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1. Introduction. The aim of this paper is to show how typically quantummechan-

ical objects, such as operators and density matrices, can be used for studying classical

dynamical systems. We will in particular consider statistical descriptions of dynamical

systems in discrete time, where one tries to study the actual system in terms of a restricted

class of model systems, in our case the non-commutative shifts on half-chains of quan-

tum spins. This is quite different from the Koopman formalism, where one constructs a

quantummechanical evolution on the Hilbert space H of square integrable functions on

the phase space in such a way that the evolution of the multiplication operators on H

coincides with the classical evolution of the phase space functions.

There are several reasons to consider such descriptions. Although one may very well

stay with classical statistical models, i.e. shifts on symbolic sequences, models in terms of

non-commutative shifts may be quite efficient and tractable. A second reason to consider

such models is to put classical dynamical systems and their statistical description in the

wider non-commutative setting. Finally, this type of models leads to an interesting class

of shift-invariant states on quantum spin chains which might be worthwhile to study for

its own sake.

2. Classical statistical models. [3,5] We will describe a classical dynamical system

by a continuous transformation θ of a compact metrizable set X : the phase space of

the system. The map θ corresponds to the evolution of the system during a single time

step. The dynamics is called reversible if θ has a continuous inverse. More precisely, the

dynamics is given by the discrete group {θn | n ∈ Z} or semigroup {θn | n ∈ N} of

continuous transformations of X according to whether θ is invertible or not. The last
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ingredient in the specification of a dynamical system is the invariant measure µ which is

a regular probability measure on X such that µ(A) = µ(θ−1(A)) for any Borel subset A

of X .

The basic building blocks for constructing classical statistical models of (X, θ, µ) are

the finite probability spaces (Zq, λ): Zq = {0, 1, . . . , q − 1} and λ = (λ0, λ1, . . . , λq−1)

with λj ≥ 0 and λ0 + λ1 + · · ·+ λq−1 = 1. We call (Zq, λ) a “coarse-grained” picture of

(X,µ) if there is a mapping γ from Zq to the Borel subsets B(X) of X such that

i) γ(j) ∩ γ(k) = ∅ if j 6= k,

ii)
⋃

j γ(j) = X and

iii) λj = µ(γ(j)).

{γ(j) | j = 0, 1, . . . , q − 1} is called a measurable size-q partition of X . Successive appli-

cations of the dynamics on X , up to time T , will refine partitions and produce ever more

precise coarse-grained pictures (
∏T−1

t=0 Zq, λ
(T )) of the dynamical system given in terms

of maps γ(T ). Let j = (j0, j1, . . . , jT−1) with jt ∈ Zq be a configuration of length T , then

γ(T ) is given by:

γ(T ) : Zq × Zq × · · · × Zq
︸ ︷︷ ︸

T−times

→ B(X) : j 7→
T−1⋂

t=0

θ−t(γ(jt)).

The mappings γ(T ) are compatible in the sense that
⋃

j′

γ(T+1)(j× (j′)) = γ(T )(j).

In this formula j × j′ denotes the concatenation of the configurations j and j′. We can

therefore glue the different γ(T ) together to obtain a global map γ : (Zq)
N → B(X)

which is the limit of the γ(T ). Furthermore
⋃

j′

γ((j′)× j) = θ−1(γ(j)).

This last relation, together with the time-invariance of µ, implies that the measure λ :=

µ◦γ is invariant for the left-shift σ on the half-infinite chain (Zq)
N and that θ◦γ = γ ◦σ.

3. Quantum statistical models. [1,2] We will now modify the scheme of above es-

sentially by replacing the classical finite probability space (Zq, λ) and the coarse-graining

map γ by suitable non-commutative versions. In order to do so, we must first lift the

formalism to an algebraic level, i.e. describe the classical dynamical system in terms of

i) the algebra C(X) of continuous complex-valued functions on phase space,

ii) the single-step automorphism or homomorphism Θ(f) := f ◦ θ, and
iii) the functional µ(f) :=

T
X
dµ f .

