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Abstract. A randomized q-central or q-commutative limit theorem on a family of bialgebras
with one complex parameter is shown.

1. Introduction. In [Spe92] Speicher proved a non-commutative limit theorem, in

which the commutation relations of the quantum random variables are given by classical

{−1, 1}-valued random variables, i.e. Bernoulli random variables. We will show a similar

limit theorem, but placed in a bialgebra setting. Here it is the coproduct that depends on

a sequence of i.i.d. complex-valued random variables. This also leads to q-commutation

relations for the increments, but with less independence in the choice of the commutation

factors, as we will see. We will also see that the limit distribution can be expressed as an

exponential with respect to a (non-associative!) averaged convolution.

We begin by briefly recalling the results of Speicher [Spe92] and Schürmann [Sch93].

In Section 2 we introduce the bialgebras used to formulate the main theorem (Section

3), and the algebra structure of their duals.

Finally, in Section 4, we show how explicit formulas for the moments and their asso-

ciated measures can be obtained using dual representations.

Let q ∈ IC be a fixed complex number, and x̃1, x̃2, . . . a sequence of quantum random

variables that satisfy

x̃nx̃m = qx̃mx̃n, x̃nx̃
∗
m = qx̃∗mx̃n,

for n > m, and set
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S̃N =
x̃1 + · · ·+ x̃N√

N
.

If, for n ∈ IN, we have e.g. < Ω, x̃nΩ >=< Ω, x̃∗nΩ >=< Ω, x̃2nΩ >=< Ω, (x̃∗n)
2Ω >=

< Ω, x̃nx̃
∗
nΩ >= 0, < Ω, x̃∗nx̃nΩ >= g ∈ IR+ in the vacuum state Ω, then the moments of

(SN , S
∗
N ) (in the state Ω) converge for N → ∞ to those of the quantum Azéma process,

cf. [Sch91].

If we take instead quantum random variables x̂1, x̂2, . . ., whose commutation relations

are determined by classical i.i.d. random variables (εmn)n,m∈IN, P (εnm = εmn = +1) = p,

P (εnm = εmn = −1) = 1− p, p ∈ [0, 1],

x̂nx̂m = εnmx̂mx̂n,

(no relations between x̂n and x̂∗m) and set again ŜN = (x̂1 + · · · + x̂N )/
√
N, then the

moments of (ŜN , Ŝ
∗
N ) converge for N → ∞ to those of Bożejko and Speicher’s q-Brownian

motion [BS91, BKS96], see [Spe92]. The parameters q and p are related via q = 2p− 1.

Define

ω =

(
0

1

)

, x =

(
0 1

0 0

)

, y(q) =

(
1 0

0 q

)

,

for q ∈ IC. Then we can realize the quantum random variables (x̃n)n∈IN and (x̂n)n∈IN on

the infinite tensor product
(
IC2
)⊗IN,ω

of IC2 (as a Hilbert space, the product being taken

with respect to the sequence ωn = ω) as

x̃n = y(q)⊗ · · · ⊗ y(q)
︸ ︷︷ ︸

n−1 times

⊗x⊗ 1⊗ 1⊗ · · · ,

x̂n = y(εn,1)⊗ · · · ⊗ y(εn,n−1)⊗ x⊗ 1⊗ 1⊗ · · · .
The state is given by Ω = ω⊗IN.

In this realization the following amounts to replacing the parameter q in the definition

of x̃n by complex-valued random variables (qi)i∈IN, i.e. we set xn = y(q1)⊗· · ·⊗y(qn−1)⊗
x⊗ 1⊗· · ·. But, in order to stay in a bialgebra framework, we get less independence than

in the commutation factors of the x̂n. It turns out that an increment xn has to satisfy the

same commutation relation either with all preceeding or with all following increments,

i.e. we have two possible cases

a) xnxm = qnxmxn for n > m,

b) xnxm = qmxmnn for n > m.

2. The family of bialgebras. Let A be the (unital, associative) *-algebra generated

by x, x∗, and {yα;α ∈ IC\{0}} with the relations y∗α = yᾱ, and

yαx = αxyα, x∗yα = αyαx
∗, yαyβ = yαβ for α, β ∈ IC\{0}, y1 = 1.

Note that deg x = deg x∗ = 1, deg yα = 0 for all α ∈ IC\{0} defines a grading, and so we

can introduce a scaling map s(r) : A → A, for r ∈ IR, by setting s(r)a = r− deg aa on

homogeneous elements.

