), 1 ≤ m ≤ M} are the annihilation operators in ΓS(L2(IR
M ))

which commute for different l.

4. Creation and annihilation processes of the second order. In the general

case, it is a difficult problem to find the matricesMt andNt defined by (1.3). Nevertheless,

equations (1.3) can be used to obtain the asymptotics of the solution as t → 0 and to

find the normal form of the strong resolvent limit of the family of Hamiltonians (1.1).

This requires the asymptotical expansions of Mt and Nt. In the sequel we consider a

degenerating sequence of quadratic selfadjoint Hamiltonians

H
(α)
2 =

Q

2
A†(hα)A

†(h) +
Q∗

2
A(hα)A(h) + I ⊗ E +H0 ⊗ I

+R⊗A†(fα) +R∗ ⊗A(fα) +K ⊗A†(gα)A(gα), (4.1)

with f, g, h ∈ L+

2,̃1
(IR), L+

2,̃1
(IR) = {g : g̃ ≥ 0, g̃ ∈ L2 ∩ L1}, where Q ∈ C(H), hα(ω) =

h(ωα), f(0) = g(0) = h(0) = (2π)−1/2. Thus, the weak limit Hw equals

Hw = I ⊗ E +H0 ⊗ I +K ⊗A†(1)A(1) +RA†(1) +R∗A(1),

where R = R⊗ I +Q⊗A†(h)/2 and

RA†(1) = w − lim(R ⊗A†(fα) +Q⊗A†(h)A†(hα)/2) =
(
R⊗ I +Q/2⊗A†(h)

)
A†(I).

The natural conjecture is that the strong resolvent limit Hsrs(a
∗, a) corresponding to

Hamiltonian (4.1) can be obtained from (2.8) by the change R→ R.

To evaluate the normal form Hsrs(a
∗, a) of the strong resolvent limit, it suffices to

study the small t asymptotic expansion of the functions µ
(α)
t and λ

(α)
t described by the

system of ODE {
µ̇
(α)
t = iH

(α)
aa (t)λ

(α)
t , µ(α)

0 = 0,

λ̇
(α)
t = −iH(α)

aa (t)µ
(α)
t , λ

(α)
0 = I,

where H
(α)
aa (t) = P

(α)
−t H

(α)
aa P

(α)
−t . The operators λt and µt are related to Φt and Ψt by the

interaction representation generated by P
(α)
t :

λt = P
(α)
t Φt, µt = P

(α)
t Ψt, Φ−1

t Ψt = λ−1
t µt, ΨtΦ

−1
t = Ptµtλ

−1
t Pt.

The solutions of this system, being rewritten as left cocycles, read as follows

µ
(α)
t = −i

( t\
0

ds1H
(α)
aa (s1) +

t\
0

ds1

s1\
0

ds2

s2\
0

ds3H
(α)
aa (s1)H

(α)
aa (s2)H

(α)
aa (s3) + . . .

)
,

λ
(α)
t = I +

t\
0

s1\
0

ds1 ds2H
(α)
aa (s1)H

(α)
aa (s2) + . . . (4.2)
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By using “Lemma on Four Limits” and expansions (4.2), we prove that if (I− iK)−1 :

H → domQ∗ ∩ domR∗, then the following asymptotic expansions hold true as α→ 0:

limλ
(α)
t = I + γt, γt =

t\
0

ds |hs〉Q∗(2− iK)−1Q〈hs|+O(t2),

limµ
(α)
t = −i

t\
0

ds
{
|hs〉(2 − iK)−1Q〈Ĩ[0,s)|+ |Ĩ[0,s)〉(2− iK)−1Q〈hs|

}
+O(t2),

where ht = eiωt(I + (W − I)π̂(0,t))h(ω), ||ht|| = ||h||. Hence, Φ−1
t Ψt = µt +O(t2) and

lim det
(
Φ

(α)
t P

(α)
t

)
= lim exp{Tr lnλ

(α)
t } = 1 + Tr {γt}+O(t2)

= 1 + t||h||2Q∗(2− iK)−1Q+O(t2),

lim i

t\
0

dτ H(α)
a (Φ(α)

τ )−1g(α)τ = tR∗(2− iK)−1R+O(t2),

lim i

t\
0

dτ g(α)τ (Φ(α)
τ )−1H(α)

aa (Φ(α)
τ )−1g(α)τ = O(t2), (4.3)

lim
1

2

(
a

a∗

)′

Nt

(
a

a∗

)
= (W − I)(a∗, eiωtπ̂[0,t)a) + (a∗, eiωta)

+(a∗, h)(a∗, eiωtĨ[0,t))(I − iK/2)−1Q+ (h, a)(eiωtĨ[0,t)a)(I − iK/2)−1Q∗,

lim

(
a

a∗

)′

Nt

(
gt −ΨtΦ

−1
t gt

−Φ−1
t gt

)
=

(
a

a∗

)′

Nt

(
gt

−Φ−1
t gt

)
+O(t2) =

i(I − iK/2)−1
{
R∗

(
Ĩ[0,t) +Q/2 h, a

)
+R

(
eiωtĨ[0,t) +Q∗/2 h, a

)}
+O(t2). (4.4)

These expansions gives an equation for Hsrs similar to the previous one and confirm the

above conjecture:

iHsrs = L0 + (W − I)A†(1)A(1) + LA†(1)− L∗WA(1),

L0 = i(H0 ⊗ I + I ⊗ E)−R∗(2− iK)−1R, L = i(1− iK/2)−1R,
R = R⊗ I +Q⊗A†(h)/2 (4.5)

with the same K and W as above. We stress that the limits Hw and Hsrs are different.