We then replace the couple (Zq , λ) by (Mq, ρ) where Mq are the q× q complex matrices

and where ρ is a density matrix on Cq. It remains to specify the coarse-graining map Γ

and how it refines under the dynamics. Following an idea of Lindblad’s [4], we put

Γ([akℓ]kℓ) :=
∑

kℓ

akℓ fk fℓ,
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where F = {f0, f1, . . . , fq−1} is an “operational partition of unity”, i.e. a collection of

functions in C(X) such that
∑

k |fk|2 = 1. In the sequel, such F will simply be called

partitions. The expression for a refined mapping Γ(T ) is similar to that of Γ except that

k has to be replaced by a T -tuple k = {k0, k1, . . . , kT−1} and fk by

fk := fk0
Θ(fk1

) · · ·ΘT−1(fkT−1
).

The Γ(T ) are completely positive, normalized and right-compatible in the sense that

Γ(T+1)(A⊗ 1I) = Γ(T )(A), A ∈ M⊗T
q .

They define therefore a global statistical picture Γ of the dynamical system in terms of

a half-chain of quantum spins

Γ : M⊗N
q → C(X) : Γ := limΓ(T ).

Denoting by Σ the right-shiftA 7→1I⊗A onM⊗N
q we find that Γ◦Σ = Θ◦Γ. Again, by time

invariance of µ, the global state ρ := µ ◦ Γ is shift-invariant on the quantum half-chain.

It is also possible, and useful, to consider the larger algebra L∞(X,µ) instead of

C(X) and to extend the dynamics Θ and the functional µ to this algebra in the ob-

vious way. The notion of operational partition of unity in continuous functions clearly

extends to the measurable functions and so does the construction of the statistical mod-

els. We can moreover associate in a natural way to a partition C = {C0, C1, . . . , Cq−1}
of the phase space X into disjoint measurable subsets the measurable partition of unity

{χC0
, χC1

, . . . , χCq−1
} where χA is the characteristic function of the set A. By this asso-

ciation, intersection of subsets of X corresponds to multiplication of their characteristic

functions, which means that the notions of refinement in the classical sense and in the

sense of quantum statistical models agree. It is quite obvious that a partition of X into

disjoint subsets leads to consider diagonal density matrices on finite portions of the spin

half-chain. More general operational partitions will usually produce highly non-diagonal

density matrices that don’t obey any particular commutation relations. The state ρ has

however a particular structure: it is completely non-entangled:

Proposition 1. Let {e0, e1, . . . eq−1} denote the canonical basis of Cq and PF the

projection-valued function

PF := | ∑k fk ek〉〈
∑

k fk ek |
on X , then

ρ =
\
X

dµ ⊗j∈N Θj
(
PF

)
.

We can of course rewrite the state ρ in terms of a stationary, discrete time, stochas-

tic dynamics on the closed subset P0 := PF(X) of the pure state space P of Mq. We

attribute the probability

ν({π(t) ∈ At}) := µ
(⋂

t

θ−t
(
P−1
F (At)

))

to the paths π in P0 that cross At at time t, where At is a measurable subset of P0:

ρ =
\
dν(π) ⊗t∈N π(t).
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Except for the purity condition on the states on Mq, we obtain in this way the full class

of classical, shift-invariant states on M⊗N
q :\

dν(ς) ⊗t∈N ς(t),

where ν is a stationary, discrete time, stochastic process on the state space S of Mq.

Let us choose two strictly local observables A and B in M⊗N
q . If we shift B far enough

to the right, we can ensure that A and Σℓ(B) are localized on disjoint subsets of N. In

this case:

ρ(AΣℓ(B)) =
\
X

dµ aΘℓ(b),

where a is the function x ∈ X 7→ Tr ⊗t Θ
t(PF )A and b is defined in a similar way.

Therefore, the models of an ergodic dynamical system will be ergodic with respect to the

shift and the models of a mixing system will be mixing. Conversely, a dynamical system

will be ergodic (or mixing) only if all of its models are ergodic (mixing).

4. Computing Renyi entropies. As an example, we will compute the second mean

Renyi entropy r2 for the model of an ergodic dynamical system determined by the parti-

tion F = {f0, f1, . . . , fq−1}. The mean kth order Renyi entropy rk(ω) of a shift-invariant

state ω on M⊗N
q is defined as:

rk(ω) := lim sup
T→∞

−1

T (k − 1)
logTr (ωk

T ).

In this formula, ωT is the reduced density matrix of ω for the first T sites of the half-chain.

In general, it is not possible to replace “limsup” by “lim”.