A basis of A is given by

B = {yαw;w a word in the two letters x, x∗, and α ∈ IC\{0}}.
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On this algebra we can define a whole family of coalgebras, depending on one param-

eter q ∈ IC\{0}, namely,

∆qx = x⊗ yq +1⊗ x, ∆qx
∗ = x⊗ yq̄ +1⊗ x∗, ∆q(yα) = yα ⊗ yα for α ∈ IC\{0},

and εq(x) = εq(x
∗) = 0, εq(yα) = 1 for all α ∈ IC\{0}. In fact, this is a Hopf algebra with

the antipode Sq : A → A,

Sq(yα) = y1/α, Sq(x) = −xy1/q, Sq(x
∗) = −x∗y1/q̄.

Using these different coalgebra structures we obtain different multiplications for func-

tionals on A, i.e. a one-parameter family of convolutions,

ϕ ∗q ψ = (ϕ⊗ ψ) ◦∆q

for linear functionals ϕ, ψ : A → IC.

For a word w in the two letters x, x∗, let χ(w) be the functional defined by

χ(w)(yβw
′) =

{
1 if w = w′,

0 else

on the basis B. Then U = span {χ(w);w a word in the two letters x, x∗} is a subalgebra

of the dual of A (with the multiplicationmq = ∆∗q). Let a ∈ A, ∆qa =
∑
a
(1)
i ⊗a(2)i . Then

the product χ(w) ∗q χ(w′) is defined by (χ(w) ∗q χ(w′))(a) =
∑
χ(w)(a

(1)
i )χ(w′)(a

(2)
i ).

We get by induction

∆q(x
n) =

n∑

ν=0

[
n

ν

]

q

xν ⊗ xn−νyqν ,

∆q ((x
∗)n) =

n∑

ν=0

[
n

ν

]

q

(x∗)ν ⊗ yq̄ν (x
∗)n−ν ,

where
[
n
ν

]
= qn!

qν !qn−ν !
, qn! =

∏n
ν=1 qν , qn =

∑n
ν=1 q

ν−1 = qn−1
q−1 , and from this we can

calculate the coproduct of any element of A.

To calculate the product χ(w)∗qχ(w′), we have to see what elements of A have a term

yαw⊗ yβw
′ in their coproduct. Since the coproduct does not change the total number of

x’s and x∗’s, but just splits a word into two, the product has to do the inverse. We get

χ(w) ∗q χ(w′) =
∑

v

cvw,w′(q)χ(v), (1)

where v runs over all words that can be obtained by shuffling w and w′, and the cvw,w′

are polynomials in q and q−1. To get the explicit expression, use the following procedure.

In the first term v is simply the concatenation of w and w′, and the coefficient is

equal to one. Then move the letters of w to the right, without changing their order, and

multiply by q every time an x is moved to the right past another x, and by q−1 every

time it is moved past an x∗. When moving an x∗ to the right take the conjugate factors,

i.e. a q̄ when it is moved past an x, and a q̄−1 when it is moved past an x∗. We get e.g.

χ(x) ∗q χ(x) = (1 + q)χ(xx),

χ(x) ∗q χ(x∗) = χ(xx∗) + q−1χ(x∗x),

χ(x∗) ∗q χ(x) = χ(x∗x) + q̄χ(xx∗),
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χ(x∗) ∗q χ(x∗) = (1 + q̄−1)χ(x∗x∗).

We will also need the averaged convolution (w.r.t. to a IC\{0}-valued random variable

q) defined by

u1∗̄u2 = IE(u1 ∗q u2),
i.e. u1∗̄u2 is the functional defined by u1∗̄u2(a) =

T
(u1⊗u2)(∆q(a))dµ(q), where µ is the

law of q. This binary operation conserves positivity, but in general it is not associative.

3. The central limit theorem. We will now show that the functionals

a) ϕN
→ = ((ϕ ∗q1 ϕ) ∗q2 ϕ) ∗q3 · · · ∗qN−1 ϕ ◦ s(

√
N)

= (ϕ⊗ · · · ⊗ ϕ) ◦ (∆q1 ⊗ id⊗N−2) ◦ · · · ◦∆qN−1 ◦ s(
√
N)

b) ϕN
← = ϕ ∗qN−1 · · · ∗q3 (ϕ ∗q2 (ϕ ∗q1 ϕ)) ◦ s(

√
N)

= (ϕ⊗ · · · ⊗ ϕ) ◦ (id⊗N−2 ⊗∆q1) ◦ · · · ◦∆qN−1 ◦ s(
√
N)

converge for appropriately chosen functionals ϕ.

In the realization from Section 1 with ϕ(·) =< ω, ·ω > and for a non-commutative

polynomial P (x, x∗) we can write

ϕN
←,→(P (x, x∗)) =< Ω, P (SN , S

∗
N )Ω >,

with

SN =
x
(N)
1 + · · ·+ x

(N)
N√

N
and

a) x(N)
n = 1⊗ · · · ⊗ 1

︸ ︷︷ ︸

n−1 times

⊗x⊗ y(qn)⊗ · · · ⊗ y(qN−1)

b) x(N)
n = 1⊗ · · · ⊗ 1

︸ ︷︷ ︸

n−1 times

⊗x⊗ y(qN−n)⊗ · · · ⊗ y(qN−n)
︸ ︷︷ ︸

N−n times

,

where, as one verifies easily, the increments x
(N)
n satisfy commutation relations of the

form given at the end of Section 1.