To pass to a quantum stochastic differential equation, we cancel out the term I ⊗ E

from the Hamiltonian by passing to the interaction representation, and evaluate the

stochastic differential:

M(T ) = i
\
T

dtJt (Hsrs − I ⊗ E) J∗
t .

Thus, the contribution to the singular components of Hsrs is given by the stochastic

processes of creation and annihilation of the second order:

A†
2(T ) =

\
T

dtA†(heiωt)A†(dt+), A2(T ) =
\
T

dtA(he−iωt)A(dt+), (4.6)

whereA(he−iωt) acts as a time-dependent annihilation operator; it multiplies the coherent
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vectors by the convolution of the Fourier transformations of h and g:

A(he−iωt)ψ(g) =
\
dτ h̃(τ)g̃(t+ τ)ψ(g).

In the particular case when h̃ is supported by IR−, the processes A2(T ) and A†
2(T ) are

adapted. Fortunately, in the nonadapted case, there is no problem to define rigorously

the stochastic integrals (4.6) because they contain products of commuting operators.

The associative Ito multiplication table for the operator-valued set-functions A(T ),

Λ(T ), A2(T ) and adjoint families follows in the standard way from CCR (see [13, 14]):

dA
†

dΛ dA
†
2

dA dt dA A
†(ht)dt

dΛ dA† dΛ dA
†
2

dA2 A(ht)dt dA2 νtdt

where ht = e−iωth and νt = A†(ht)A(ht) + ||h||2 = A(ht)A
†(ht). All the products which

are not indicated in the table are zero.

Assume that Lk are bounded operators from B(H)⊗ ΓS(L2(IR)) and

M(T ) = L0 mesT + L1A
†(T ) + L2A(T ) + L3Λ(T ) + L4A2(T ) + L5A

†
2(T ).

Then the conditions necessary for the cocycle satisfying the QSDE

du(s, t) = u(s, t)M(dt+)

to be unitary can be derived from the equations M(dt) +M∗(dt) +M∗(dt)M(dt) = 0,

M(dt) +M∗(dt) +M(dt)M∗(dt) = 0. These conditions and the Ito multiplication table

imply the equations for the coefficients Lk:

L0 + L∗
0 + L∗

1L1 + L∗
5L5νt + L∗

1L5A
†(ht) + L∗

5L1A(ht) = 0,

L1 + L∗
2 + L∗

3L1 = 0, L2 + L∗
1 + L∗

1L3 = 0,

L3 + L∗
3 + L∗

3L3 = 0, L3 + L∗
3 + L3L

∗
3 = 0,

L5 + L∗
4 + L∗

3L5 = 0, L4 + L∗
5 + L∗

5L3 = 0. (4.8)

The system (4.8) is similar to the equations derived in [10] to describe the conditions

necessary for the solution of QSDE to be unitary. It has an explicit solution parameterized

by a Hermitian operator H1, a unitary operator W , and arbitrary operators L and M :

L1 = L, L2 = −L∗W, L3 =W − I, L4 = −M∗W, L5 =M,

L0 = iH1 −
1

2

(
(L+MA†(ht)

)∗(
(L+MA†(ht)

)
.

These coefficients coincide with the coefficients of set-function (4.7) provided

L = i(I − iK/2)−1R, M = i(I − iK/2)−1Q,

H1 = H0 −
(
(R+QA†(ht)

)∗ 2K

4 +K2

(
(R +QA†(ht)

)
.

The last correction H1 −H0 to H0 follows from the strong resolvent limit of the family

of “physical” Hamiltonians (4.1) and violates the normal form of the generator, but the

difference H1 −H0 cannot be derived within the quantum stochastic calculus.
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The symmetric boundary value problem corresponding to the formal Hamiltonian

operator (4.5) is formulated similarly to Theorem 3.1. Our main result is the following

theorem.

Theorem 3. Let the operators K, R and Q commute, let K be a self-adjoint operator ,

R and Q be closed operators such that (I − iK)−1 : H → domQ∗ ∩ domR∗. Then the

family of Hamiltonians (4.1) generates the family of unitary groups U
(α)
t = eitH

(α)

such

that

• there exists the strong limit of the family of unitary groups Ut = s − limα→0 U
(α)
t ;

Ut is a unitary group generated by the operator

H = L0 − L∗WA(δ−)

with coefficients (4.5 ) which is a symmetric operator on the closed linear subspace

of Fock vectors Ψ such that

(N̂ + 1)−1
(
I ⊗A(δ+)−W ⊗A(δ−)

)
Ψ = LΨ;

• there exists a nonadapted unitary cocycle u(τ, t) = Jτ Ut−s J
∗
t such that u(τ, t) is a

unitary solution of QSDE

dut = utM(dt+), s− lim
t→s

u(s, t) = I

with the nonadapted stochastic differential

M(T ) =
\
T

Gt ⊗ I dt+ (W − I)⊗ Λ(dt+) + Lt ⊗A†(dt+)− L∗
tW ⊗A(dt+),

with Gt = iH0 ⊗ I −R∗
t (2− iK)−1Rt, where Lt = i(1− iK/2)−1Rt and

Rt = R ⊗ I +Q⊗A†(heiωt)/2.
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