Applying the construction of r2 to our model state ρ, we find:

r2(ρ) = lim sup
T→∞

−1

T
logTr

(\
X

dµ

T−1⊗

t=0

Θt(PF)
)2

= lim sup
T→∞

−1

T
log

\
X×X

dµ(x1)dµ(x2)

T−1∏

t=0

TrPF(θ
t(x1)) PF (θ

t(x2))

= lim sup
T→∞

−1

T
log

\
X×X

dµ(x1)dµ(x2)

T−1∏

t=0

∣
∣
∣
∣

q−1
∑

j=0

fj(θt(x1)) fj(θ
t(x2))

∣
∣
∣
∣

2

. (∗)

At this point, we are unable to continue the computation unless we make some assumption

about the product dynamics.

Let us first suppose that (X ×X, θ × θ, µ× µ) is also ergodic. Writing

T−1∏

t=0

∣
∣
∣
∣

q−1
∑

j=0

fj(θt(x1)) fj(θ
t(x2))

∣
∣
∣
∣

2

= exp

(

2

T−1∑

t=0

log

∣
∣
∣
∣

q−1
∑

j=0

fj(θt(x1)) fj(θ
t(x2))

∣
∣
∣
∣

)

,

and using that for almost any x1 and x2

lim
T→∞

1

T

T−1∑

t=0

log

∣
∣
∣
∣

q−1
∑

j=0

fj(θt(x1)) fj(θ
t(x2))

∣
∣
∣
∣
=

\
X×X

dµ(y1)dµ(y2) log

∣
∣
∣
∣

q−1
∑

j=0

fj(y1) fj(y2)

∣
∣
∣
∣
,
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we find that r2 exists as a limit and that it is explicitly given by

r2(ρ) = −2
\

X×X

dµ(y1)dµ(y2) log

∣
∣
∣
∣

q−1
∑

j=0

fj(y1) fj(y2)

∣
∣
∣
∣
.

If the product dynamics is non-ergodic, the resulting entropy might be quite different.

Consider e.g. the rotation of the unit circle S1 in R2 over an angle α0 which is an irra-

tional multiple of π. The uniform measure dα/2π is ergodic. The product system however,

has a conserved quantity:

(α1, α2) 7→ (α1 − α2)mod 2π

and is therefore non-ergodic. Let us now resume the computation of r2 at (∗):

r2(ρ) = lim sup
T→∞

−1

T
log

1

4π2

2π\
0

dα1

2π\
0

dα2

T−1∏

t=0

∣
∣
∣
∣

q−1
∑

j=0

fj(α1 − tα0) fj(α2 − tα0)

∣
∣
∣
∣

2

= lim sup
T→∞

−1

T
log

1

4π2

2π\
0

dβ

2π\
0

dα

T−1∏

t=0

∣
∣
∣
∣

q−1
∑

j=0

fj(α− tα0) fj(α+ β − tα0)

∣
∣
∣
∣

2

.

Using the ergodicity of an irrational shift on the circle,

lim
T→∞

1

T

T−1∑

t=0

log

∣
∣
∣
∣

q−1
∑

j=0

fj(α− tα0) fj(α + β − tα0)

∣
∣
∣
∣
=

1

2π

2π\
0

dα log

∣
∣
∣
∣

q−1
∑

j=0

fj(α) fj(α+ β)

∣
∣
∣
∣
.

By Laplace’s formula we eventually obtain

r2(ρ) = lim sup
T→∞

−1

T
log

1

2π

2π\
0

dβ exp

(

2T
1

2π

2π\
0

dα log

∣
∣
∣
∣

q−1
∑

j=0

fj(α) fj(α + β)

∣
∣
∣
∣

)

= −2 sup
0≤β<2π

1

2π

2π\
0

dα log

∣
∣
∣
∣

q−1
∑

j=0

fj(α) fj(α+ β)

∣
∣
∣
∣
= 0,

because F is a partition of unity.

Theorem 1. Suppose that (X, θ, µ) is mixing, that F = {f0, f1, . . . , fq−1} is a parti-

tion of unity and that ρ denotes the shift-invariant state induced by F on M⊗N
q . For any

k ∈ {2, 3, . . .}, the kth mean Renyi entropy rk(ρ) exists as a limit and is given by

rk(ρ) =
−k

2(k − 1)
r2(ρ) =

−k

k − 1

\
X×X

dµ(y1)dµ(y2) log

∣
∣
∣
∣

(q−1
∑

j=0

fj(y1) fj(y2)

)∣
∣
∣
∣
.