We state now our result.

Theorem 1. Let (qn)n∈IN be i.i.d. random variables with values in IC\{0} such that

IE(|qm1 |) < ∞ for all m ∈ ZZ, and let ϕ : A → IC be a normed functional in U . Suppose
furthermore that ϕ is centralized, i.e. ϕ(x) = ϕ(x∗) = 0. Then the moments of

ϕN
→ = ((ϕ ∗q1 ϕ) ∗q2 ϕ) ∗q3 · · · ∗qN−1 ϕ ◦ s(

√
N)

ϕN
← = ϕ ∗qN−1 · · · ∗q3 (ϕ ∗q2 (ϕ ∗q1 ϕ)) ◦ s(

√
N)

converge for N → ∞ in probability to those of the functionals

ϕ∞→ = exp∗̄,→ g = ε+ g + g∗̄g + (g∗̄g)∗̄g + · · · ,
ϕ∞← = exp∗̄,← g = ε+ g + g∗̄g + g∗̄(g∗̄g) + · · · ,

where g|A(2) = ϕ, and g|A(k) = 0 for k 6= 2.
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P r o o f. We will only prove this for ϕN
→, since the convergence of ϕN

← can be shown

in the same way.

We can write ϕ as ϕ = ε+g+ ϕ̃, where ϕ̃ vanishes on homogeneous elements of degree

less than three.

Let us first assume ϕ̃ = 0, i.e. ϕ = ε + g, g = g1χ(xx) + g2χ(x
∗x) + g3χ(xx

∗) +

g4χ(x
∗x∗). To simplify the notation we assume in fact g = χ(x∗x).

Then the functional

ϕN
→ =

(

· · · (ϕ ∗q1 ϕ) ∗q2 · · · ∗qN−1 ϕ
)

◦ S(
√
N)

can be written as

ϕN
→ =

∑

v

fN
v (q1, . . . , qN−1)

N
|v|
2

χ(v),

where |v| denotes the length of v. The coefficients fN
v (q1, . . . , qN−1)/N

|v|/2 will be some

rational functions of q1, . . . , qN−1, as can be seen from the recurrence relations below. To

prove the theorem for this case it is sufficient to show that IE(fN
v (q1, . . . , qN−1)/N

|v|/2)

converges and that Var(fN
v (q1, . . . , qN−1)/N

|v|/2) goes to zero for N → ∞ (and fixed v).

We will do this by induction over the length of v. The coefficient of 1 (the empty word)

is constant and the coefficient of the only word with |v| < 4 that occurs, i.e. v = x∗x, is

equal to N , so the induction hypothesis is satisfied for |v| < 4. Let cvw,w′(q) denote the

coefficients of the multiplication, as in Equation (1). We have the following relations for

fN+1
v (q1, . . . , qN ),

fN+1
v (q1, . . . , qN ) = fN

v (q1, . . . , qN−1) +
∑

v′: |v′|=|v|−2

cvv′,x∗x(qN )fN
v′ (q1, . . . , qN−1),

or

fN
v (q1, . . . , qN−1) =

N−1∑

k=
|v|
2

∑

v′: |v′|=|v|−2

cvv′,x∗x(qk−1)f
k−1
v′ (q1, . . . , qk−2),

and therefore

IE

(
fN
v (q1, . . . , qN−1)

N
|v|
2

)

=
1

N

N−1∑

k=
|v|
2

∑

v′: |v′|=|v|−2

IE
(
cvv′,x∗x(qk−1)

)
IE

(

fk−1
v′ (q1, . . . , qk−2)

N
|v′|
2

)

=
1

N

∑

v′: |v′|=|v|−2

IE
(
cvv′,x∗x(qk−1)

)
N−1∑

k=
|v|
2

(k − 1)
|v′|
2

N
|v′|
2

IE

(

fk−1
v′ (q1, . . . , qk−2)

(k − 1)
|v′|
2

)

N→∞−→ 2

|v|
∑

v′: |v′|=|v|−2

IE
(
cvv′,x∗x(q1)

)
lim

N→∞
IE

(
fN
v′ (q1, . . . , qN−1)

N
|v′|
2

)

(2)

The same technique works for the limit of the variance. Suppose Var
(
fN
v (q1, . . . , qN−1)

)
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is bounded by KvN
|v|−1, which is obviously true for |v| = 0, 1, 2, 3. Then, by

Var
(
fN
v (q1, . . . , qN−1)

)
= Var






N−1∑

k=
|v|
2

∑

v′: |v′|=|v|−2

cvv′,x∗x(qk−1)f
k−1
v′ (q1, . . . , qk−2)






≤ N

N−1∑

k= |v|
2

∑

v′: |v′|=|v|−2

IE
(
(cvv′,x∗x(qk−1))

2
)
Var

(
fk−1
v′ (q1, . . . , qk−2)

)

≤ N |v|−1
∑

v′: |v′|=|v|−2

IE
(
(cvv′,x∗x(q1))

2
)
Kv′

it is true for all v, and therefore Var(fN
v (q1, . . . , qN−1)/N

|v|/2)
N→∞−→ 0. So, for N → ∞,

the coefficients fN
v (q1, . . . , qN−1)/N

v/2 converge to the expectation in probability, and

this limit can be calculated recursively over the order of v with Equation (2). This shows

that for ϕ = ε+ g the functionals ϕN
→ tend to

ε+ g + g∗̄g + (g∗̄g)∗̄g + · · · = exp∗̄,→(g).

As in [Sch93, Theorem 6.1.3] the contributions of the higher order terms contained in

ϕ̃ vanish in the limit, because they pick up higher orders of the scaling factor N−1.

4. Special cases. We will now show how dual representations can be used to give

explicit expressions for the moments of the limit functional. If ϕ is a functional on a

bialgebra A, then we can associate operators ρR(ϕ), ρL(ϕ) : A → A to it by

ρR(ϕ)a =
∑

a
(1)
i ϕ(a

(2)
i ), ρL(ϕ)a =

∑

ϕ(a
(1)
i )a

(2)
i ,

where ∆(a) =
∑
a
(1)
i ⊗ a

(2)
i , (Sweedler’s notation). The functional ϕ can be retrieved

from the operators since ϕ = ε ◦ ρR(ϕ) = ε ◦ ρL(ϕ). Also, the map ρR : A∗ → Hom(A)

(resp. ρL : A∗ → Hom(A)) is a homomorphism (resp. anti-homomorphism), i.e.

ρR(ϕ ∗ ψ) = ρR(ϕ) ◦ ρR(ψ)
(

resp. ρL(ϕ ∗ ψ) = ρL(ψ) ◦ ρL(ϕ)
)

.

Let A be as before, ρq the right dual representation w.r.t. ∆q, and define

Rq = ρq(χ(x
∗x)) = (id⊗ χ(x∗x)) ◦∆q, R̄ = IE(Rq).

These can be used to calculate the moments of exp∗̄,→, since

ε ◦ ρq1(ϕ1) ◦ ρq2(ϕ2) ◦ · · · ◦ ρqn(ϕn) = (ϕ1 ∗q2 ϕ2) ∗q3 · · · ∗qn ϕn,

If q is real, then, for polynomials f(z) in the variable z = x+ x∗, we have

Rqf(z) =
f(qz)− f(z)− z(q − 1)f ′(z)

z2(q − 1)2
,

i.e. Rq is the generator of the Azéma martingale. Consult [Fra97a, Fra97b] to see how

this can be derived using Hopf algebra duality and a generalized Leibniz formula. On

monomials we get Rqz
n = kn(q)z

n−2, kn(q) =
∑n−1

ν=1 νq
n−ν , for n ≥ 2, Rqz = Rq1 = 0.

R̄ follows by averaging over q.

Thus we have the following result.
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Proposition 2. Let q be a random variable with values in IR\{0} s.t. IE(|q|n) < ∞
for all n ∈ IN and denote by ∗̄ the averaged convolution with respect to q. Then

exp∗̄,→ χ(x
∗x)
(

(x+ x∗)n
)

=

{
k̄2mk̄2m−2···k̄2

m! if n is even, n = 2m,

0 if n is odd,

where k̄n =
∑n−1

ν=1 νIE(q
n−ν).

P r o o f. Apply exp∗̄,→ χ(x
∗x) = ε◦eR̄ to (x+x∗)n, which gives the desired expression

since R̄(x+ x∗)n = k̄n(x + x∗)n−2.

R ema r k. Similarly, the left dual representation can be used to compute exp∗̄,←(g).

Examples.

• In the deterministic case, i.e. if P (q = q0) = 1 for some q0 ∈ IR\{0}, we get the

marginal distribution of the Azéma martingale with parameter q0.

• For Bernoulli random variables, i.e. if P (q = 1) = p, P (q = −1) = 1 − p, for some

p ∈ [0, 1], we obtain

ϕ∞((x + x∗)2m) =

m−1∏

µ=0

(1 + 2µp)

i.e. the moments of µ = cp|x|
1
p
−1e−x

2/2pdx.
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[Fra97a] U. Franz, Contribution à l’étude des processus stochastiques sur les groupes quan-

tiques, Ph.D. Thesis, Université H. Poincaré-Nancy 1, 1997.
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