P r o o f. Because the system is mixing, arbitrary products of copies of the dynamical

system are mixing too. We can therefore repeat for general k, the computation of r2(ρ)

of above. As ρ is a convex combination of pure product states, we can easily compute

the k-fold traces in the expression for rk and reach the statement of the theorem.

The computation above is an example where the “replica trick” can be explicitly

performed. It is rather obvious that, in this case, the computation of the higher Renyi

entropies doesn’t contain any valuable information. An “analytic continuation” of the

formula for k → 1 would in fact suggest an infinite von Neumann mean entropy for the
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states that we consider. This is impossible however as the mean von Neumann entropy

of a partition of size q cannot exceed log q.

5. The von Neumann mean entropy. We will show in this section that the usual

entropy density h(F) of a statistical model ρ, induced by a partition F , is bounded by

the Kolmogorov-Sinai invariant. It is unclear for the moment whether a closed expression

for h(F) can be obtained.

Theorem 2. Let F = {f0, f1, . . . , fq−1} be a measurable partition of unity of the dy-

namical system (X, θ, µ) and ρ the corresponding state on M⊗N
q , then the mean von Neu-

mann entropy h(F) of ρ is bounded from above by the Kolmogorov-Sinai invariant h
KS

of (X, θ, µ).

P r o o f. The idea of the proof is to partition, up to time T , the phase space X into

sufficiently fine subsets so that ⊗T−1
t=0 Θt(PF ) is almost constant on such a subset.

Choose ǫ > 0 and let C = {C0, C1, . . . , Cp−1} be a partition of X into disjoint mea-

surable subsets such that the variation of PF over each Cj doesn’t exceed ǫ:

sup
x,y∈Cj

‖PF(x) − PF(y)‖ ≤ ǫ j = 0, 1, . . . , p− 1.

The usual entropy function x ∈ [0, 1] 7→ −x log x will be denoted by η. If we put for a

T -tuple j = (j0, j1, . . . , jT ) Cj = ∩tθ
−t(Cjt), then

S(ρT ) = S
(\
X

dµ ⊗T−1
t=0 Θt(PF)

)

= S
(∑

j

\
Cj

dµ ⊗T−1
t=0 Θt(PF)

)

≤
∑

j

η(µ(Cj)) +
∑

j

µ(Cj)S
( 1

µ(Cj)

\
Cj

dµ ⊗T−1
t=0 Θt(PF)

)

≤
∑

j

η(µ(Cj)) +
∑

j

µ(Cj)

T−1∑

t=0

S
( 1

µ(Cj)

\
Cj

dµΘt(PF)
)

.

As the density matrices in the last term are convex combinations of pure states that

remain close together, such a convex combination will be almost pure. The entropy of the

resulting density matrix becomes then arbitrarily small when ǫ → 0. It suffices now to

divide the inequality by T and to take the limit T → ∞ in order to reach the conclusion

of the theorem:

h(F) = lim
1

T
S(ρT ) ≤ h

KS.

Let us define the dynamical entropy hB of (X, θ, µ) with respect to a Θ-invariant

∗-subalgebra of L∞(X,µ) as the supremum of h(F) over all operational partitions F of

unity in functions that belong to B, we can then conclude that

Theorem 3. Both the continuous and measurable dynamical entropies of a classical

dynamical system (X, θ, µ) coincide with the Kolmogorov-Sinai invariant of that system:

h
KS = hC(X) := sup

F⊂C(X)

h(F) = hL∞(X,µ) := sup
F⊂L∞(X,µ)

h(F).

P r o o f. By the result of theorem 2 we must only show that hKS is attained on contin-

uous operational partitions of unity. Recalling the construction of the Kolmogorov-Sinai
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invariant, we can find for any ǫ > 0 a partition C = {C0, C1, . . . , Cp−1} of X into disjoint

measurable subsets such that the classical entropy

lim
T→∞

1

T

∑

j

η(µ(Cj))

exceeds hKS − ǫ. As in the proof of theorem 2, j denotes a T -tuple {j0, j1, . . . , jT } of

integers between 0 and p− 1 and Cj equals ∩tθ
−t(Cjt).

The conditional entropy H[F | G] of a partition F with respect to a partition G is

defined to be H[F ◦G]−H[G]. In this expression H[F ] is the entropy of the partition F =

{f0, f1, . . . , fq−1} i.e. the usual von Neumann entropy of the density matrix [µ(fℓ fk)]k, ℓ.

By standard entropy inequalities [6] it is non-negative, subadditive in its first argument:

H[F1 ◦ F2 | G] ≤ H[F1 | G] + H[F2 | G] and monotonically decreasing in its second argu-

ment: H[F | G1 ◦ G2] ≤ H[F | G1]. We use these properties to obtain for any partition F :

H[ΘT−1(C) ◦ · · · ◦Θ(C) ◦ C]
≤ H[ΘT−1(F) ◦ · · · ◦Θ(F) ◦ F ◦ΘT−1(C) ◦ · · · ◦Θ(C) ◦ C]

≤ H[ΘT−1(F) ◦ · · · ◦Θ(F) ◦ F ] +

T−1∑

j=0

H[Θj(C) | ΘT−1(F) ◦ · · · ◦Θ(F) ◦ F ]

≤ H[ΘT−1(F) ◦ · · · ◦Θ(F) ◦ F ] +

T−1∑

j=0

H[Θj(C) | Θj(F)]

= H[ΘT−1(F) ◦ · · · ◦Θ(F) ◦ F ] + T H[C | F ].

Dividing by T and taking the limit for large T , we conclude that

h
KS − ǫ ≤ h[F ] + H[C | F ].

In order to finish the proof, we must show that we can find for any partition C of X

into disjoint subsets a continuous operational partition F such that H[C | F ] < ǫ. By the

regularity of µ we can find for each of the Cj a compact Kj and an open Oj such that

Kj ⊂ Cj ⊂ Oj and such that the measures of Cj \ Kj and Oj \ Cj become arbitrarily

small. Urysohn’s lemma asserts the existence of continuous, non-negative, functions fj
that take the value 1 on Kj and vanish outside Oj . {√f0,

√
f1, . . . ,

√
fp−1} is, up to

a continuous correction with small L1-norm, a continuous partition of unity, that coin-

cides with C, again up to a correction with small L1-norm. The continuity of the entropy

ensures then that H[C | F ] can be made less than ǫ.

In the proof of theorem 3, it appears that a restricted class of partitions can suffice to

compute the Kolmogorov-Sinai invariant. In the classical computation, one has to study

the proliferation of intersections of subsets of the phase space under the dynamics. This

becomes quite complicated unless there exists a sufficiently large class of subsets of X

whose boundaries transform nicely under the dynamics. Passing from the geometrical

picture to a more analytic one allows us to use continuous functions which might allow

for an easier implementation of the dynamics. Examples of such situations have been

treated in [1]. The price to be paid is that we must now consider non-diagonal matrices.

A special situation occurs when one is able to find a “Fourier” version of the dynamics in



182 M. FANNES

the sense that one considers partitions in terms of complex-valued functions of constant

modulus. A suitable choice of such partitions might then again lead to essentially diag-

onal density matrices if the, often wildly oscillating, phases of the products of different

elements in the partition, average to zero. It should be noticed that partitions in functions

of constant modulus preserve this property under composition and time evolution. The

following result shows that such partitions indeed suffice to compute hKS:

Theorem 4. The Kolmogorov-Sinai invariant hKS of a dynamical system (X, θ, µ) can

be computed as the supremum of the entropies h[F ] of continuous operational partitions

in functions of constant absolute value.

P r o o f. Here too, it will be sufficient to show that we can approximate arbitrarily

well the entropy of any partition C = {C0, C1, . . . , Cq−1} of X in disjoint measurable sets

by the entropy of a partition in measurable functions of constant absolute value. Pass-

ing from such partitions to continuous ones is possible with an approximation procedure

similar to that in the proof of theorem 3.

Consider the partition F = {f0/√q, f1/
√
q, . . . , fq−1/

√
q} with fj equal to exp(2πijk/q)

on Ck. A simple calculation shows that

[µ(Ck) δk ℓ]k ℓ ∼ [µ(fℓ fk)]k ℓ,

where ∼ means unitary equivalence. This unitary equivalence is maintained under the

time evolution. But this means that the entropy of the partition F equals that of the

partition C.
It should be remarked that the partitions that appear in the proof of theorem 4 are

constructed by slicing the phase space in disjoint pieces. In actual models, quite different,

much smoother, partitions in functions of constant absolute value have proven useful.

It is unclear for the moment under what conditions a single operational partition will

actually produce the Kolmogorov-Sinai invariant.
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